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Abstract

This paper presents the existence and uniqueness of the initial and boundary value problem
to a system of evolution (p1(x); p2(x))�Laplacian systems

8
<

:

u1t � div(jru1j
p1(x)�2ru1) + a1(x) ju1j

p1(x)�2 u1 = f1(x; t; u1; u2);

u2t � div(jru2j
p2(x)�2ru2) + a2(x) ju2j

p2(x)�2 u2 = f2(x; t; u1; u2):

With general assumptions on ai; fi and the exponent pi(x); (i = 1; 2); we prove the existence
and the uniqueness in propre spaces. The asymptotic behaviour of solutions is also discussed.
The results are proved by using a method to construct a sequence of approximations solutions

and use a standard limiting process.
Keywords : p(x)-laplacian operator; Existence; Uniqueness; Variable exponents; Parabolic

System; Asymptotic Behaviour.

A.M.S. Subject Classi�cation 35A01, 35A02, 35G55

1 Introduction

Let 
 be a bounded domain of RN (N � 1) with Lipshitz continuons boundary @
: We consider
the following (p1(x); p2(x))� laplacian systems :

8
>>>>>>>>><

>>>>>>>>>:

@u1
@t
��p1(x)u1 + a1(x) ju1j

p1(x)�2 u1 = f1(x; t; u1; u2);

@u2
@t
��p2(x)u2 + a2(x) ju2j

p2(x)�2 u2 = f2(x; t; u1; u2);

in 
� (0; T );

in 
� (0; T );

u1 = u2 = 0; in @
� (0; T );

(u1(:; 0); u2(:; 0)) = ('1; '2); on 
:

(1.1)

where pi(x) 2 C(
) is a function, (i = 1; 2). The operator ��p(x)w = �div
�
jrwjp(x)�2rw

�

is called p(x)� Laplacian, which will be reduced to the p� Laplacian when p(x) = p a constant.
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The (p1(x); p2(x))�laplacian systems (1.1) can be viewed as a generalization of (p; q)�laplacian
system

8
>><

>>:

@u
@t
��pu = f(x; u; v); in QT ;

@v
@t
��qv = g(x; u; v) in QT ;

u = v = 0 on @
� (0; T );
(u(:; 0); v(:; 0)) = ('1; '2) in 
:

(1.2)

For the case pi(x) = pi > 2; i = 1; 2, systems (1.2) models as non-Newtonian �uids [27, 2] and
nonlinear �ltration [2]; etc. In the non-Newtonian �uids theory, (p1; p2) is a characteristic quantity
of the �uids, there have been many results about the existence, uniqueness of the solutions. We
refer the readers to the bibliography given in [11, 13, 8, 9, 12, 14, 26] and the references therein.

In recent years, the research of nonlinear problems with variable exponent growth conditions
has been an interesting topic. p(�)-growth problems can be regarded as a kind of nonstandard
growth problems and these problems possess very complicated nonlinearities, for instance, the
p(x)-Laplacian operator �div(jrujp(x)�2ru) is inhomogeneous. And these problems have many
important applications in nonlinear elastic, electrorheological �uids and image restoration. The
reader can �nd in ([22, 31]) several models in mathematical physics where this class of problem
appears.

The case of a single equation of the type (1.1) has been studied in [5, 6, 7, 25] and the authors
established the existence and uniqueness results; in [25], the authors use the di¤erence scheme to
transform the parabolic problem to a sequence of elliptic problems and then obtain the existence
of solutions with less constraint to pi(x):

The more intersting question concerning parabolic systems of (p1(x); p2(x))-Laplacian type is
to understand the asymptotic behavior of solutions when time gows to in�nity. The study of the
asymptotic behaviour of the system is giving us relevant information about the structure of the
phenomenon described in the model.

Concerning the elliptic systems with variable exponents, the results about existence and non-
existence are proved in [10, 30, 33, 18].

In this paper, we consider the existence and uniqueness for the system of the type (1.1) under
some assumptions. The proof consists of two steps. First, we prove that the approximating problem
admits a global solution; then we do some uniform estimates for these solutions. We mainly use
skills of inequality estimation and the method of approximation solutions. By a standard limiting
process, we obtain the existence to system of the type (1.1).

The outline of this paper is the following: In Section 2, we introduce some basic Lebesgue and
Sobolev spaces and state our main theorems. In Section 3, we give the existence and uniqueness of
weak solutions. The asymptotic behaviour of solution is established in Section 4.

