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ABSTRACT 

 

High concentrations of heavy metals may present as toxins to living organisms. Hence, heavy metal 

absorption by the cinnamon tree (Cinnamomum iners) grown in Universiti Malaysia Sabah (UMS), Malaysia 

was investigated in order to assess its composition, concentration and dynamics. The relationship of heavy 

metals concentration in barks of C.iners was determined using the multiple regression (MR) technique. The 

model building procedures were illustrated and discussed. Five independent variables were considered 

during field and experimental data collection which were namely, diameter of breast height, stem height, 

average ppm in bark, average ppm in soil and concentration of heavy metal in soil. The concentrations of 

heavy metals in the bark form the six dependent variables, and they were Cadmium (Cd), Copper (Cu), Iron 

(Fe), Lead (Pb), Nickel (Ni) and Zinc (Zn). The non-parametric bootstrapping method was used to generate 

the small sample size (n=28) into 500 observations. The 80 multiple regression (MR) models were 

developed up to the fourth-order interactions. Results obtained were subjected to statistical modelling, 

enhanced by the four phase model-building procedures and the process of getting the best model based on 

the eight selection criteria (8SC). The progressive elimination of variables using the variance inflation factor 

(VIF) was used to remove collinearity variables from these models. The forecasting criteria of mean 

absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE) were 

compared and discussed. Comparisons were made to have the best model equation from the six respective 

heavy metals concentrations. The model M73.20.0 with the toxic heavy metal concentration of Copper (Cu) 

was obtained as the best model. This thus indicated that Copper was the most toxic heavy metal 

concentration absorbed in this bark of C. iners. 

 

Keywords: heavy metals concentrations, toxic, multiple regression models (MR), bootstrap, VIF, 

collinearity.   

INTRODUCTION 

The term „heavy metal‟ refers to any metallic chemical element that exhibit metallic properties with 

relatively high atomic weight and has density that greater than 5g/ml (Agarwal, 2009).  Heavy metals are 

natural components of the Earth‟s crust which cannot be degraded or destroyed. The most common heavy 

metals are cadmium (Cd), lead (Pb), nickel (Ni), zinc (Zn), copper (Cu), mercury (Hg) and many others 

(Hogan, 2010). Some of these metals are essential for plant growth as micronutrients such as zinc, copper, 

manganese, nickel and cobalt whereas cadmium, lead and mercury have unknown biological functions. If 

the concentrations of heavy metals exceed a certain dose, it may demonstrate some toxic effects on the 

living organism via metabolic interference and mutagenesis. In other words, the ecosystem and human 

health may be affected by the high concentrations of heavy metals present in the animals, plants parts and 

many other organisms (Mitsios et al., 2010; Zhao et al., 2010). 
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Plants are the first compartment of the terrestrial food chain in the agro-system; taking heavy metals 

from soils through absorption, ionic exchange, redox reactions and precipitation. Hence, the importance to 

comprehend the capacity of toxic metals accumulated by plants parts which will directly influenced to the 

living beings which consume them. Generally, plants will show certain reaction to the increasing toxic 

elements concentrations in the soils by depending upon the sensitivity of the plants exposure intensity and 

chemical species. Some researches had showed that herbs absorb less metal than faster growing plants such 

as lettuce, carrot and spinach. The concentrations of heavy metals will be different in each plant part, such as 

roots and leaves which are found to contain higher level of heavy metals than the flower buds and fruits. 

Moreover, different type of plants species has specific threshold value for the heavy metals where it exerts 

toxicity (Smical et al., 2008). 

 

MATERIALS AND METHOD 

Data Samples from Site  

In this research, a commonly grown tropical tree, Cinnamomum iners which is grown in the main 

campus of the Universiti Malaysia Sabah (UMS) was chosen. Data mensuration variables were measured 

nondestructively; namely, diameter at breast height and stem height of tree from twenty-eight C.iners trees, 

planted along the main road of the UMS gateway. Figure 1 below showed the schematic diagram of the 

sampling area along the UMS gateway. The stem height of each tree was measured from the land to where 

twigs started to grow using a clinometer, while the diameter at breast height of each tree with a girth tape. 

Diameter at breast height (Dbh) is often quoted by foresters as technically 1.3 meters from the ground 

level. 

 
Figure 1. Schematic diagram of sampling area along UMS gateway 

(Source: Map Data @ 2013 Google MapIT). 

