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1  Introduction 

 

Partial differential equations (PDEs) are used to model many physical phenomena arising in science and 

engineering. Elliptic PDEs have applications in the fields of electromagnetism, astronomy, fluid mechanics, 

electrostatics, mechanical engineering and theoretical physics. Laplace equation and Poisson equation are the 

simplest examples of elliptic PDEs. Laplace equation is also known as the steady state heat equation. Poisson 

equation is used to describe the potential energy field caused by a given charge or mass density distribution.  

 

Many analytical, semi-analytical and numerical methods have been used to solve elliptic PDEs. Jones et. al. 

[1] obtained the numerical solution of elliptic PDEs using the method of lines. Evans and Okalie [2] applied 

spectral resolution method to obtain a solution of elliptic PDEs with periodic boundary conditions. Lewis and 

Rehm [3] determined the solution of a nonseparable elliptic partial differential equation by preconditioned 

conjugate gradients. Dehghan and Shirzadi [4] used meshless method of radial basis functions to solve 

stochastic elliptic PDEs. Hashemzadeh et. al. [5] solved linear elliptic PDEs in polygonal domains. Rangogni 

[6] obtained the solution of the generalized Laplace equation by coupling the boundary element method and 

the perturbation method. Tatari and Dehghan [7] solved Laplace equation in a disk using the Adomian 

decomposition method. Sohail and Din [8] used differential transform method to solve Laplace equation. 

Aminataei and Mazarei [9] obtained the solution of Poisson equation using radial basis function networks on 

the polar coordinate. Bennour and Said [10] solved Poisson equation with Dirichlet boundary conditions.  

 

The Haar wavelet is the principal known wavelet and was proposed in 1909 by Alfred Haar. The Haar wavelet 

is likewise the least complex conceivable wavelet. Over the recent decades, wavelets by and large have picked 

up a respectable status because of their applications in different disciplines and in that capacity have numerous 

examples of overcoming adversity. Prominent effects of their studies are in the fields of signal and image 

processing, numerical analysis, differential and integral equations, tomography, and so on. A standout 

amongst the best utilizations of wavelets has been in image processing. The FBI has built up a wavelet based 

algorithm for fingerprint compression. Wavelets have the capability to designate functions at different levels 

of resolution, which permits building up a chain of approximate solutions of equations. Compactly supported 

wavelets are localized in space, wherein solutions can be refined in regions of sharp variations/transients 
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without going for new grid generation, which is the basic methodology in established numerical schemes. 

Sumana and Achala [11] have given a brief report on Haar wavelets.  

 

Chen and Hsiao [12] recommended to expand into the Haar series the highest order derivatives appearing in 

the differential equation. This idea has been very prolific and it is being abundantly applied for the solution of 

PDEs. The wavelet coefficients appearing in the Haar series are calculated either using Collocation method or 

Galerkin method. Lepik [13, 14, 15, 16] used Haar wavelet method to solve linear Fredholm integral equation, 

nonlinear Volterra integral equation, stiff differential equations, Duffing equation, diffusion equation, Burgers 

equation and Sine-Gordon equation. Bujurke et al. [17] have computed eigenvalues and solutions of regular 

Sturm-Liouville problems using Haar wavelets. More recently, Hariharan et al. [18] have solved 

Klein-Gordon and Sine-Gordon equations using Haar wavelet methods.  

 

The paper is organized as follows. The Haar wavelet preliminaries and the function approximation are 

presented in Section 2 and Section 3 respectively. The method of solution of the two-dimensional Laplace and 

Poisson equations using Haar wavelets are proposed in Section 4. The numerical examples and discussions are 

presented in Section 5. The conclusions drawn are presented in Section 6. 

 

2  Preliminaries of Haar Wavelets  

 

The Haar wavelet family for [0 ,1 ]x   is defined [19] as follows 
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Here = 2 , = 0 ,1 , ,
n

m n J  indicates the level of the wavelet; = 0 ,1 , , 1k m   is the translation parameter. 

