# International Journal of Mathematics and Computer Research 

ISSN: 2320-7167
Volume 12 Issue 04 April 2024, Page no. - 4145-4149
Index Copernicus ICV: 57.55, Impact Factor: 8.316
DOI: 10.47191/ijmcr/v12i4.05

# Characterization of $P S U(3, q)$ by its order and one special conjugacy class size 

Soleyman Askary<br>Imam Ali University

## ARTICLE INFO

Published Online:
19 April 2024


#### Abstract

Suppose that $G$ be a finite group, and let $N(G)$ be the set of conjugacy class sizes of $G$. By Thompson's conjecture, if $H$ is a finite non abelian simple group, $G$ is a finite group with a trivial center, and $N(G)=N(H)$, then $H$ and $G$ are isomorphic. Chen et al. contributed interestingly to Thompsons conjecture under a weak condition. In this article, we investigate validity of Thompsons conjecture under a weak condition for the projective special unitary groups. This work implies that Thompsons conjecture holds for the $\operatorname{PSU}(3$, $q$ ), where $q$ is prime power.


2020 Mathematics Subject Classification: 20D08, $20 D 60$.

KEYWORDS: Conjugacy class size, Thompson's conjecture

## INTRODUCTION

All groups considered in this paper are finite, and simple groups are non abelian. For convenience, we use $g^{G}$ and $\left|g^{G}\right|$ to denote the conjugacy class of $G$ containing $g$ and the size of $g^{G}$, respectively. Denote by $N(G)=\left\{\left|g^{G}\right|: g \in G\right\}$. Suppose that $\pi(G)$ denote the set of primes dividing the order of $G$. For a group $G$, we construct the prime graph of $G$ which is denoted by $\Gamma(G)$ as follows: the vertex set is $\pi(G)$ and two distinct primes $p$ and $q$ are joined by an edge if and only if $G$ contains an element of order $p q$. Let $t(G)$ be the number of connected components of $\Gamma(G)$ and let $\pi_{1}, \pi_{2}, \ldots, \pi_{t(G)}$ be the connected components of $\Gamma(G)$. If $2 \in \pi(G)$, then we always suppose that $2 \in \pi_{1}(G)$. $|G|$ can be expressedas a product of co-prime positive integers $O C_{i}, i=1,2, \ldots, t(G)$, where $\pi\left(O C_{i}\right)=\pi_{i}$. These $O C_{i}$ 's are called the order components of $G$ and the set of order components of $G$ will be denoted by $O C(G)$. Also wecall $O C_{2}, \ldots, O C_{t(G)}$ the odd order
components of $G$. Let $n$ be a positive integer and $p$ be a prime number. Then $|n|_{p}$ denotes the $p$-part of $n$.

In 1987, John Thompson posted the following conjecture concerning $N(G)$.

Thompson's conjecture (See [16], Question 12.38). Let $G$ be a group with trivial central. If $H$ is a simple group satisfying $N(G)=N(H)$, then $G \cong H$. In [8], [9], Thompson's conjecture is verified for a few finite simple groups. In [11], Chen contributed to Thompson's conjecture under a week condition. The only used order and one or two special conjugacy class sizes of simple groups and characterized successfully sporadic simple groups, $A_{10}, \operatorname{PSL}(4,4), \operatorname{PSL}(2, p), \operatorname{PSL}(n, 2)$, ${ }^{2} D_{n}(2),{ }^{2} D_{n+1}(2), C_{n}(2)$, alternating group of degree $p, p$ $+1, p+2$ and symmetric group of degree $p$, where $p$ is prime number.
In this paper, we are going to characterize the projective special unitary group $\operatorname{PSU}(3, q)$ by its order and one special conjugacy class length, where $q>5$ is a prime power.
According to the classification theorem of finite simple groups and [12], [15], [19], we can list the order components of finite simple groups with disconnected prime graphs as in Tables 1-4 in [9]. All further
unexplainednotation is standard and we refer to [12], for example.

## 1. First section

Definition 1. A Frobenius group is a transitive permutation group in which the stabilizer of any two points is trivial.
Definition 2. A group G is a 2-Frobenius group if there exists a normal series $1 \unlhd \mathrm{H} \unlhd \mathrm{K} \unlhd \mathrm{G}$ such that K and $\mathrm{G} / \mathrm{H}$ are Frobenius groups with kernels $H$ and $K / H$, respectively.
Lemma 1. [7] Let G be a Frobenius group of even order with kernel $K$ and complement $H$. Then $\mathrm{t}(\mathrm{G})=2$, the prime graph components of G are $\pi(\mathrm{H})$ and $\pi(\mathrm{K})$ and the following assertions hold:
(1) $K$ is nilpotent;
(2) $|\mathrm{K}| \equiv 1(\bmod |\mathrm{H}|)$.