2 Basic spaces and the main results

To consider problems with variable exponents, one needs the basic theory of spaces Lr(x)(
) and
W 1;r(x)(
). For the convenience of readers, let us review them brie�y here. The détails and more
properties of variable-exponent Lebesgue-Sobolev spaces can be found in [19, 20]:
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Denote

r� := min


r(x); r+ = max



r(x);

Let r(x) 2 C(
): When r� > 1; one can introduce the variable-exponent Lebesgue space

Lr(x)(
) =

�
w : 
! R; u is measurable and

Z



jwjr(x) dx <1

�
;

endowed with the Luxemburg norm.

kwkr(x) = inf

�
� > 0 :

Z




���
w

�

���
r(x)

dx � 1

�
:

Thanks to results in [19], the following inequality holds :

min
n
kwk+r(x) kwk

�

r(x)

o
�

Z



jwjr(x) dx � max

n
kwkr

+

r(x) ; kwk
r�

r(x)

o
:

Moreover, let ri(x) 2 C(
); with r
�
i > 1; i = 1; 2: Then, if r1(x) � r2(x) for any x 2 
; the

imbedding Lr2(x)(
) ,! Lr1(x)(
) is continuous, the norm of the imbedding does not exceed j
j+1:
As r� > 1; and the space is re�exive Banach space with dual Lr

�(x)(
), where 1
r(x) +

1
r�(x) = 1:

Beside, for any v 2 Lr
�(x)(
); we have the following Hölder-type inequality :

Z



juvj dx �

�
1

r�
+

1

(r�)�

�
kukr(x) kvkr�(x) :

For positive integer k, the generalized Lebesgue-Sobolev space is de�ned as

W k;r(x)(
) =
n
u 2 Lr(x)(
) : D�u 2 Lr(x)(
); j�j � k

o
:

endowed with the norm
kukWk;r(x)(
) =

X

��k

kD�ukr(x) :

Such spaces are separable and re�exive Banach spaces.
Besides, r(x) is log-Hölder continuous, i.e., there exists a constant C such that

jr(x)� r(y)j � �
C

log jx� yj
; for any x; y 2 
 with jx� yj <

1

2
: (2.1)

Under assumption (2.1), the smooth functions are dense in Sobolev spaces with variable expo-

nents, and we can de�ne W
k;r(x)
0 (
) as the completion of C1c (
) in W

k;r(x)(
) with respect to the

norm k:kWk;p(x)(
) ; see [20]: For u 2W
1;r(x)
0 (
); the Poincaré-type inequality holds, i.e.

kukr(x) � C k5ukr(x) ; (2.2)

where the positive constant C depend on r and 
: So k5ukr(x) is an equivalent norm inW
1;r(x)
0 (
):
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Proposition 2.1 ([20]) If we denote

�(w) =

Z




jwjr(x) dx; 8w 2 Lr(x)(
);

then

(i) jwjr(x) < 1 (= 1;> 1), �(w) < 1 (= 1;> 1);

(ii) jwjr(x) > 1) jwjr
�

r(x) � �(w) � jwj
r+

r(x) ; jwjr(x) < 1) jwjr
+

r(x) � �(w) � jwj
r�

r(x) ;
(iii) jwjr(x) ! 0, �(w)! 0; jwjr(x) !1, �(w)!1:
Problem (1.1) does not admit classical solutions in general. So, we introduce weak solutions in

the following sence.

De�nition 2.2 A function u = (u1; u2) is said to be a weak solution of system (1.1), if u satis�es

the following: ui 2 L
1(0; T ;W

1;pi(x)
0 ) \ Lpi(x)(QT ) such that :

uit 2 L
2(QT ) and for �i 2 C

1
0 (QT )

TZ

0

Z




(uit�i + jruij
pi(x)�2rui:r�i + ai(x) juij

pi(x)�2 ui�i =

TZ

0

Z




fi(x; u)�idxdt

and ui(0; :) = 'i a.e in 
:
In the study of the global existence of solutions, we need the following hypotheses (H):
(H1) The exponents pi(x) satis�es the local logarithmic Hölder continuity condition (2.1) and

p1(x) � p2(x) with 2 < p
�
1 � p1(x) � p

+
1 < +1 and 2 < p�2 � p2(x) � p

+
2 < +1:

(H2) ('1; '2) 2 (L
1(
) \W

1;p1(x)
0 (
))� (L1(
) \W

1;p2(x)
0 (
)):

(H3) 9 Ki 2 R such that 0 < Ki � ai(x) 2 L
1(
); i = 1; 2:

(H4) H(x; t; s1; s2) 2 C
2(
� [0; T ]� R2)

3 Main results

Our main existence result is the following:

Theorem 3.1 Assume that hypothesis (H1)-(H4) are satis�ed. Then system (1.1) admits a unique

solution u = (u1; u2) 2
�
C([0; T ) ;L2(
))

�2
. Moreover, the mapping ('1; '2) ! (u1(t); u2(t)) is

continuous in
�
L2(
)

�2
:

Proof of the main results.
a) Existence.