 

The bark samples of 5-10g were collected at an average height of 1.5 meters above ground level, while 

the soil samples (5-10g also) were collected within 0-20cm depth from the soil surface in three locations at 

approximately 1.5 meters radius around the same tree where the barks were taken (Tiina et al., 2013). For 

the bark sample collection, the outer bark of the C.Iners tree was removed first. Then, the inner bark was 

carefully peeled off using a stainless steel knife at about 5-10g, and then kept in plastic bags with labels 

corresponding to each tree.  

The soil sample was collected from four locations at about 10 cm radially around each tree and  within 

0-10cm in depth from the surface. The four sites of each soil sample taken was plotted as shown in the 

Figure 2. The soils were then mixed and combined as one sample from each tree, weighing about 5-10g as 

the bark samples. There were 28 soil samples from 28 trees collected, and these samples were also kept in 

plastics and labelled.  
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Figure 2. Diagram show the four sites which the soil samples were taken. 

 

Experimental Procedures 
Throughout this research, the instrument used was PerkinElmer 5000 Inductively Coupled Plasma 

Optical Emission Spectrometer (ICP-OES). The chemicals that were used during the experiments was 

Scanlab brand and 65% nitric acid (HNO3). The labelled samples were analyzed for the presence of heavy 

metals using ICP-OES.  

Experimental data were collected using the barks and soil samples. Both bark and soil samples were 

first dried in an oven with a temperature of 70
o
C for 24 hours and 105

o
C overnight respectively. After the 

process of drying, each of the bark and soil sample was grinded into powder and weighed.The soil sample 

weighed 1.0g, meanwhile the bark sample weighed 0.5g. The powdered samples were then further analysed 

in a liquid state. 

The sample was thus transferred into a 100 ml beaker. The powdered samples were then digested with 

20ml of 65% nitric acid (HNO3) and heated using a hot plate at 170
o
C in the fume hood. It was heated until 

a small quantity of solution left in the beaker. Another 10 ml of 65% nitric acid (HNO3) was added into the 

remaining solution and it was left to cool. 10 ml of solution was then diluted with distilled water into a 100 

ml volumetric flask. Then, the digested sample was filtered using a 0.45   membrane and heavy metals 

concentrations were analyzed using Perkin Elmer Optima 5300DV Inductively Coupled Plasma–Optical 

Emission Spectrometer (ICP-OES) (Huseyin & Mustafa, 2011). Quality Control Standard 21 (Perkin Elmer 

Pure) was used as Standard Reference Material for instrument recovery. The concentration of heavy metals 

were calculated by using the following formula (Skoog et al., 2004).  

Concentration of heavy metal =
W

CVD
  where,  

V= Final volume of solutions 

D= Dilution factor of 10 

C= Concentration obtained by ICP-OES, mg/L 

W= Weight of sample, kg 

 

The process of heavy metal determination were carried out after all the processes of drying and wet 

digestion had been done. There were six heavy metals needed to be determined from the samples collected. 

The heavy metals were cadmium (Cd), copper (Cu), iron (Fe), lead (Pb), nickel (Ni) and zinc (Zn).  

 

Mathematical Modelling 

 Mathematical modeling is an activity or process that allows a mathematician to be a chemist, an 

ecologist, an economist, a physiologist and so on, by instead of undertaking experiments in the real world, a 

modeller undertakes experiments on mathematical representations of the real world, herewith, the effects of 

the different components can be studied and hence, to make predictions about the behaviour (Vries, 2001). 

In this study, the heavy metal relationships between the tree and soil are exemplified with all the basic 

theory and  mathematical formulations.  

 

 
 

Figure 3. Basic processes in mathematical modeling (Source: Vries, 2001) 
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In this study, the relationship of heavy metals concentration in barks of the cinnamon tree was 

determined using the multiple regression (MR) technique. Firstly, the variable selection from site and 

experiments were made, followed by variables descriptive statistics, and data generation based on the 

concept of non-parametric bootstrap which will be explained later in this section. Afterwards, model 

building was also illustrated via the four phase procedures. Lastly, the prediction efficiency was calculated 

to determine the model‟s predictive capability. 