Lemma 2. [7] Let $G$ be a 2-Frobenius group, i.e., $G$ is a finite group andhas a normal series $1 \unlhd \mathrm{H} \unlhd \mathrm{K} \unlhd \mathrm{G}$ such that K and $\mathrm{G} / \mathrm{H}$ are Frobenius groups with kernels $H$ and $K / H$, respectively. Then:
(a) $\mathrm{t}(\mathrm{G})=2, \pi_{1}=\pi(\mathrm{G} / \mathrm{K}) \cup \pi(\mathrm{H})$ and $\pi_{2}=\pi(\mathrm{K} / \mathrm{H})$;
(b) $G / K$ and $K / H$ are cyclic, $|G / K|||K / H-1|$ and $G / K \leq \operatorname{Aut}(K / H)$.
Lemma 3. [19] If $G$ is a finite group such that $t(G)$ $\geq 2$, then $G$ hasone of the following structures:
(a) G is a Frobenius group or 2-Frobenius group;

G has a normal series $1 \unlhd \mathrm{H} \unlhd \mathrm{K} \unlhd \mathrm{G}$ such that $\pi(\mathrm{H}) \cup$ $\pi(\mathrm{G} / \mathrm{K}) \subseteq \pi_{1}$ and $\mathrm{K} / \mathrm{H}$ is a nonabelian simple group. In particular, H is nilpotent, $\mathrm{G} / \mathrm{K} \lesssim \operatorname{Out}(\mathrm{K} / \mathrm{H})$ and the odd order components of G are the odd order components of $K / H$.
Lemma 4. [17] If $n \geq 6$ is a natural number, then there are at least $\mathrm{s}(\mathrm{n})$
prime numbers $p_{i}$ such that $(n+1) / 2<p_{i}<n$. Here
$\mathrm{s}(\mathrm{n})=1$, for $6 \leq \mathrm{n} \leq 13$;
$\mathrm{s}(\mathrm{n})=2$, for $14 \leq \mathrm{n} \leq 17$;
$\mathrm{s}(\mathrm{n})=3$, for $18 \leq \mathrm{n} \leq 37$;
$s(n)=4$, for $38 \leq n \leq 41$;
$\mathrm{s}(\mathrm{n})=5$, for $42 \leq \mathrm{n} \leq 47$;
$\mathrm{s}(\mathrm{n})=6$, for $\mathrm{n} \geq 48$.
Lemma 5. [14] ] Let $\mathrm{M}=\operatorname{PSU}(3, \mathrm{q})$, where $\mathrm{q}>5$ and $O C_{2}$ $=\frac{q^{2}-q+1}{d}$ with $d=(3, q+1)$.
(i) If $\mathrm{p} \in \pi_{1}$ (M) and $p^{\alpha}| | \mathrm{M} \mid$, then $p^{\alpha}-1$ not congruent to 0 modulo $O C_{2}$.
(ii) If $\mathrm{p} \in \pi_{1}(\mathrm{M}), p^{\alpha}| | \mathrm{M} \mid$, then $p^{\alpha}+1 \equiv 0\left(\bmod \left(O C_{2}\right)\right)$ if and only if $p^{\alpha}=q^{3}$ or $\mathrm{q}=7$ and $p^{\alpha}=2^{7}$, for every positive integer $\alpha$.
(iii) If $\mathrm{d}=3$ and $\left(O C_{2}-1\right)||\mathrm{M}|$, then $\mathrm{q}=8$.

