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1. INTRODUCTION

The study of dynamic equations on time scales, which has been created in order to unify the study of
differential and difference equations, is an area of mathematics that has recently received a lot of
attention; moreover, many results on this issue have been well documented in the monographs [2,3,15].
The concept is particularly useful in modeling stop-start processes where continuous and discrete time
may be present at different stages. Let T be a time scale (any non empty closed subset of the real
numbers). Without loss of generality we assume that 0, a € T and denote J = [0, o(a)]< T being a

closed interval. In this paper, we consider the following first order dynamic equation on time scales
x4 (t) = f(t,x@t),ted, (1.1)

o(a)

x(0) + j X(s)As = x(c(a)),

where f € C[J x R, R]. The monotone iterative technique is a powerful method used to approximate

solutions of several problems [10,13,14]. The purpose of this paper is to show that it can be applied
successfully to dynamical equations with integral boundary conditions on time scales . This technique
combined with the method of lower and upper solutions play an important roles in constructing
monotone sequences with converge to the solutions of our problem. In presence of a lower solution «
and an upper solution B with reversed ordering condition 8 < « , we prove that under suitable
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conditions equation (1.1) has the maximal and minimal solutions between the lower solution and upper
solution.

2. PRELIMINARY RESULTS

Definition 2.1: The mappings o and p: T — R,where T is any closed subset of reals, are defined as
ot)=inf{seT:s>t}and p(t)=sup{seT:s<t}.

Definition 2.2: A non-maximal element t in T is called right dense if o(t) =t ; right scattered if
o(t) > t; left dense if p(t) =tand left scattered if p(t) <t.

Definition 2.3: If T has a left scattered maximum m, then T* =T —{m}, otherwise, T* =T. T*is called
the degenerate set.

Definition 2.4: The function " =T* — R*defined by #'(t) = u(o(t),t) for t € T is called graininess.
If t is right dense, then x" = 0and if t is right scattered, then " = o (t) —t.

Definition 2.5: A mapping g : T — R is called rd-continuous if

a. Itis continuous in each right dense or maximal t e T ;
b. Left side limit g(t™) exists in each left dense t.

Remark 2.6: If (b) is replaced by g being continuous at each left dense point, then g is said to be a
continuous function on T.

We define C[J,R] = {u (t) is continuous on J }, and C*'[J,R]={ u”(t) is continuous onJ }.

Definition 2.7: Let f: T* — R and if t is right scattered, then the Delta derivative f*(t)of f(t) is
defined as

£2(1) = fot) - f(t)
ot)-t

Definition 2.8: (Schauder Fixed Point Theorem) If E is a closed, bounded and convex subset of a
Banach space Band T : E — E is completely continuous, then T has a fixed point.

Definition 2.9: A function P : T — R is said to be regressive if 1+ z(t)P(t) =0 forall t in T*. The set
of all regressive and rd- continuous functions will be denoted in this paper by

R(T,R). For two functions p, ge R(T, R) define a plus & and a minus & by
(p(®) ®q(t)) = p(t) +a(t) + w(t) p(t)a(t),

— p(t)
©prMO=- s

Definition 2.10: If p e R, then the exponential function is defined as

e,(t,s) =exp[j|'§ﬂ(t)(p(t))At} for s,teT,

Where &, (p(t)) = L Log[1+ p(t)u(t)] where Log is principal logarithmic function.

u(t)
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When T =R, then e, (t,t,) =e““™ andwhen T = Z then e, (t,t,) = 1+ a)"™.
Definition 2.11: If p e R, then the first order linear dynamic equation

y (1) = p(t)y(®) (2.1)
is called regressive.

Theorem 2.12: If p e R, and for fixed t, €T, e, (t,t,) is a solution of the initial value problem (2.1)
satisfying the initial condition y(t,) =1on T.

Remark 2.13: If p(t) >0 for t >t,, clearly 1+ x(t) p(t) >1. Therefore &, (p(t)) >0 and e, (t,t,) > 1.
Lemma 2.14: If p,qeR(T,R), then

I. g(t,s)=1land e, (t,t) =1;

ii. e (o(t),s) = @+ ut) p(t)e, (t.s);

iii. e, (t,s) = =egp(s,t);

1
e,(st)
iv. e, (t,r)e,(r,s)=¢,(t,s);

V. e, (t,s)e, (t,8) = €,4,(t,S).
3. MAIN RESULTS

Lemma 3.1: Assume that there exists a positive function m(t) continuous on J and

x2(t) = m()x(t), t €], (3.1)
x(0) = X(G(a)).
Then x(t) < 0 for all t € ] provided that 2M0em1(0§?),0)0(a) < 1, where My = maxyg{m(t)} and K, =
]

max,e m(Hu(D} < 1.