The calculations on the heavy metals concentrations were used as dependent variable in the multiple 

regression technique. The dependent variable, Yi with i=1,2,…,6 , based on the heavy metals were as 

follows: 

a) Concentration of Cadmium in bark (Y1) 

b) Concentration of Copper in bark (Y2) 

c) Concentration of Iron in bark (Y3) 

d) Concentration of Lead in bark (Y4) 

e) Concentration of Nickel in bark (Y5) 

f) Concentration of Zinc in bark (Y6) 

The independent variables based on the site and experimental variables were as follows: 

a) Diameter of breast height (
1

W ) 

b) Stem height(
2

W ) 

c) Average ppm in bark (
3

W ) 

d) Average ppm in soil (
4

W ) 

e) Concentration of heavy metal in soil (
5

W ) 

 

Descriptive statistics were used to describe the basic features of the data by providing simple 

summaries about the sample and measures with the simple graphic analysis. Quantitative descriptions were 

also presented in a manageable form and this helped to simplify large amounts of data in a sensible way 

(Trochim, 2006). 

Normality test was carried out for the variables distributions using the Kolmogorov-Smirnov test 

(KS) and Shapiro-Wilk test (SW). As a guideline, the KS test will be used when the number of 

observations is large (n>50), while SW test is used when the number of observations is small (n<50).  

Data generation refers to the theory and methods used by researchers to create data from a sampled 

data source in a qualitative study. To generate data from a sampled data source, researcher interacts with the 

data source using qualitative research methods within an overall strategy of inquiry (Garnham, 2008). 

Bootstrapping is a numerical sampling technique where data sampled are resampled with replacement and it 

is mostly used for estimating variance when sampling from an empirical distribution of the observed data 

(John, 2011). The nonparametric bootstrap is the usual method where it resamples the observations from the 

original samples while parametric bootstrap method generates the bootstrap observations by a parametric 

distribution (Saeid et al., 2008). However, non-parametric bootstrap does not require distributional 

assumptions such as normality distribution. Nonetheless, past research showed that an analysis of the 

resampling the small sample size to bigger sample size will decrease the proportion of sample to be 

normality distributed. For example, sampling by 20 observations will generate 74% normality distributed 

sets, while sampling by 50 observations will only generate 24% normality distributed (Igor et al., 2010). 

According to Saeid et al. (2008), the nonparametric bootstrap is better than parametric bootstrap if the 

sample kurtosis is less than the kurtosis of distribution.  

Multiple Regressions is the extension of simple regression to the case of two or more independent 

variables relating dependent variable Yi to   predictor variables 
k

WWW ,....,,
21

. The basic general equation of 

multiple regressions will be given as: 

 

  
kkki

uWWWY  ...
22110

   ……………………………….(1) 

 

with the assumption that the random deviation 
k

u is normally distributed, with zero mean and variance    

for any values of 
k

WWW ,....,,
21

. The outcome or dependent variable is denoted by Yi  where i=1,2,…, 6, 
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while 
k

WWW ,....,,
21

 represents the set of predictor variables which can be in the form of single independent 

variables, interaction variables, generated dummy variables and transformed variables where j=1, 2,…,k. 

The parameter, 
0

  represents the intercept of the regression equation, and 
k

 ,....,,
21

 are the regression 

coefficients for each predictor variables, 
k

WWW ,....,,
21

 respectively (Zainodin et al., 2011).  

 In this research, the dependent variable, Yi stands for the concentration of heavy metals in the 

C.Iner‟s bark where i=1,2,…,6 with 1 represents Cadmium, 2 represents Copper, 3 represents Iron, 4 

represents Lead, 5 represents Nickel and 6 represents Zinc, while W1 represents the diameter of breast 

height, W2 represents the stem height, W3 represents the average of ppm in bark, W4 represents the average 

of ppm in soil and W5 represents the concentration of heavy metal in soil, where 521
,....,, WWW  are the 

independent variables before normality test are carried out. 

 

 
Figure 4. The Four Phases in Model Building Procedure (Source: Zainodin et al., 2011). 

 

 In Phase 1, all possible models have to be listed out before analysis is carried out. The number of all 

possible models can be calculated as follows: 

     ∑   
    q

C j)  ……………………………………..…(2)   where, N is the 

number of possible models and q is the number of single quantitative independent variables for j = 1, 2, 

3,…, q, which exclude the dummy variables (Zainodin & Khuneswari, 2009). 