## 2. Second section

Main Theorem Let $G$ be a group and $q=p^{\alpha}$ is prime power. ThenG $\cong \operatorname{PSU}(3, q)$ if and only if $|\mathrm{G}|=\mid \mathrm{PSU}$ $(3, q) \mid$ and $G$ has one conjugacy class size $|\operatorname{PSU}(3, q)| / r$, where $\mathrm{r}=\frac{\mathrm{q}^{2}-\mathrm{q}+1}{(3, \mathrm{q}+1)}$ be a prime number.
Proof. By [13], $\operatorname{PSU}(3, q)$ has one conjugacy class size $|G U(3, q)| / q^{3}+1$.Since the necessity of the theorem is easy, we only need to prove the sufficiency.
By hypothesis, there exists an element $g$ of order $r$ in $G$ such that
$C_{G}(g)=<g>$ and $C_{G}(g)$ is a Sylow $r$-subgroup of $G$. By The Sylow theorem, we have that $C_{G}(h)=<h$ $>$ for any element $h$ in $G$ of order $r$.So, $\{r\}$ is a prime graph component of $G$ and $t(G) \geq 2$. Therefore, $r$ is the maximal prime divisor of $|G|$ and an odd order component of $G$.
Now, if $\mathrm{t}(\mathrm{G})=2$, then $O C(G)=O C(P S U(3, q))$. By [14],
$G \cong P S U(3, q)$.
If $t(G) \geq 3$, then we will show that there is no such group. Since $t(G) \geq 3$, Lemma 1 , and 2 show that $G$ is neither a Frobenius group nor a 2- Frobenius group. By Lemma 3, $\boldsymbol{G}$ has normal series $1 \unlhd \mathrm{H} \unlhd \mathrm{K} \unlhd \mathrm{G}$ such that $K / H$ is a non abelian simple group and $r$ is an odd order component of $K / H$. Moreover, $t(K / H) \geq 3$.
According to the classification theorem of finite simple groups and the results in Tables 1-4 in [9], $K / H$ is an alternating group, sporadic groupor simple group of Lie type, which consider in the following.

Step 1. $K / H$ is not an sporadic simple group.
Proof. Suppose that $K / H$ is an sporadic simple group. Since $q>5$,
$r \geq 19$ and hence
$r \in\{19,23,29,31,37,41,43,47,59,67,71\}$.
Now, if $r=19$ and $d=3$, then $q=8,|\operatorname{PSU}(3,8)|=$ $2^{9} .3^{4} .7 .19$ and $K / H \in\left\{J_{1}, J_{3}, O n, T H, B N\right\}$, so $5 \mid$ $|K / H|$, which is a contradiction. If $d=1$, then $q(q-1)=$ 18 , which is impossible. By the same method, we can consider the other possibilities for $r$.
Step 2. $K / H$ can not be an alternating group $\mathrm{A}_{m}$, where $m \geq 5$.
Proof. If $K / H=\mathrm{A}_{m}$, then since $r \in \pi(K / H), m$ $\geq r$. Also, since $q>5$ is a prime power, $r \geq 19$. Thus by Lemma 4 , there exists a prime number $s \in \pi\left(A_{m}\right)$ such that $(r+1) / 2<s<r$. Also, since $|K / H|||G|, s|$ $r . q^{3}(q+1)^{2}(q-1)$, which is impossible.
Step 3. $K / H$ is not a simple group of Lie type.
Proof. Assume that $K / H$ is isomorphic to one of the finite simple groups:

Case 1. Let $t(K / H)=3$. Then $r \in\left\{\mathrm{OC}_{2}(\mathrm{~K} / \mathrm{H})\right.$, $\left.\mathrm{OC}_{3}(\mathrm{~K} / \mathrm{H})\right\}$ :
1.1. If $K / H \cong A_{1}\left(q^{\prime}\right)$, where $4 \mid \mathrm{q}^{\prime}$, then the odd order components of $K / H$ are $q^{\prime}+1$ and $q^{\prime}-1$. If $q^{\prime}+1=r$, then $q^{\prime}=r-1=\frac{q^{2}-q+1}{d}-1 \quad$ and hence, either $q^{\prime}=q(q-1) \quad$ or $\quad q^{\prime}=\frac{(q+1)(q-2)}{3}, \quad$ which are impossible. If $q^{\prime}-1=r$, then by Lemma 5 , we get a contradiction.
1.2. If $K / H \cong A_{1}\left(q^{\prime}\right)$, where $4 \mid q^{\prime}+1$, then $q^{\prime}=r$ or $\frac{q^{\prime}-1}{2}=r$. Now, if $\frac{q^{\prime}-1}{2}=r$, then $q^{\prime}-1 \equiv 0(\bmod r)$, which is a contradiction by Lemma 5 (i). If $q^{\prime}=r$ and $d=1$, then $q^{\prime}=q^{2}-q+1$ and hence,
$|K / H|=q\left(q^{2}-q+1\right)\left(q^{2}-q+2\right)(q-1) / 2$.
Since $\left.|\mathrm{K} / \mathrm{H}|\left||\mathrm{G}|\right.$ and $\frac{q^{2}-q+2}{2}$ not divides $| \mathrm{G} \right\rvert\,$, we get a contradiction. If $d=3$, then $(r-1) \| G \mid$ and hence, by Lemma 5(iii), we must have $\mathrm{q}=8$ and $\mathrm{r}=19$. Hence $\mathrm{q}^{\prime}=19$. But $5||\operatorname{PSL}(2,19)|$ and 5 not divides $| \operatorname{PSU}(3,8) \mid$, which is a contradiction.
1.3. If $K / H \cong A_{1}\left(q^{\prime}\right)$, where $4 \mid q^{\prime}-1$, then $q^{\prime}=r$ or $\frac{q^{\prime}+1}{2}=r$. Since the possibility $q^{\prime}=r$ is discussed in former case, we suppose that $\frac{q^{\prime}+1}{2}=r$. Then $q^{\prime}+1 \equiv 0(\bmod r)$, By Lemma 5(ii), we can conclude that $q=7$ or $q^{\prime}=q^{3}$. Now, if $q=7$, then $q^{\prime}=2^{7}$. Since 4 not divides $2^{7}-1$, we get a contradiction. If $q^{\prime}=q^{3}$, then $|K / H|=\left|P S L\left(2, q^{\prime}\right)\right|=q^{3}\left(q^{3}-1\right)\left(q^{3}+1\right) / 2$.
On the other hand, $|\mathrm{K} / \mathrm{H}|\left||\mathrm{G}|\right.$, thus $q^{2}+q+1$ must be divide $(q+1)^{2}$, which is a contradiction.
1.4. If $K / H \cong \cong_{2}^{2}\left(q^{\prime}\right)$ where $q^{\prime}=3^{2 t+1}>3$, then $q^{\prime}-\sqrt{3 q^{\prime}}+1=\frac{q^{2}-q+1}{d}$ or $q^{\prime}+\sqrt{3 q^{\prime}}+1=\frac{q^{2}-q+1}{d}$ . Let $(3, q)=1$. Assume that $q^{\prime}-\sqrt{3 q^{\prime}}+1=\frac{q^{2}-q+1}{d}$ and $d=1$, thus $3^{t+1}\left(3^{t}+1\right)=q(q-1)$. Now, since $(3, q)=1,3$ dos not divide $q$ and hence $|q-1|_{3}=3^{t+1}$.