m(t)

m , we have

Proof: Let v(t) = x(t)egm)(t, 0).Considering © (—m) =

2m(t)v(t)e(_m) ((#9)
1-m(®)u(t)

v(0) > V(c(a))e(_m)(o(a), 0).

vA(Y) =

(3.2)

Obviously,
v and x have the same symbol, we need only to prove that v(t) < 0,t €
J. If it is not true, then there exists two cases
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(i)v(t) = 0forallt €].
(ii) there exists ry,r, € ] such that v(r;) > 0and v(r,) < 0.

In case (i), suppose that v(t) > 0forall t € J, then v*(t) > 0,t € J by (3.2). This shows that v(t)is
nondecreasing on J,and so, v(o(a)) > v(r,) > 0,x(o(a)) = v(o(a))e_,, (c(a),0) > 0,v(0) < v(c(a)).
However, from (3.1), we have v(0) = x(0) > x(c(a)) > x(o(a)) eg(—m)(c(a),0) = v(c(a)),thisis a
contradiction. Hence, v(t) <Ofor some t € J.

In case (ii), Let v(ry) = miny{v(t)} = p,thenp < 0. From (3.2), we obtain

2pm(t)em)(t 1)

VO2 T on®
< 2PMoecm(t) (33)
1- Ko
Next, we consider again two possible cases.
Case(a): r, > ry.By (3.3), we have
M,

Iz
j €(—m) (t, At
r

1

v(ry) — v(ry) = 1—K,

2pM, ("2
p=v() = V() + 1 | e (6 0AY
1 - KO ri

2pM,
1 - KO

Iz
j- €(-m) (t, At
r

1

Since p < 0,e,(c(a),0) > 1,then

1<

M, jrz t t)At

1

IMgem(0(a),0) [

(2)
< Tt ! € _m (L 1AL

_ Moenc@.0) )
1 - KO

< 2M, em(G(a).O)U(a).

This is a contradiction.

Case(b): r, < r;. By (3.3), we have

2

M
v(r,) — v(0) > 1{}(;’ S ecmy(t DAL
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M
p = v(ry) = v(0) + jﬁ—K S eccmy(t DAL (3.4)

and

o(a) 20M o(a)
f vADatL = P20 f e(—my (t, DAL
ri 1 - KO ri

2pM,
1-K,

o(a)
v(o(@) = v(ry) + f e—m) (4 DAL

1

2pM, ro(a)
> 1_—KZ frl e(-m)(t DAL (3.5)

Since v(0) > V(c(a))e(_m)(o(a), 0), from (3.4)and (3.5), we get

2pM, ("2
pM, JO e(m(t, DAL

p = v(0(2))e(-m)(0(a), 0) + 17— K,

2pMge(_m(o(a),0) @
1—K,

2pM
eem) (6, DAL + P

I
> _m) (£, DAL,

rq

Noting that p < 0,e,(a(a),0) > 1,r,<ry, One can obtain

M,e,.(c(a),0) [°@ 2M rz
oem(c(a),0) 0 f e (6, DAL

1< _m) (5, DAt +
1-K, eem (DA T

rq 0

o(a)
2Moem(0(2),0)
< T ! e _m (L 1AL

< 2Mpem(o(a) ,0)o(a) .
1-Ko

This is a contradiction. Combining case (i) and case (ii), we know that
v(t) < 0,forallt € J,and thus x(t) < 0,forall t € J.

Lemma 3.2:
Assume that there exists a positive function m(t)and a non negative function n(t)continuous on J.

c(a)en(t,0)
em(c(a),0) — 1

< 1,then the equation

x2(t) — m()x(t) = n(t),te], (3.6)
a(a)
x(0) + J x(s)As = X(c(a)),

has a unique solution.

Proof: We shall prove the conclusion by Banach's contraction principle. First define a Banach
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space as follows.
X = {x(0) € Crall, RI}with [Ix(D)]| = maxej{x(D)}.
Now define an operator on X as

a(a)

S:x(t) = en(t,0){ x(s)As

1
em(o(a),0) — 1fo
em(0(a),0) [°@
em(0(a),0) — 1,

t

em(0,0(s))n(s)As +J em(0,0(s))n(s)As}, t €.

