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Abstract 

Let G = (V, E) be a graph. A non-dominating set A    V is said to be a maximal non-dominating set 

(mn-d-set) if every superset of A is a dominating set of G. The non-domination number   of G is the 

minimum cardinality taken over all mn-d-sets of G. The upper non-domination number   of G is the 

maximum cardinality of a non-dominating set of G. The uniform domination number u (G), is the least 

positive integer k such that any k-element subset of V is a dominating set of G. In this paper, we obtain a 

relation between non- domination number and uniform domination number 
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 1. Introduction. 

All graphs considered in this paper are finite, undirected graphs and we follow standard definitions of graph theory as 

found in [2]. 

Let G = (V, E) be a graph of order n. The open neighborhood N(v) of a vertex vV(G) consists of the set of all 

vertices adjacent to v. The closed neighborhood of v is N[v] = N (v) v.For a set S  V, the open neighborhood 

N(S) is defined to be ( )

v S

N v



, and the closed neighborhood of S is N[S] = N(S)  S. The uniform domination 

number u (G), is the least positive integer k such that any k-element subset of V is a dominating set of G. 

The concept of uniform domination in graphs was introduced by S.Arumugam and Paul raj Joseph[1].We 

need the following theorem from [1]. 

Theorem A[1]. For any graph G, u(G) = p - (G). 

2.Non-Domination. 

A subset A of V is called a non-dominating set (or, in short, n-d set) if there exists a vertex u in V  A 

which is not adjacent to any vertex in A. A maximal n-d set (mn-d set) is defined in an obvious way. 

Clearly n-d set A is a mn-d set if and only if A  {x} is a dominating set, for every x  V – A. The n-d 

number  of G is minimum cardinality taken over all mn-d-sets of G. The upper n-d number  of G is the 

maximum cardinality of n-d set of G.  

The next theorem gives a necessary and sufficient condition for a subset of V(G) to be a mn-d set. 



IJMCR www.ijmcr.in|4:7|July|2016|1541-1542 l |  1542 

 

Theorem1. A set A V is a mn-d set of G if and only if there exists a vertex  

xV–A such that A = V – N [x], where N [x] is a minimal element of the family of closed 

neighborhoods. 

Proof. Let A  V be a mn-d set of G and f be the family of closed neighborhood sets of G. Since A is a 

n-d set, there exists x  V – A such that N [x]  A = .Then A  V – N[x] . 

As A is a mn-d set, A = V – N[x].Suppose there exists y  V such that N[y] is a proper subset of N[x]. 

Then A = V – N [x], which is a proper subset of V – N[y], which is not true. Hence N[x] is minimal 

among the family of closed neighborhoods, f. 

Conversely, let A = V – N[x], where N[x] is minimal element in f. Then clearly A is a n-d set. Let y  N 

[x], y   x.Suppose that A  {y} is also a n-d set. Then there exists a vertex z in V such that N[z]  N[x] 

– {y} which contradicts the minimality of N[x].Thus A is a mn-d set. ▅ 

Proposition2.A graph G is totally disconnected if and only if (G) = p 1. 

Corollary 3. For any graph G,   = p   1 and   > p    1. 

Theorem 4. For any graph G,  =  u – 1. 

Proof. By definition of   , there exists a n-d set of cardinality .  Therefore u   +1. 

Also every set of cardinality  +1 is a dominating set. Therefore u <  +1. 

Hence u =   +1. ▅ 

Remark 5. Corollary (2) and theorem (3) provide another proof for the fact  

u = p – . [1]. 
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