In Phase 2, multicollinearity is said to exist when one or more of the independent variables is highly 

correlated with one or more of the other independent variables. This multicollinearity problem can be 

identified in two ways which are namely, by testing the correlation value (R
2
) or through the Variance 

Inflation Factor (VIF). This study will focus on the VIF rather than the correlation matrix test. Variance 

Inflation Factor (VIF) is used to measure the impact of collinearity among the independent variables in a 

multiple regression model. It shows how much the variance of the coefficient estimate is being inflated by 

the multicollinearity. Kutner et al. (2008) stated that “the largest VIF value among all the independent 

variable is often used as an indicator of the severity of multicollinearity. A maximum VIF value in excess of 

10 is frequently taken as an indication of multicollinearity that may be unduly influencing the least squares 

estimate. “As a rule of thumb, multicollinearity may not be a serious issue if VIF does not exceed 10, 

although some authors use a more conservative rule that VIF does not exceed 5” (Mohammad & Hong, 

2010). The collinearity variable will then be removed from the model.  

The VIF value used in this research was set at 5.  When an independent variable had the greatest VIF 

value which is greater than 5 (VIF > 5), it will be removed from the regression model (Zainodin et al., 

2015). This process will be carried out using the SPSS and Excel program. For regression models, to 

determine the VIF value for each independent variable, there are three possibilities which can occur. They 

are as follows: 

 

Case 1: None of the independent variable has VIF greater than 5. In this case, it will directly proceed to 

the next step which is the elimination of insignificant variable using the coefficient test. 

 

Case 2: One of the independent variable has VIF greater than 5. In this case, remove the independent 

variable with VIF greater than 5, and rerun the model. 
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Case 3: More than one independent variable has VIF greater than 5. In this case, choose the 

independent variable with the highest VIF value and remove it. Next, rerun the reduce model again. If a tie 

occurs, remove the variable with higher standard error. The overall VIF test procedures of removing the 

variables with multicollinearity are as shown in Figure 5. 

 

 
Figure 5. VIF Test Procedures 

 

Coefficient test in Phase 2 is used to test the coefficient of the corresponding variables. Determine 

the variables which are insignificant variables and eliminate the variable with highest p-value with a 

condition higher than  = 0.05. variable with the smallest |tcal| and nearest to zero will be eliminated from 

the model. The elimination process is repeated until there is no more insignificant variable in the models 

(Noraini et al., 2011). 

In Phase 3, the Eight Selection Criteria (8SC) were used so as to get the best model. The Finite 

Prediction Error (FPE) and Akaike Information Criterion (AIC) were developed by Akaike in year 1970 

and year 1974 respectively.  The Generalised Cross Validation (GCV) was developed by Golub et.al in 

1979, while HQ criterion was suggested by Hannan and Quinn in the same year. The SHIBATA criterion 

was suggested by Shibata in 1981. In addition, the RICE criterion was discussed by Rice in 1984 and the 

SCHWARZ criterion was discussed by Schwarz in 1987. Furthermore, SGMASQ was developed by 

Ramanathan in 2002. The Eight Selection Criterion (8SC) were shown in the Table 1 below (Zainodin & 

Khuneswari, 2009), where n is number of observations, (k+1) is number of estimated parameters, and SSE 

is sum of square error. The model with the least value in majority of the criteria will be chosen as the best 

model.   
 

Table 1. Eight Selection Criterion (8SC) 

 

 

 

 

 

 

 

 

Finally, the normality of the regression model in Phase 4 can be obtained by using the Kolmogorov-Smirnov 

statistics (KS) and the histogram of the standardized residuals. The Kolmogorov-Smirnov statistics was used 

to test the normality of the residuals since the number of observations was large (n=450) after bootstrapping. 

If the p-value was greater than =0.05, the null hypothesis would be accepted where it showed that the 

residual were assumed to be normally distributed. The histogram of the standardized residuals would looked 

like a bell-shape and can be used as a supporting evidence for the normality test (Noraini et al., 2011). 

Similar modelling procedures were carried out on all the heavy metals concentrations in barks of the C.iners. 