J  is the maximum level of resolution. The index i  in equation (1) is calculated by the formula = 1i m k 
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= 2 = 2
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For = 1i , 
1
( )h x  is assumed to be the scaling function which is defined as follows. 
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We require the following integrals in order to solve second order partial differential equations. 
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3  Function Approximation 

 

According to the two-dimensional multi-resolution analysis, any function ( , )f x y  which is square integrable 

on [0 ,1 ) [0 ,1 )  can be expressed in terms of two-dimensional Haar series as follows.  

 
= 1 = 1

( , ) = ( , ) ( ) ( ) .
i j

i j

f x y a i j h x h y
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Here, the expansion of ( , )f x y  is an infinite series. If ( , )f x y  is approximated as piecewise constant in each 

sub-area, then it will be terminated at finite terms, that is,  

 

2 2
1 2

=1 =1

( , ) = ( , ) ( ) ( ) ,

M M

i j

i j

f x y a i j h x h y   (7) 

where the wavelet coefficients 
1 2

( , ) , = 1 , 2 , , 2 , = 1 , 2 , , 2a i j i M j M  are to be determined. 

 

4  Method of Solution 

 

4.1  Laplace Equation 

 

Consider the two-dimensional Laplace equation  
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Let the Haar wavelet solution be in the form  
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Integrating equation (11) twice w.r.t. y  in the limits [0 , ]y  and using equation (9) gives  
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Integrating equation (11) twice w.r.t. x  in the limits [0 , ]x  and using equation (10) leads to  
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Integrating equation (12) twice w.r.t. x  in the limits [0 , ]x  and using equation (10), we arrive at  
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The wavelet collocation points are defined as  
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Substituting equations (12) and (13) in equation (8), and taking 
l

x x  and 
n

y y  in the resultant 

equations and equation (14), we get  
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The wavelet coefficients ( , )a i j , 
1 2

= 1 , 2 , , 2 , = 1 , 2 , , 2i M j M  can be calculated from equation (17). 

These coefficients are then substituted in equation (20) to obtain the Haar wavelet solution at the collocation 

points 
1

, = 1 , 2 , , 2
l

x l M , 
2

, = 1 , 2 , , 2
n

y n M . 

4.2  Poisson Equation 

 

Consider the two-dimensional Poisson equation  
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Substituting equations (12) and (13) in equation (8), and taking 
l

x x  and 
n

y y  in the resultant 

equation, we obtain  

 

2 2
1 2

=1 =1

( , ) ( , , , ) = ( , )

M M

l n

i j

a i j A i j l n x y   (24) 

where  

 ( , , , ) = ( )[ ( ) (1 )] [ ( ) (1 )] ( )
i l j n n j i l l i j n

A i j l n h x q y y q q x x q h y    (25)  

 
1 2 1 2

( , ) = ( 1 ) ( ) ( ) ( 1 ) ( ) ( ) ( , )
' ' ' ' ' ' ' '

l n n l n l l n l n l n
x y y f x y f x x g y x g y F x y        (26) 

 

5  Numerical Examples and Discussion 

 

In this section, examples are considered to check the efficiency and accuracy of the Haar wavelet collocation 

method (HWCM). Lagrange bivariate interpolation is used to find the solution at the specified points. The 

entire computational work has been done with the help of MATLAB software.  

 

Example 1: 
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The exact solution is  
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The HWCM solution of the example with 
1

= 8M , 
2

= 8M  in Table 1 and Figure 1. The results are compared 

with the exact solution. Figure 2 shows the physical behavior of the HWCM solution in contour and 3D. If 

( , )
e x

u x y  is the exact solution (28), we define the error estimate as  
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We have obtained the following error estimates for 
1

= 8M , 
2

= 8M .  

    1.  = 2.0486 06E   in 
2

L  space.  

    2.  = 2.4982 06E   in L
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 space.  

