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Abstract:  Homotopy analysis method (HAM) is a very strong semi analytical method used to solve 

almost all nonlinear ordinary and partial differential equations. The effects of heat source/ sink of the 

boundary layer flow on a steady two dimensional flow and heat transfer past a shrinking sheet is studied by 

Homotopy Analysis Method. The series solution obtained by HAM is shown to be convergent for choosen h 

value which was obtained by h curve. Region of convergence is obtained by Domb-Sykes plot. We have also 

applied Pade for the HAM series and were able to identify the singularity and is reflected in the graph. The 

convergence of Homotopy series solution is obtained by the h curves. We find that HAM gives better 

approximation to the solutions.  
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1. Introduction  
 

    Homotopy Analysis Method (HAM) was first proposed by Liao in his Ph.D. thesis [2]. A systematic 

exposition on HAM is given in [3]. Solution of Non-linear partial differential equations can be solved 

analytically using HAM by L. N. Achala, S. B. Satyanarayana [4, 5] and many authors [6, 7, 8, 9, 10, 

11].The incompressible fluid flow due to a shrinking sheet is gaining responsiveness by the current research 

scholars due to increase of applications. A Steady flow over a shrinking sheet is not possible because the 

generated vorticity is not restricted with in the boundary layers and needs an external opposite force at the 

sheet. Some analytical solution of the flow past a permeable shrinking sheet was studied by L. N. Achala and 

Sathyanarayana [1]. The effects of heat source or sink on the MHD boundary layer flow and heat transfer 

over a porous shrinking sheet with mass suction are investigated by K. Bhattacharyya [12]. A. Sami 

Bataineh, M.S.M. Noorani, I. Hashim [13], studied the approximate analytical solutions of systems of PDEs 

by HAM. M. Sajida, T. HayatIn [14] studied the application of HAM for MHD viscous flow due to a 

shrinking sheet. S.Nadeem, Anwar Hussain [15] studied MHD flow of a viscous fluid on a nonlinear porous 

shrinking sheet with HAM. Hang Xu,Shi-Jun Liao,Xiang-Cheng You [16], studied Analysis of nonlinear 

fractional partial differential equations with the HAM. In the present paper, heat transfer over a permeable 

shrinking sheet is studied.The solutions are compared with L. N. Achala and Sathyanarayana [1]. 

  To the best of our knowledge , no one has solved PDE’s directly to flow problems. In all the above 

references they have studied the problem by converting governing partial differential equations in to ordinary 

differential equations by using similarity transformations. The convergence of HAM series solution is 

verified by a well known method called pade approximant and Domb-Sykes plot. The details of Basic idea 

of HAM can be found in [17, 18, 19, 20, 21]. 
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Pade Approximation  

 

  The idea of pade summation is to replace a power series by a sequence of rational functions called pade 

approximants. The technique was developed by Henry pade. The pade approximant often gives better 

approximation of the function than truncating its Taylor’s series and it may still work where the Taylor series 

does not converge. 

 

A pade approximation of series is  
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where we choose 1=
0

B  with out loss of generality. 

 

 Domb-Sykes plot  

  

  Domb-Sykes plot is used to estimate the radius of convergence of a power series say  
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Domb and Sykes proposed plotting 
1

/
nn

cc  against n1/ , fitting a straight line extrapolation and taking the 

intercept of this line as 
0

Z , which is an estimate to the reciprocal of the radius of convergence.The distance 

to the nearest singularity can be determined by estimating the radius of convergence. The radius of 

convergence can be calculated using the D’Alembert’s ratio test,  
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2. Basic idea of HAM   

 

  In this paper we apply Homotopy analysis method for the governing partial differential equations. In order 

to discuss the basic idea of HAM, consider the following Non-linear differential equation,  

 

 0.=)],([ yxuN  (4) 

 

where N  is a non-linear operator, x  and y  denote the independent variables and u  is an unknown function. 

Liao [3] constructs the so called zero order deformation equation 

 

  )],:,([),(=),():,()(1
0

pyxNyxqhHyxupyxLp   (5) 

 

where [0,1]p  is the embedding parameter, 0h  is an auxiliary parameter, L  is an auxiliary linear 

operator, ):,( pyx  is an unknown function, ),(
0

yxu  is an initial guess of ),( yxu  and ),( yxH  denotes a 

nonzero auxiliary function. When the embedding parameter takes 0=p  and 1=p  then (5) becomes  

 

 ),,(=1):,(),,(=0):,(
0

yxuyxyxuyx   (6) 

 

respectively. Thus as p  increases from 0  to 1 , the solution ):,( pyx  varies from the initial guess to the 

solution ),( yxu .Expanding ):,( pyx  in Taylor series with respect to p , 
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The convergence of the series (7) depends on the auxiliary parameter h .If it is convergent at 1=p , one has  
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Differentiating the zeroth-order deformation equation (5) m  times with respect to p  and then dividing them 

by !m  and finally setting 0=p , we get the following ht
m  order deformation equation:  
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It is noted that ),( yxu
m

 for 1m  is governed by the linear equation (5) which can be solved by using 

Mathematica and Matlab. 

