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1. INTRODUCTION 

The study of dynamic equations on time scales, which has been created in order to unify the study of 

differential and difference equations, is an area of mathematics that has recently received a lot of 

attention; moreover, many results on this issue have been well documented in the monographs [2,3,15]. 

The concept is particularly useful in modeling stop-start processes where continuous and discrete time 

may be present at different stages. Let T  be a time scale (any non empty closed subset of the real 

numbers). Without loss of generality we assume that 0, a T  and denote J  = [0, )(a ] T  being a 

closed interval. In this paper, we consider the following first order dynamic equation on time scales 
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where ].,[ RRJCf  The monotone iterative technique is a powerful method used to approximate 

solutions of several problems [10,13,14]. The purpose of this paper is to show that it can be applied 

successfully to dynamical equations with integral boundary conditions on time scales . This technique 

combined with the method of lower and upper solutions play an important roles in constructing 

monotone sequences with converge to the solutions of our problem. In presence of a lower solution 

and an upper solution   with reversed ordering condition   , we prove that under suitable 
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conditions equation (1.1) has the maximal and minimal solutions between the lower solution and upper 

solution. 

2. PRELIMINARY RESULTS 

Definition 2.1: The mappings   and  ,: RT  where T  is any closed subset of reals, are defined as 

}:inf{)( tsTst   and }.:sup{)( tsTst   

Definition 2.2: A non-maximal element t in T  is called right dense if tt )( ; right scattered if 

;)( tt   left dense if tt )( and left scattered if .)( tt   

Definition 2.3: If T  has a left scattered maximum m, then },{mTT k   otherwise, .TT k  kT is called 

the degenerate set. 

Definition 2.4: The function  kT* R defined by )),(()(* ttt   for t  T is called graininess. 

If t  is right dense,  then 0*  and if t  is right scattered, then .)(* tt    

Definition 2.5: A mapping g : T R  is called rd-continuous if  

a. It is continuous in each right dense or maximal t T ; 

b. Left side limit g(  ) exists in each left dense t . 

Remark 2.6: If (b) is replaced by g being continuous at each left dense point, then g is said to be a 

continuous function on .T  

We define ],[ RJC  = {u (t) is continuous on J }, and ],[1 RJC ={       is continuous on J }. 

Definition 2.7: Let f: kT R  and if t  is right scattered, then the Delta derivative )(tf 
of )(tf  is 

defined as 

                                                   
tt

tftf
tf
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. 

Definition 2.8: (Schauder Fixed Point Theorem) If E is a closed, bounded and convex subset of a 

Banach space B and :T  E E is completely continuous, then T has a fixed point. 

Definition 2.9: A function P : T R  is said to be regressive if 0)()(1  tPt  for all t  in .kT  The set 

of all regressive and rd- continuous functions will be denoted in this paper by  

R( RT , ). For two functions p , q   R( ,T R ) define a plus   and a minus  by 

),()()()()())()(( tqtpttqtptqtp   

 ( p (t))(t) =  
    

          
 . 

Definition 2.10: If p ,R  then the exponential function is defined as  
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   where Log is principal logarithmic function. 
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When T ,R  then 
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tt
tte


  . 

Definition 2.11: If p ,R  then the first order linear dynamic equation 

)()()( tytpty                                           (2.1) 

is called regressive. 

Theorem 2.12: If p ,R and for fixed ,0 Tt   ),( 0tte p is a solution of the initial value problem (2.1) 

satisfying the initial condition 1)( 0 ty on .T  

Remark 2.13: If 0)( tp  for 0tt  , clearly 1)()(1  tpt . Therefore 0))(()( tpt  and .1),( 0 tte p  

Lemma 2.14: If qp, R(T , R ), then 

i. 1),(0 ste  and 1),( tte p ; 

ii. ),())()(1()),(( stetptste pp   ; 

iii. 
),(

1
),(

tse
ste

p

p         ; 

iv. ),(),(),( stesrerte ppp  ; 

v. ),(),(),( stesteste qpqp  . 

3. MAIN RESULTS 

Lemma 3.1: Assume that there exists a positive function )(tm continuous on J  and 

 

                                                                                              (3.1) 
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(i)                     

(ii)                                                       

In case (i), suppose that 0)( tv for all ,Jt  then Jttv  ,0)( by (3.2). This shows that )(tv is 

nondecreasing on ,J and so, )).(()0(,0)0),(())(())((,0)())(( )(1 avvaeavaxrvav m     

However, from (3.1), we have ))(())(()0()0( axaxxv                 )),(( av  this is a 

contradiction. Hence, 0)( tv for some .Jt  

                                                                         

       
                

          
 

            
              

     
                                          (3.3) 

Next, we consider again two possible cases. 