 

Example 2: 
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The exact solution is  

 
2 2

( , ) = lo g (( 1 ) )u x y x y   (31) 

  

The HWCM solution of the example with 
1

= 8M , 
2

= 8M  in Table 2 and Figure 3. The results are compared 

with the exact solution. Figure 4 shows the physical behavior of the HWCM solution in contour and 3D. We 

have obtained the following error estimates for 
1

= 8M , 
2

= 8M .  

    1.  = 1.6334 07E   in 
2

L  space.  

    2.  = 2.1668 07E   in L


 space.  

 

Example 3: 
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The exact solution is  

 ( , ) =
x y

u x y e  (33) 

  

The HWCM solution of the example with 
1

= 8M , 
2

= 8M  in Table 3 and Figure 5. The results are compared 

with the exact solution. Figure 6 shows the physical behavior of the HWCM solution in contour and 3D. We 

have obtained the following error estimates for 
1

= 8M , 
2

= 8M . 

    1.  = 5.3716 07E   in 
2

L  space.  

    2.  = 6.7485 07E   in L


 space.  

 

Example 4: 
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The exact solution is  

         ( , ) = 1 1 ln 1 1u x y x y x y     (35) 

  

The HWCM solution of the example with 
1

= 4M , 
2

= 4M  in Table 4 and Figure 7. The results are 

compared with the exact solution. Figure 8 shows the physical behavior of the HWCM solution in contour and 

3D. We have obtained the following error estimates for 
1

= 4M , 
2

= 4M .  

    1.  = 4.4423 17E   in 
2

L  space.  

    2.  = 7.2858 17E   in L


 space.  

 

6  Conclusion 

 

In this paper, an efficient numerical scheme based on uniform Haar wavelets is used to solve elliptic partial 

differential equations, namely, two-dimensional Laplace and Poisson equations. The numerical scheme is 

tested for four examples. The obtained numerical results are compared with the exact solutions. We observe 

that the error values are negligibly small which indicate that the HWCM solution is very close to the exact 

solution. Thus the Haar wavelet method guarantees the necessary accuracy with a small number of grid points 

and a wide class of PDEs can be solved using this approach. This method takes care of boundary conditions 

automatically and hence it is the most convenient method for solving boundary value problems. This method 

can also be used to solve nonlinear PDEs. 
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 Figure 1: Comparison of the HWCM solution and exact solution of Example 1  

 

 
 

 

 Figure 2: Physical behaviour of the HWCM solution of Example 1  

 

 

 Table 1: Comparison of HWCM solution and exact solution of Example 1  

  

 ( , )x y    HWCM   Exact   ( , )x y    HWCM   Exact  

(0.1,0.2)   0.01795263   0.01794057   (0.5,0.6)   0.27855811   0.27856833  

(0.1,0.4)   0.04321284   0.04319989   (0.5,0.8)   0.53089801   0.53097922  

(0.1,0.6)   0.08607919   0.08608235   (0.7,0.2)   0.04700060   0.04696902  

(0.1,0.8)   0.16405651   0.16408160   (0.7,0.4)   0.11313267   0.11309877  

(0.3,0.2)   0.04700060   0.04696902   (0.7,0.6)   0.22535825   0.22536652  

(0.3,0.4)   0.11313267   0.11309877   (0.7,0.8)   0.42950551   0.42957122  

(0.3,0.6)   0.22535825   0.22536652   (0.9,0.2)   0.01795263   0.01794057  

(0.3,0.8)   0.42950551   0.42957122   (0.9,0.4)   0.04321284   0.04319989  

(0.5,0.2)   0.05809594   0.05805690   (0.9,0.6)   0.08607919   0.08608235  

(0.5,0.4)   0.13983968   0.13979777   (0.9,0.8)   0.16405651   0.16408160  
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        Figure 3: Comparison of the HWCM solution and exact solution of Example 2  

 

  
 

Figure 4: Physical behaviour of the HWCM solution of Example 2 

 

 

 Table 2: Comparison of HWCM solution and exact solution of Example 2  

  