The proof of Theorem 3.1 is based on a priori estimates.
Starting from a suitable initial iteration

(u
(0)
1 (x; t); u

(0)
2 (x; t)) = ('1(x); '2(x));
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we construct a sequence
n
(u
(n)
1 (x); u

(n)
2 (x)

o1
n=1

from the iteration process

8
>>><

>>>:

u
(n)
it � div

����ru(n)i
���
pi(x)�2

ru
(n)
i

�
+ ai(x) juij

pi(x)�2 ui = fi(x; t; u
(n�1)
1 ; u

(n�1)
2 ); in QT ;

u
(n)
i = 0; on @
� (0; T );

u
(n)
i (x; 0) = ('1(x); '2(x));

(3.1)

where i = 1; 2: It is clear that for each n = 1; 2; ::::; the above systems consists of two uncoupled

initial boundary-value problems. By resuls (see, [5]) for �xed n the probem has a solution u
(n)
i 2

L1(QT ) \ L
1(0; T ;W

1;pi(x)
0 ): In the following, we prove that u

(n)
i ! ui, as n!1; (i = 1; 2):

Remark 3.2 In this paper, we shall denote by c; Ci di¤erents constants, depending on pi(x); T;
,
but not on n, which may vary from line to line. Sometimes we shall refer to a constant depending
on speci�c parameters Ci(T ); etc:

(i) Multiplying the �rst equation in (3.1) by ju
(n)
i jku

(n)
i and using the growth condition on ai

and fi , we deduce that

1

k + 2

d

dt

Z



ju
(n)
i jk+2dx+Ki

Z



ju
(n)
i jk+pi(x)dx � mi

Z



ju
(n)
i jk+1dx: (3.2)

Setting yn;k(t) = ku
(n)
i kLk+2(
) and using Hölder�s inequality on both sides of (3.2), there exist two

constants c > 0 and c0 > 0 (independent of k and n) such that

dyn;k(t)

dt
+ cy

p�
i
�1

n;k (t) � c0;

which implies from Ghidaglia�s lemma [32] that

yn;k(t) �
�
c+

c0

�
(p�i � 2)t

� 1
p��2

;8t > r; r > 0; (3.3)

as k ! +1, and for all t � r > 0, we have

ku
(n)
i kL1(
) �

�
c+

c0

�
(p�i � 2)t

� 1
p��2

;8t > r; r > 0: (3.4)

(ii) Multiplying the �rst equation in (3.1) by u
(n)
i and integrating over QT ;

1

2

d

dt

Z




���u(n)i
���
2
dx+

Z




���ru(n)i
���
pi(x)

dx+

Z



ai(x)ju

(n)
i jpi(x)dx =

Z



fi(x; t; u

(n�1)
1 ; u

(n�1)
2 )u

(n)
i dx:

(3.5)
If we take assumption (H3), we have

Z



ai(x)ju

(n)
i jpi(x)dx � Ki

Z




���u(n)i
���
pi(x)

dx: (3.6)
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By Young�s inequality and the Poincaré inequality, we obtain

Z




���u(n)i
���
2
dx � �

Z




���u(n)i
���
pi(x)

dx+ Ci �
1

2

Z




���ru(n)i
���
pi(x)

dx+ Ci; (3.7)

Z



fi(x; t; u

(n�1)
1 ; u

(n�1)
2 )u

(n)
i dx � ci

Z




���fi(x; u
(n�1)
1 ; u

(n�1)
2 )

���
2
dx+ ki

Z




���u(n)i
���
2
dx+ Ci: (3.8)

Taking the inequality above into (3.4), we obtain :

d

dt

Z




���u(n)i
���
2
dx+

1

2

Z




���ru(n)i
���
pi(x)

dx+Ki

Z




���u(n)i
���
pi(x)

dx � Ci: (3.9)

iii) Now, multiplying the �rst equation in (3.1) by u
(n)
it ; we get

Z




���u(n)it
���
2
dx+

d

dt

Z




1

pi(x)