 Lastly, the prediction efficiency is used to forecasting the value of some reserved variable, and some 

others actual value for the same variable. Let Ft denote the forecast value and let At denote the actual value 

of the variable, and n as the number of reserved observations for prediction. A forecasting criteria, namely 

the mean absolute percentage error (MAPE) is calculated in order to indicate that the best model can give 
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the most accurate result on the relationship between the heavy metal concentration in the C.iners bark and 

soil. MAPE is the more objective statistics indicator because the measure is in relative percentage and will 

not be affected by the unit of the forecasting series. The closer the MAPE approaches zero, the better would 

be the forecasting results. MAPE is commonly used in quantitative forecasting methods because it produces 

a measure of the relative overall fit. The MAPE value is calculated using the following formula:















n

t t

tt

A

FA

n
MAPE

1

)(%100
……………………………………………………………..(3)  

Where At is the actual value of the reserved data, Ft is the forecasted value of the reserved data, n is the 

number of reserved data with t=1,….,n (Noraini et al., 2015). 

 

RESULTS AND DISCUSSIONS 

 

The field and experimental data variables were initially tested for their normality distributions. In this 

study, the sample size was small (n=28) had been collected Since the sample size of the data collected were 

small, hence not conforming to normality. They thus had to undergo the method of non-parametric bootstrap 

resampling which was generated up to 500 observations where 450 observations were used for modelling, 

while the other 50 observations were randomly selected and used for prediction efficiency. From Table 2, 

the entire sample kurtosis statistics were seen to be less than the kurtosis of the distribution. It therefore 

fulfilled the condition that nonparametric bootstrap was better than the parametric bootstrap (Saied et al., 

2008).  

 
Table 2. Kurtosis of Dependent Variable (Copper) and Independent Variables 

Variables Kurtosis Sample kurtosis Non-parametric 

Y2 0.6127 0.3504  

W1 -1.0137 -1.0522  

W2 0.0159 -0.0923  

W3 0.5900 -0.2756  

W4 -0.5824 -0.6951  

W5 -0.5824 -0.7232  

 

After the bootstrapp resampling, all the MR models had to undergo the four phase model building 

procedures. From equation (2), the number of all possible models based on 5 single independent variables 

were 80 models. Phase 2 involves the removals of multicollinearity source variables. In this phase, VIF 

value greater than 5 were then removed from the parent model. Next, the coefficient test were carried out by 

eliminating the source variables which had p-values greater than 0.05. For illustration purposes, the 

dependent variable Y2 (Copper) and parent model M73 was thus chosen as: 

 

 M73-Y2 = f (W1,W2, W3, W4, W5, W12, W13, W14, W15, W23, W24, W25, W34, W35, W45, W123, W124, W125, 

W134, W135, W145, W234, W235, W245, W345) …………………………. (4) 

 

Table 3 show the regression output for the model M73 for the dependent variable, Y2. By looking at the VIF 

column, variable W3 has the highest VIF value among the other variables. Hence, variable W3 was removed 

from the model and rerun the model again. Now the model M73 will thus change to M73.1, which indicates 

one variable has been removed from the model. 
Table 3.   The regression output for model M73. 

Variables Coefficient Std. Error P-value VIF Action 

Constant 10.2114 15.2458 0.5034   

W1 -0.1845 0.5066 0.7159 6790.3439  

W2 -2.2100 6.7212 0.7425 1403.6223  

W3 722.1238 889.8237 0.4175 9637.0897 Removed 
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W4 -204.7467 177.0946 0.2483 7880.7214  

W5 -1.9262 1.8119 0.2883 7606.6995  

W12 0.0100 0.2267 0.9650 7080.6368  

W13 -26.8581 23.4314 0.2523 5066.1883  

W14 6.9478 5.2444 0.1859 5558.2762  

W15 0.0330 0.0596 0.5801 7242.8308  

W23 -412.4122 379.3438 0.2776 8787.8700  

W24 82.2754 76.7771 0.2845 7285.5454  

W25 0.6511 0.8030 0.4179 7417.9125  

W34 -5,912.3325 8,282.2048 0.4757 5206.1112  

W35 80.0803 80.0362 0.3176 4562.8398  

W45 16.9298 17.5925 0.3364 4709.3777  

W123 17.4627 10.0847 0.0841 4512.7181  

W124 -2.7208 2.1497 0.2063 4551.5194  

W125 -0.0034 0.0254 0.8936 6433.5901  

W134 -46.0837 116.7126 0.6932 623.2095  

W135 -1.6202 1.1628 0.1643 609.7922  

W145 -0.0719 0.2686 0.7892 724.2550  

W234 2,813.5275 3,473.2095 0.4184 4438.2772  

W235 -24.4780 34.4610 0.4779 3950.4274  

W245 -6.3184 7.8736 0.4227 4456.7351  

W345 -3.3527 371.7082 0.9928 465.6279  

 

Table 3 shows that the variable W15 was removed from the model since it has the highest VIF value 

among the other variables. The model was again rerun to obtain the new regression output. The process will 

continue until all the VIF values for the variables are less than 5 which indicated no multicollinearity effects 

exist in the model. Table 4 illustrated the regression outputs from model M73.17 until M73.19. Similar 

procedures on removal of multicollinearity source variables were carried out.  