 ( , )x y    HWCM   Exact   ( , )x y    HWCM   Exact  

(0.1,0.2)   0.22313984   0.22314355   (0.5,0.6)   0.95935457   0.95935022  

(0.1,0.4)   0.31480734   0.31481074   (0.5,0.8)   1.06126071   1.06125650  

(0.1,0.6)   0.45107303   0.45107562   (0.7,0.2)   1.07499861   1.07500242  

(0.1,0.8)   0.61518424   0.61518564   (0.7,0.4)   1.11514217   1.11514159  

(0.3,0.2)   0.54811478   0.54812141   (0.7,0.6)   1.17865928   1.17865500  

(0.3,0.4)   0.61518308   0.61518564   (0.7,0.8)   1.26130181   1.26129787  

(0.3,0.6)   0.71784078   0.71783979   (0.9,0.2)   1.29472591   1.29472717  

(0.3,0.8)   0.84586987   0.84586827   (0.9,0.4)   1.32707538   1.32707500  

(0.5,0.2)   0.82854590   0.82855182   (0.9,0.6)   1.37876783   1.37876609  

(0.5,0.4)   0.87962639   0.87962675   (0.9,0.8)   1.44692054   1.44691898  
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 Figure 5: Comparison of the HWCM solution and exact solution of Example 3  

 

  
 

 Figure 6: Physical behaviour of the HWCM solution of Example 3  

 

 

 Table 3: Comparison of HWCM solution and exact solution of Example 3  

  

 ( , )x y    HWCM   Exact   ( , )x y    HWCM   Exact  

(0.1,0.2)   1.02020387   1.02020134   (0.5,0.6)   1.34987482   1.34985881  

(0.1,0.4)   1.04081501   1.04081077   (0.5,0.8)   1.49183648   1.49182470  

(0.1,0.6)   1.06184125   1.06183655   (0.7,0.2)   1.15028181   1.15027380  

(0.1,0.8)   1.08329048   1.08328707   (0.7,0.4)   1.32314316   1.32312981  

(0.3,0.2)   1.06184310   1.06183655   (0.7,0.6)   1.52197664   1.52196156  

(0.3,0.4)   1.12750772   1.12749685   (0.7,0.8)   1.75068384   1.75067250  

(0.3,0.6)   1.19722941   1.19721736   (0.9,0.2)   1.19722101   1.19721736  

(0.3,0.8)   1.27125791   1.27124915   (0.9,0.4)   1.43333556   1.43332941  

(0.5,0.2)   1.10517958   1.10517092   (0.9,0.6)   1.71601395   1.71600686  

(0.5,0.4)   1.22141712   1.22140276   (0.9,0.8)   2.05443870   2.05443321  
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 Figure 7: Comparison of the HWCM solution and exact solution of Example 4  

 

 
 

 

 Figure 8: Physical behaviour of the HWCM solution of Example 4  

 

 

 Table 4: Comparison of HWCM solution and exact solution of Example 4  

  

 ( , )x y    HWCM   Exact   ( , )x y    HWCM   Exact  

(0.1,0.2)   0.36647395   0.36647389   (0.5,0.6)   2.10112497   2.10112497  

(0.1,0.4)   0.66494500   0.66494492   (0.5,0.8)   2.68177978   2.68177979  

(0.1,0.6)   0.99495240   0.99495230   (0.7,0.2)   1.45441760   1.45441761  

(0.1,0.8)   1.35253185   1.35253175   (0.7,0.4)   2.06369916   2.06369916  

(0.3,0.2)   0.69370987   0.69370988   (0.7,0.6)   2.72171872   2.72171871  

(0.3,0.4)   1.08988243   1.08988243   (0.7,0.8)   3.42234963   3.42234964  

(0.3,0.6)   1.52332522   1.52332522   (0.9,0.2)   1.87912004   1.87912001  

(0.3,0.8)   1.98935317   1.98935317   (0.9,0.4)   2.60234754   2.60234749  

(0.5,0.2)   1.05801599   1.05801600   (0.9,0.6)   3.38004691   3.38004685  

(0.5,0.4)   1.55806842   1.55806842   (0.9,0.8)   4.20537074   4.20537068  
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