���ru(n)i
���
pi(x)

dx+
d

dt

Z




ai(x)

pi(x)

���u(n)i
���
pi(x)

dx

�

Z



fi(x; t; u

(n�1)
1 ; u

(n�1)
2 )u

(n)
it dx: (3.10)

By Young�s inequaltiy, we deduce

Z T

0

Z




���u(n)it
���
2
dx+

Z T

0

Z




1

pi(x)

���ru(n)i
���
pi(x)

(x; T )dx+ ci

Z




���u(n)i
���
pi(x)

(x; T ))dx � Ci(T ): (3.11)

By (3.4) and (3.11), there exists a subsequence of u
(n)
i (denoted again by itself, i = 1; 2) and a

function ui such that as n! +1 :

u
(n)
i ! ui; weak in Lpi(x)(0; T ;W

1;pi(x)
0 (
)) and in Lpi(x)(QT );

u
(n)
it ! uit; in L2(QT );

���ru(n)i
���
pi(x)�2

ru
(n)
i

weak
! �i in L

pi(x)

pi(x)�1) (QT );

By the same argument as that in [35] ; we have that �i = jruij
pi(x)�2rui: To conclude that

u = (u1; u2) is a weak solution of system (S) it is enough to observe that fi(x; t; u
(n�1)
1 ; u

(n�1)
2 )

converges to fi(x; t; u1; u2) strongly in L
1(QT ) and in L

s(0; T ;Ls(
)) for all s � 1; thanks to
Vitali�s theorem.

b) Uniqueness.
Assume that u = (u1; u2) and v = (v1; v2) are two solutions of (1.1).
Let wi = ui � vi; i = 1; 2; then we have
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tZ

0

Z




(�ui(wi)t) + jruij
pi(x)�2ruirwi + ai(x)ju

(n)
i jpi(x)wi dxdt

+

Z




ui(x; t)wi(x; t)�

Z




ui0wi(x; 0)dx

=

tZ

0

Z




fi(x; t; u1; u2)widxdt; a.e. t 2 (0; T ):

tZ

0

Z




(�vi(wi)t) + jrvij
pi(x)�2rvirwi + ai(x)jv

(n)
i jpi(x)wi dxdt

+

Z




vi(x; t)wi(x; t)�

Z




vi0wi(x; 0)dx

=

tZ

0

Z




fi(x; t; v1; v2)widxdt; a.e. t 2 (0; T ):

Subtracing the 2 equations, we get

Z




(ui � vi)
2dx+

tZ

0

Z




�
jruij

pi(x)�2rui � jrvij
pi(x)�2rvi

�
r(ui � vi)dxdt

+

tZ

0

Z




ai(x)
�
ju
(n)
i jpi(x) � jv

(n)
i jpi(x)

�
(ui � vi)dxdt

=

tZ

0

Z




(fi(x; t; u1; u2)� fi(x; t; v1; v2)) (ui � vi)dxdt:

Applying the folowing basic inequality, for any y; z 2 RN

�
jyjr(x)�2 y � jzjr(x)�2 z

�
:(y � z) � 22�r

+
jy � zjr(x) ; if r(x) � 2

Note that �
jruij

pi(x)�2rui � jrvij
pi(x)�2rvi

�
r(ui � vi) � 0; i = 1; 2:

Using the previous inequality and the Lipschitz condition, a simple calculation shows that

Z




(ju1 � v1j
2 + ju2 � v2j

2)dx � c

Z t

0

Z




(ju1 � v1j
2 + ju2 � v2j

2)dxdt;

7



Set

H(T ) =

Z T

0

Z




(ju1 � v1j
2 + ju2 � v2j

2)dxdt;

then the above inequality can be written as

H 0(T ) � cH(T ):

A standard argument shows that H(T ) = 0 since H(0) = 0; and hence ui = vi; i = 1; 2:
Thus the solution is unique. The continuity of the the mapping ('1; '2) ! (u1(t); u2(t)) can

be obtained similarly.