0

For any two functions @, € X,

en(t,0)
em(o(a),0) — 1

o(a)
S8)() — (SO = j [0(S) — (S)]As
0

< ST 10(s) — ()l

em(o(a),0)-1

Thus, we have

1(SP) (&) — (SY) ()| < ZmEDTD_y1g _

em(c(a),0)-1

This implies by condition —22emE D s tracti X and
1S lmp 1€S ycon 1T10Nn em(o_(a)’ O) — 1 a 1S a contraction on an

therefore by Banach’s contraction principle there exists exactly one x(t) € X such that

o(a) em(0(2),0) (7@
XSS = 6@, 00 1),

x(t) = e (t, 0){ em(0,0(s))n(s)As

1
eq(o(a),0) — 1]0
t
+J em(0,0(s))n(s)As},t €.
0

Next, we shall show that x(t) is a solution of (3.6). We have

1 a(a) em(0(a),0) o(a)
em(c(a),0) — 1f0 x(s)As = em(c(a),0) — 1/,

+ j em(0, 6())N(8)As} + em (1), 0)em (0, ()N (H)
0

x2() = m(ey(t, 0){ em(0,0(s))n(s)As

= m(t)x(t) + n(t).
Moreover,

o@ em(o(@),0) (7@
X(S)As = 6@, 0 — 1),

X(G(a)) = en(o(a), 0){ em(0,0(s))n(s)As

1
em(c(a),0) — 1f0
a(a)
+ f em(0,0(s))n(s)As}
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1 @ m(0(a),0) @
em(0(a), (o1 S, x(s)As + [1 — e;g;%] I, em(0,0(s))n(s)As

_ _en©@0) o@p o
= o ido  IX() — em(0,0()n()]As

=x(0) + foo(a)x(s)As.
Thus we complete the proof.

Definition 3.3: Functions a, B € C1(J,R) are said to be the lower and upper solutions

of (1.1)respectively if

() < f(ta®),te), a0+ [T als)as < a(o(a)).

BA(O = f(L B, tE], BO) + [T B(s)as = B(o(a).
Let Qv = {y:u®) < y(®) < v(H),teJ}ifu(t) < v(t) forte].
We introduce the following assumptions.
(H,)a,, B, € C*(J,R) are lower and upper solutions of (1.1) respectively and g (t) <, (t) for teJ;
(H,) f € CUxRR);
(H,) there exist positive, rd-continuous function m(t) such that

fF(tx)—ftx)<m(x, =x)if By <x <X, <a,tel;

(H ) 2een@@ 00 1 \yhere M, = max ., {m(v}and K, = max ., {m(O)u()} <1

(H5) a(a)en(t,0) <1

em(o(a),0)-1

Lemma 3.4: Assume that (H,) —(H;) hold. If

y* () —m@)y() = f (t, oo (1)) - Mt (1), t € J,

o(a)

Y0+ [ay(s)As=y(o(a)),
2% (©) - m()2(t) = f (¢, B, (1) - MO B, (1), t e 3,
o(a)

2(0)+ [ By(s)As = 2(5(a)),

then

IJMCR www.ijmcr.in| 3:1|January|2015|812-823 |



Bo®) <2(t) < Y(D) < ety (1), € J. (3.7)
and vy, zare lower and upper solutions of (1.1) respectively.
Proof: From lemma 3.2, we know that there exists unique solutions for y and z.

put p=y-ea,,q= /4, —z,then
p(c(a)) = y(o(a)) — ay(c(a))
< YO+ [T oy (8)As —ay (0) — [T ey (s)As
=Y(0) -, (0)
= p(0),
q(o(a)) = By (c(a)) — z2(c(a))
< Bo@+ 7 By(s)as—2(0) - [ By(s)s
=3,(0) - z(0)
=q(0),
and
P O =y 0~ 1)
> f(t, o, () + m(t)y(t) —m(t)e, (t) — f(t, o, (1))
=m()[y(t) — o, (1]
m(t) p(t),t e J,
9 () =4t - 2°(t)
> f(t, By () —m(t)z(t) + m(t) B, (t) — f(t, B, (1)
=m(t)[ 5, (t) — z(t)]
m(t)q(t),t J.
From lemma 3.1, we have p(t) <0,q(t) <0,t € Jand so y(t) < e, (t), 5, (t) < z(t), t € J.
Now let p(t) =z(t) — y(t), then
p(o(a))=1z(c(a)) - y(o(a))
=2(0)+ [T B,(5)8s — y(0) — [T &, (s)As
=2(0) = y(0) + J““ [y (5) — 4 ()]s
<2(0)-y(0)
= p(0),

From assumption (H,), we have
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prM)=2"(t)-y" (1)
= f(t, B, (1)) + m(t)z(t) —m(t) 5, (1) — F(t, o (1)) — M) y(t) + m(t)ex, (1)