  

3. Formulation of the problem   

 

  Consider the Newtonian fluid past a permeable shrinking sheet which is electrically conducting and 

magnetic field is applied perpendicular to the fluid flow. A boundary layer is 

formed due to the flow.Heat transfer is due to internal heat absorption or generation.The sheet  

coincides with x - axis and flow is confined to region 0>y . The governing equations for steady two 

dimensional flow in presence of uniform transverse magnetic field and the energy equations are given by  
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Where x and y are distances along and perpendicular to the sheet, u and v are components of the velocity 

along x and y directions respectively. 



 =

m
 is kinematic viscosity,   is fluid density,  is electrical 
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conductivity, 
o

B  is the strength of the magnetic field. T is temperature, 


T  is free stream temperature,   is 

thermal conductivity of the fluid, 
0

Q  is volumetric rate of heat absorption or generation. 

 

The corresponding boundary conditions are  
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Where 0>c  is the shrinking sheet. 
w

T  is temperature of the sheet, 
w

v  represents the wall mass suction 

through the porus sheet.  

 

The dimensionless variables for u  and T  are:  
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Using the dimensionless variables the equations (14) and (15) will take the form,  
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Where 


VL
R

e
=  is the Reynold’s number, 

0

0000
=

k

UpcL
p

e


 is the Peclet number, M  is the Hartmann 

number and   is the heat source. 

 

  We apply the homotopy analysis method for (14) and (15) to obtain an approximate analytical solution of 

the boundary layer flow of a viscous flow over a nonlinearly shrinking sheet in the presence of magnetic 

field. Comparison of the present solution with the solution obtained by L. N. Achala and Sathyanarayana.[1] 

is shown through graphs. 

 

4. HAM Solution   

 

  We apply Homotopy Analysis Method for (14). Consider the Linear operator as  
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 On solving the equation 0=)(uL , we get the initial approximation as  
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 .=,0)( cxxu   (25) 

 

 Another initial guess can be found by (13)  
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 The Dimensionless Nonlinear operator is  
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 Thus,  
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 Using equations (25), (28), (32) along with 1,2,3,=m  in (30) we get  
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 and so on. 

  

The HAM series solution for (14) is given by  
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We apply Homotopy Analysis Method for (15). Consider the Linear operator as  
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 Using equations (36) and (40)along with 1,2,3,=m  in (38) we get  
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and so on.  

 

The HAM series solution for (15) is given by 

  

 
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= TTTTT  (42) 

  

The graphs of u  and T  are drawn and are compared with previous results by different methods. 
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 5. Results and Discussions   

 

    Figure 1 and 2 are h  curves for velocity and Temperature. The value of h  is estimated as 0.1=h  through 

these curves. For this h  value velocity and temperature curves are drawn in Figure 3 and 4 for different 

values of M .These curve exactly matches with the one obtained in L. N. Achala and Sathyanarayana [1]. 

We observe that the graphs of the solution exhibit singularities for large values of y . In order to identify the 

singularity, we have applied Pade approximation for (34) with 0.1=h  and is given by,  
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We observe that there is a singularities at 17.6948= y  and 6.61984=y  and is also presented in Figure 5. 

 

Pade approximation for (42) with 0.1=h  is,  
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We observe that there is a singularities at 1.28509= y  which is seen in Figure 6. We have also estimated 

the radius of convergence for HAM solutions by Domb-Sykes plot and is presented in figure 8 and 9.  

 

 

 

6. Graphs   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

           Figure 1 : h -curve for u                                                     Figure 2 : h -curve for T    
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Figure 3 : Velocity Profiles for 31.5,2,2.5,=M       Figure 4 : Temperature Profiles for   31.5,2,2.5,=M  

                                                                      

                    

     

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 5 : singularities at 17.6948= y , 6.61984                     Figure 6 : singularities at 1.28509= y    

     

 
    

 Figure 7 : 3D Plot for Velocity Profile   
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 Figure 8 : Domb-Sykes plot for 0.1=h  and 1/0.00618=R    

 

 

 
   

 Figure 9 : Domb-Sykes plot for 0.1=h  and 1/0.034=R    
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