4 ASYPMTOTIC BEHAVIOUR

This section is devoted to the asymptotic behaviour of solutions. In order to prove the asymptotic
behaviour, we assume

(H5) f1(x; t; u1; u2)u1 + f2(x; t; u1; u2)u2 � 0

Theorem 4.1 The weak solution u = (u1(t); u2(t)) obtained in Theorem 3.1, sati�es :R

 ju1(x; t)j

2 dx+
R

 ju2(x; t)j

2 dx � C1
(C2t+C3)

� ; where Ci > 0 (i=1,2,3), � =
2
��2 ; � = p

�
1 or p

+
2 or p�2 :

Proof. Let ui be solution of (1.1)
Multiplying the �rst equation in (1.1) by u1 and integrating over QT ;

1

2

d

dt

Z



ju1j

2 dx+

Z



jru1j

p1(x) dx+

Z T

0

Z



a1(x)ju1j

p1(x)dx =

Z T

0

Z



f1(x; u1; u2)u1dx; (4.1)

Multiplying the second equation in (1.1) by u2 and integrating over QT ;

1

2

d

dt

Z



ju2j

2 dx+ 1

Z



jru2j

p2(x) dx+

Z T

0

Z



a2(x)ju2j

p2(x)dx =

Z T

0

Z



f2(x; u1; u2)u2dx: (4.2)

Summing up (4.0) and (4.1), we have from hypothes (H5) that

1

2

d

dt

Z



ju1j

2 dx+
1

2

d

dt

Z



ju2j

2 dx =

Z



jru1j

p1(x) dx+

Z



jru2j

p2(x) dx � 0: (4.3)

By ui 2W
1;pi(x)
0 (
); using Poincaré inequality, we obtain

kuik
2
L2 � c kruik

2
L2 � c kru1k

2
pi(x)

: (4.4)

If jru1jp1(x) > 1 and jru2jp2(x) > 1; by Proposition 2.1,

jru1j
p�1
p1(x)

�

Z



jru1j

p1(x) dx and jru2j
p�2
p2(x)

�

Z



jru2j

p2(x) dx: (4.5)

According to the assumption that p1(x) � p2(x); Then 2 < p
�
1 � p

+
1 � p

�
2 � p

+
2 :

Hence, we get from (4.2) that
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1

2

d

dt

Z



ju1j

2 dx+
1

2

d

dt

Z



ju2j

2 dx+C1

�Z



ju1j

2 dx

� p�

2

+C2

�Z



ju2j

2 dx

� p�

2

� 0; a.e, t � 0: (4.6)

By the formula
�
a+b
2

��
� a� + b�; 8a; b > 0; � > 1; we have

�
1

2

Z




h
ju1j

2 dx+ ju2j
2
i
dx

� p�

2

� C

�Z



jru1j

p1(x) dx

� p�

2

+

�Z



jru2j

p2(x) dx

� p�

2

; (4.7)

this implies that

1

2

d

dt

Z



ju1j

2 dx+
1

2

d

dt

Z



ju2j

2 dx+ C3

�Z




h
ju1j

2 dx+ ju2j
2
i
dx

� p�

2

� 0; a:e; t � 0 (4.8)

where C3 = min(C1; C2):
Denote

H(t) =

Z




h
ju1j

2 dx+ ju2j
2
i
dx:

Then, we obtain from (4.8) that

H 0(t) + CH(t)
P�

2 � 0: (4.9)

If jru1jp1(x) < 1 and jru2jp2(x) < 1; by Proposition 2.1,

jru1j
p+1
p1(x)

�

Z



jru1j

p1(x) dx and jru2j
p+2
p2(x)

�

Z



jru2j

p2(x) ;

Then we get (4.4) that

1

2

d

dt

Z



ju1j

2 dx+
1

2

d

dt

Z



ju2j

2 dx+ C1

�Z



ju1j

2 dx

� p
+
2
2

+ C2

�Z



ju2j

2 dx

� p
+
2
2

� 0; a.e, t � 0:

(4.10)
That is

1

2

d

dt

Z



ju1j

2 dx+
1

2

d

dt

Z



ju2j

2 dx+ C3

�Z




h
ju1j

2 dx+ ju2j
2
i
dx

� p
+
2
2

� 0; a:e; t � 0: (4.11)

Again we have

H 0(t) + CH(t)
p
+
2
2 � 0:

Similarly, if jru1jp1(x) > 1 and jru2jp2(x) < 1; or jru1jp1(x) < 1 and jru2jp2(x) > 1; we can
also obtain the similar results

H 0(t) + CH(t)
p
+
1
2 � 0; or H 0(t) + CH(t)

p
�

2
2 � 0:

HenceZ




h
ju1j

2 dx+ ju2j
2
i
dx �

C1

(C2t+ C3)
� ; � =

2

� � 2
; � = p�1 or p+2 or p

�
2 ; Ci > 0; i = 1; 2; 3:

The proof is complete.
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