> —m(t)[ e, (t) — B, (1] + mO[z(t) — y (O + m(t)[ex, (1) - B, (V)]
=m()[z(t) - y(©)]
=m(t) p(t)

By lemma 3.1, one can get p(t) <0,teJ, then z(t) < y(t),t € J.It proves that (3.7) holds. Now we need to
show that vy, zare lower and upper solutions of (1.1), respectively. Using again assumption (H,), we have

Y4 (1) =  (t oy () + MOLY() - o (O] - (& y (D) + (¢, Y1)
<m(O)lety (1) — YOI + MOLY() — (@] + (¢, Y1)
= (6 y()
2(1) = (&, By (1)) + mOL2(t) ~ B, (O] - T (&, 20) + T (¢, 2(1)
> -mO[2(t) - £, ]+ MO[(O) - 6, (O] + F (¢, 2(1)
= f(t,2(1)
y©) + [7“ y(e)As < y(0) + [T a,(s)as
=y(o(@)),
20)+ ;] 2)as2 2(0) + [V By (s)as
=2(o(a)).
It shows that y, z are lower and upper solutions of (1.1), respectively.

Theorem 3.5: Suppose that (H,) — (H:) hold. Then there exist monotone sequences {«,, S, }such that
a, > a,p, = p,tedas n— coand this convergence is uniformly and monotonically on J. Moreover,

a, 3 are maximal and minimal solutions of (1.1) in [3,,a,]={ueC'(J,R): 3, <u<a,}.

Proof: Consider

U () =M, (1) = f (L a, (1) —m)e, (1),te I,
1 (0)+ [7@ @, ()88 = @, , (o)),

Boa® ~ M, (1) = F(t. 5, 1) - M, ).t eI,

BraO)+ 7V B(8)s = B, (c(a)), (3.8)

forn=0,1,2,.... Lemma 3.4, shows f,(t) < S, (t) < a,(t) < ¢,(t),t € J and «,, S, are lower and upper

solutions of (1.1), respectively. Assume that
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LML .M (). <o) <a,(t)tedforsome k >1and let «,, S, be lower and
upper solutions of (1.1), respectively. Then using again lemma 3.4, we get

L) <p.. )<, {)<q()ted,and a,(t), S, (t)are lower and upper solutions of (1.1),
respectively. By induction, we have

L)) <8, <a,t)<.. <o) <ay(t)ted foralln.

Hence S, (t) = A(t), a,(t) = a(t),t € J if n — . Indeed, taking the limit n — oo on both sides of (3.8),
we know that o and g are solutions of (1.1). Next, we are going to show that «, # are maximal and
minimal solutions of (1.1) in [f,,«,]. To do it, we need to show that if w(t) is any solution of (1.1) such

that £, (t) < w(t) < a,(t),t € J,then S5, (t) < S(t) < w(t) < a(t) < o, (t),t € J. Assume that for some Kk,
B (@) <w(t) < e (1), t e J.Let p(t) = B, (t) —w(t), a(t) = w(t) — ., (t). Then

p(0(@)) = B (c(a) ~ W(o (@)
= Ben @)+ [T ()85 ~W(0) — [TV w(s)As
= Ben(©) = w(O) + [T, (5) - W(s)]As
< 1(0) ~W(0)
= p(0),

q(o(a)) = w(o(a)) - ., (c(2))

o(a) o(a)
=w(0)+ [ w(s)As—a,;(0)— [a,(s)As

0

o(a)

=wW(0)— ., (0) + [[W(s)— e, (a)As

<W(0) - ., (0)
= q(0).
From assumption (H,), we have
Pt () = Bea(®) —wWh ()
= f(t, 8. (1) - f (&, W) + MO B, . (1) - B )]
> -m@B[W() - B O1+ MO By, () = B (V)]
= MO B () ~ WD)

=m(t) p(t)
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g% (1) =w* (1) - o (1)
= f(tw(D) - f(t o, (1)) - MmO, (1) — o, (1]
> -m(O)[a, () —w(t)] -m(OL &, (1) — o, (V)]
= mO[W(t) — @, (V)]
=m(t)q(t),t e J.

By lemma 3.1, we can obtain p(t) <0,q(t) <0,t € J, this shows g, ,(t) <w(t) <, ., (t),t € J. It proves,
by induction, that g, (t) < w(t) < «, (t),t € J for all n. Taking the limit n — oo, we have
Lo () < A1) Sw(t) < a(t) <, (t),t e J,so the assertion of Theorem 3.5 is true.
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