 
Table 4. Removal of multicollinearity source variable from M73.17 until M73.19. 

Model Variables Coefficient Std.Error p-value VIF Action 

 Constant 1.0114 0.5545 0.0688   
 W1 0.0033 0.0191 0.8646 9.618  

 W2 0.5535 0.2286 0.0159 1.625  

 W5 0.0236 0.0632 0.7090 9.259  

M73.17. W24 -2.1040 2.8119 0.4547 9.785  

 W134 -7.5157 16.6528 0.6520 12.703  

 W135 -0.0148 0.1593 0.9262 11.456  

 W145 0.0434 0.0388 0.2642 15.150 Removed 

 W345 -48.7001 66.4007 0.4637 14.877  

 Constant 0.6729 0.4647 0.1483   
 W1 0.0186 0.0132 0.1614 4.643  

 W2 0.4469 0.2078 0.0320 1.342  

 W5 0.0716 0.0463 0.1228 4.976  

M73.18. W24 0.0234 2.0708 0.9910 5.303  

 W134 -8.2980 16.6428 0.6183 12.681  

 W135 -0.0358 0.1582 0.8213 11.297  

 W345 -35.9082 65.4259 0.5834 14.435 Removed 
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 Constant 0.6127 0.4512 0.1752   
 W1 0.0245 0.0077 0.0016 1.569  

 W2 0.4775 0.2000 0.0174 1.246  

M73.19. W5 0.0589 0.0400 0.1421 3.721  

 W24 -0.5007 1.8360 0.7852 4.175  

 W134 -13.3159 13.8956 0.3384 8.854 Removed 
 W135 -0.0773 0.1389 0.5782 8.715  

 
 

Table 5. Model M73.20.0 free from multicollinearity effects and insignificant variables. 

Variables Coefficient Std.Error p-value VIF 

Constant 0.4871 0.4317 .2598  

W1 0.0232 0.0076 .0023 1.522 

W2 0.5477 0.1861 .0034 1.079 

W5 0.0873 0.0269 .0013 1.680 

W24 -2.0155 0.9338 .0314 1.080 

W135 -0.1918 0.0706 .0068 2.254 

 

Table 5 showed the model M73.20. which was free from multicollinearity effects, had twenty of its 

independent variables removed from the parent model M73, due to multicollinearity and no insignificant 

variables were eliminated. Model M73.20.0 can thus be given as: )W,W,W,W,f(WY
135245212




…………………………………………………(5) 

 

It could also be seen in Table 5 that model M73.20 was affected by single independent variables (W1, W2 

and W5), first order interact variable (W24) and second order interaction variable (W135). The negative 

coefficients of variables (W24) and (W135) respectively implied negative contribution of the heavy metal 

(Copper) concentration, while the others implied positive impacts. Table 5 thus implicated that best model 

M73.20.0 was free from multicollinearity effects when all the p-values were more than 0.05 and the VIF 

were less than 5.0. The regression equation of the best model is given by:- 

 

13524521
1918.00155.20873.05477.00232.04871.0 WWWWWY

Cu
 ..…………………………(6) 

 

The all possible 80 models were reduced to 34 selected models after carrying out the four-phase modelling 

procedures. Table 6 below showed that the best model chosen for Copper based on the eight selection 

criteria (8SC) was M73.20.0. 

 
Table 6. The corresponding selection criteria values for selected models for Copper. 