Case(a):                          
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This is a contradiction. 

 Case(b):                                    
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This is a contradiction. Combining case (i) and case (ii), we know that 

                                                

Lemma 3.2:   
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Thus, we have 
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Definition 3.3:                                                                     

                         

                                             
    

 
 

                                                                                
    

 
 

Let                               if           for t   . 

We introduce the following assumptions. 

),(,)( 1

001 RJCH   are lower and upper solutions of (1.1) respectively and )()( 00 tt    for ;Jt  

)( 2H f    RRJC ,(  ) ; 

)( 3H  there  exist positive,  rd-continuous function )(tm  such that 

)(),(),( 1212 xxmxtfxtf  if ;,0210 Jtxx    

)( 4H
                   

    
,1 where )}({max0 tmM Jt and ;1)}()({max0   ttmK Jt   

)( 5H
           

            
    

Lemma 3.4: Assume that )()( 51 HH   hold. If 

,),()())(,()()()( 00 Jtttmttftytmty    
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.),()()()( 00 Jtttytzt                                       (3.7) 

and zy, are lower and upper solutions of (1.1) respectively. 

Proof: From lemma 3.2, we know that there   exists unique solutions  for y and z. 

put thenzqyp ,, 00      

))(())(())(( 0 aayap    

                  )0(y    )0()( 00  ss
    

 
 ss )(0
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From lemma 3.1, we have Jttqtp  ,0)(,0)( and so .),()(),()( 00 Jttzttty     

Now let ),()()( tytztp  then 

))(())(())(( ayazap    
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From assumption )( 3H , we have 
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)()()( tytztp                                       

)()()()())(,()()()()())(,( 0000 ttmtytmttfttmtztmttf    

  
)]()()[()]()()[()]()()[( 0000 tttmtytztmtttm    

                  )]()()[( tytztm   

                  )()( tptm  

By lemma 3.1, one can get ,,0)( Jttp   then .),()( Jttytz  It proves that (3.7) holds. Now we need to 

show that zy, are lower and upper solutions of (1.1), respectively. Using again assumption )( 3H , we have 

))(,())(,()]()()[())(,()( 00 tytftytfttytmttfty       

           ))(,()]()()[()]()()[( 00 tytfttytmtyttm       

           ))(,( tytf   

))(,())(,()]()()[())(,()( 00 tztftztfttztmttftz       

           ))(,()]()()[()]()()[( 00 tztfttztmttztm       
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It shows that zy, are lower and upper solutions of (1.1), respectively.  

Theorem 3.5: Suppose that )()( 51 HH  hold. Then there exist monotone sequences },{ nn  such that 

Jtnn  ,,  as n and this convergence is uniformly and monotonically on .J  Moreover, 

 , are maximal and minimal solutions of (1.1) in }.:),({],[ 00

1

00   uRJCu  

Proof: Consider 

,),()())(,()()()( 11 Jtttmttfttmt nnnn  
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                                                              (3.8) 

for n = 0,1,2,…. Lemma 3.4, shows Jttttt  ),()()()( 0110  and 11 , are lower and upper 

solutions of (1.1), respectively. Assume that 
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Jttttttt kk  ),()(...)()(...)()( 0110  for some 1k and let kk  , be lower and 

upper solutions of (1.1), respectively. Then using again lemma 3.4, we get  

,),()()()( 11 Jttttt kkkk    and )(),( 11 tt kk   are lower and upper solutions of (1.1), 

respectively. By induction, we have 

Jttttttt nn  ),()(...)()(...)()( 0110   for all n. 

Hence Jttttt nn  ),()(),()(  if .n Indeed, taking the limit n  on both sides of (3.8), 

we know that  and   are solutions of (1.1). Next, we are going to show that  ,  are maximal and 

minimal solutions of (1.1) in ],[ 00  . To do it, we need to show that if )(tw is any solution of (1.1) such 

that ,),()()( 00 Jtttwt   then .),()()()()( 00 Jttttwtt   Assume that for some ,k

.),()()( Jtttwt kk   Let ).()()(),()()( 11 ttwtqtwttp kk    Then 
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From assumption ),( 3H we have  
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)()()( 1 ttwtq k





    

           )]()()[())(,())(,( 1 tttmttftwtf kkk     

          )[()]()()[( tmtwttm k   )]()(1 tt kk    

          )]()()[( 1 ttwtm k   

         .),()( Jttqtm   

By lemma 3.1, we can obtain ,,0)(,0)( Jttqtp  this shows .),()()( 11 Jtttwt kk    It proves, 

by induction, that Jtttwt nn  ),()()(  for all n . Taking the limit ,n we have 

,),()()()()( 00 Jttttwtt   so the assertion of Theorem 3.5 is true. 
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