Model k+1 SSE AIC FPE GCV HQ RICE SCHWARZ SGMASQ SHIBATA 

M2.0.0 2 219.9888 0.4932 0.4932 0.4932 0.4968 0.4932 0.5023 0.4910 0.4932 

M3.0.0 2  0.4927 0.4927 0.4927 0.4962 0.4927 0.5017 0.4905 0.4926 

  : : : : : : : : : : 

M25.0.0   0.4866 0.4866 0.4867 0.4937 0.4867 0.5048 0.4824 0.4866 

  : : : : : : : : : : 

M45.3.0   0.4868 0.4868 0.4868 0.4938 0.4868 0.5049 0.4825 0.4867 

  : : : : : : : : : : 

M55.6.1   0.4849 0.4849 0.4850 0.4920 0.4850 0.5030 0.4807 0.4849 

  : : : : : : : : : : 

M73.20.0 6 210.4851 0.4804 0.4804 0.4805 0.4909 0.4806 0.5074 0.4741 0.4802 

  : : : : : : : : : : 

M80.26. 2 4 213.5004 0.4830 0.4830 0.4830 0.4900 0.4830 0.5009 0.4787 0.4829 

 

For model‟s goodness-of-fit, the runs test for randomness and normality tests were carried out on the 

standardized residuals of model M73.20.0. The hypothesis statements were shown as follows: 

H0: The standardized residual, ui are randomly distributed. 

H1: The standardized residual, ui are not randomly distributed. 
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The runs test of Table 7 below showed that the |Z| value of standardized residuals of model M73.20.0 was 

less than the significant value; hence, the null hypothesis was accepted. It could be thus concluded that the 

standardized residuals for dependent variable, Y2 was randomly distributed. The scatter plot as shown in 

Figure 6 was the supporting evidence that the standardized residual was randomly distributed with the upper 

control limit (UCL) and lower control limit (LCL) within   
  standard deviation. 

 
Table 7. Runs test for standardized residual, ui. 

 
Standardized 
Residual Test Value -0.269 

Cases < Test Value 213 

Cases >= Test Value 237 

Total Cases 450 

Number of Runs 215 

Z -0.981 

Asymp. Sig. (2-tailed) 

tattailed)tttatailedtailed) 

0.327 
 

 
Figure 6. Randomness plot for standardized residuals. 

 

The hypothesis statements for normality test were shown as follows: 

H0: The standardized residual, ui are normally distributed. 

H1: The standardized residual, ui are not normally distributed. 

Since the sample size was 450, the normality test using Kolmogorov-Smirnov statistics of value (0.123) with 

a significant value of p < 0.0001 was obtained. Since the p-value was less than 0.05, the residuals were not 

normally distributed. Figure 7 showed that the normality plot was skewed. This could be explained by the 

non-parametric bootstrapping which did not consider the assumption of normality (Saeid et al., 2008). 

 

 
Figure 7. Normality plot for standardized residuals. 

 

The forecasting criteria namely, the Mean Absolute Percentage Error (MAPE) was used for the prediction 

efficiency. Using equation (3), the value of MAPEs for all the heavy metal concentrations were calculated 

and comparisons were made as shown in Table 8 below. The heavy metal concentration, Y2 (Copper) was 

equal to 22.8096% (since < 25%), hence, was acceptable.  

 
Heavy Metal Dependent Variable MAPE Action 

Cadmium Y1 108.2176 Not accurate 

Copper Y2 22.8096 Acceptable 

Iron  Y3 25.0080 Not Acceptable 

Lead Y4 32.9134 Not Acceptable 

Nickel Y5 28.1237 Not Acceptable 

Zinc Y6 38.6099 Not Acceptable 

 

Therefore, the best model for Y2 (Copper) was thus said to be acceptable and considered as accurate. In 

other words, the concentration of Copper had the most effect on the heavy metal concentration in the barks 

of Cinnamomum iners.   
 

CONCLUSION 
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The multiple regression analysis can be used to determine the factors that affect the heavy metal 

concentration in the cinnamon tree barks. Factors such as, the diameter of breast height (W1), stem height 

(W2) and concentration of copper in soil (W5) had positive relationships with the concentration of copper in 

bark, while the first order interaction variable of stem height and average ppm in soil (W24) and second order 

interaction variable of diameter of breast height with average ppm in bark and concentration of copper in 

soil (W135) had negative relationships with the concentration of Copper (Y2) in bark. The regression equation 

can thus be used to predict the amount of this toxic heavy metal, that is Copper, absorbed by the cinnamon 

tree, and hence further its toxicity. It is also suggsted that further works can be done using these model 

building procedures via VIF multicollinearity test on parts of other plants or trees in identifying heavy 

metals concentrations.  
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