Thus $|G|_{3}=|q-1|_{3}=3^{t+1}$. On the other hand, $3^{3(2 t+1)}=|K / H|_{3} \leq|G|_{3}=3^{t+1}$, which is a contradiction. If $d=3$, then $q^{\prime}+\sqrt{3 q^{\prime}}+1=\frac{q^{2}-q+1}{3}$ and hence, $3^{t+2}\left(3^{t}+1\right)=(q+1)(q-2)$. Thus either $3^{t+1} \mid(q+1)$ and $\quad(q-2) \mid 3\left(3^{t}+1\right)$ or $\quad 3^{t+1} \mid(q-2)$ and $(q+1) \mid 3\left(3^{t}+1\right)$. This forces $(q+1)=3^{t+1}$ and $(q-2)=3\left(3^{t}+1\right)$. This guarantees that $|G|_{3}=3^{2 t+2}$. Also, $\quad 3^{3(2 t+1)}=|K / H|_{3} \leq|G|_{3}=3^{2 t+2}$, which is a contradiction. If $q^{\prime}-\sqrt{3 q^{\prime}}+1=\frac{q^{2}-q+1}{d}$, then similar to the above we get a contradiction. Assume that $(3, q) \neq 1$. So $d=1$ and $q^{\prime} \pm \sqrt{3 q^{\prime}}+1=q^{2}+q+1$, this forces $q=3^{t+1}$ and $q-1=3^{t} \pm 1$, which is a contradiction.
1.5. If $K / H \cong^{2} D_{s}(3)$, where $s=2^{t}+1 \geq 5$, then $\frac{3^{s}+1}{4}=\frac{q^{2}-q+1}{d}$ or $\quad \frac{3^{s-1}+1}{2}=\frac{q^{2}-q+1}{d}$. If $\frac{3^{s}+1}{4}=r$, then
$3^{s(s-1)}\left(3^{s-1}-1\right)\left(3^{s-1}+1\right) \prod_{i=1}^{s-2}\left(3^{2 i}-1\right) \mid q^{3}(q+1)^{2}(q-1)$
On the other hand, $r^{6}=\frac{\left(3^{s}+1\right)^{6}}{4096} \leq 3^{6 s}$ and $3^{2 s(s-1)-s}<3^{s(s-1)}\left(3^{s-1}-1\right)\left(3^{s-1}+1\right) \prod_{i=1}^{s-2}\left(3^{2 i}-1\right) \mid q^{3}(q+1)^{2}(q-$ , which implies that $2 s(s-1)<7 s$ and hence, $s<5$, which is a contradiction. If $\frac{3^{s-1}+1}{2}=\frac{q^{2}-q+1}{d}$, then similar to the above, we get a contradiction.
1.6. If $K / H \cong \cong^{2} D_{s+1}(2)$, where $s=2^{n}-1$ and $n \geq 2$, then $\quad 2^{s}+1=\frac{q^{2}-q+1}{d}$ or $\quad 2^{s+1}+1=\frac{q^{2}-q+1}{d}$. If $2^{s}+1=r$, then $2^{s}=q(q-1)$ or $2^{s}=\frac{(q+1)(q-2)}{3}$, which is impossible. The same reasoning rules out the case when $2^{s+1}+1=r$.
1.7. If $K / H \cong F_{4}\left(q^{\prime}\right)$, where $q^{\prime}$ is even, then
$q^{\prime 4}+1=\frac{q^{2}-q+1}{d}$ or $q^{14}-q^{\prime 2}+1=\frac{q^{2}-q+1}{d}$.
If $q^{4}+1=r$, then $q^{24}\left(q^{\prime 6}-1\right)^{2}\left(q^{4}-1\right)^{2}\left(q^{4}-q^{2}+\right.$ 1) $\mid q^{3}(q+1)^{2}(q-1)$. Also, $r^{6}=\left(q^{4}+1\right)^{6}<\left(q^{5}\right)^{6}=$ $q^{30}$ and $q^{24}\left(q^{16}-1\right)^{2}\left(q^{4}-1\right)^{2}\left(q^{4}-q^{2}+1\right) \leq q^{3}(q+$ $1)^{2}(q-1)<r^{6}<q^{30}$, whichis a contradiction. If $q^{14}-q^{12}+1=r$, then similar to the above, we get a contradiction. By the same method, we can prove that $K / H$ cannot be a simple group $F_{4}\left(q^{\prime}\right)$, where $q^{\prime}$ is odd.
1.8. If $K / H \cong E_{7}(2)$, then $r \in\{73,127\}$. Therefore, $r=73$ and $q=9$.
So $|P S U(3,9)|=2^{10} .3^{9} \cdot 5^{2} .73$. On the other hand, $13 \mid$ $\left|E_{7}(2)\right|$, which isa contradiction. By the same method, we can prove that $K / H$ cannot be a simple group $E_{7}(3)$.
1.9. If $K / H \cong A_{2}(2), A_{2}(4)$ or ${ }^{2} A_{5}(2)$, then since $q>5$ is a prime power,
we get a contradiction.
1.10. If $K / H \cong^{2} F_{4}\left(q^{\prime}\right)$, where $q^{\prime}=2^{2 t+1} \geq 2$, then $r=q^{2} \pm 2 q^{3}+$
$q^{\prime} \pm \quad 2 q^{\prime}+1$. In both cases, we can see at once that $|K / H|>|G|$, which
is a contradiction.
Case 2. Let $t(K / H) \in\{4,5\}$. Then
$r \in\left\{\mathrm{OC}_{2}(\mathrm{~K} / \mathrm{H}), \quad \mathrm{OC}_{3}(\mathrm{~K} / \mathrm{H}), \quad \mathrm{OC}_{4}(\mathrm{~K} / \mathrm{H})\right.$, $\left.\mathrm{OC}_{5}(\mathrm{~K} / \mathrm{H})\right\}$,
as follows:
2.1. If $K / H \cong \cong_{2}^{2}\left(q^{\prime}\right)$, where $q^{\prime}=2^{2 t+1}$ and $t \geq 1$, then $r \in\left\{q^{\prime}-1, q^{\prime} \pm \sqrt{2 q^{\prime}}+1\right\}$. If $q^{\prime}-1=r$, then by Lemma 5(i), we get a contradiction. Assume that $q^{\prime}-\sqrt{2 q^{\prime}}+1=r$ - Then $q^{12}-1 \equiv 0(\bmod r)$. Therefore, $q^{12}=2^{7}$ or $q^{12}=q^{3}$. Now, since $2^{7}$ is not a square, we get a contradiction. If $q^{12}=q^{3}$, then $q$ is even. Let $d=1$. Thus $2^{2 t+1}-2^{t+1}=q(q-1)$ and since $(q, q-1)=1$, we conclude that $q=2^{t+1}$ and $r<q^{19}$, which is a contradiction. . If $d=3$ and we assume that $q=2^{m}$, then $2\left(3.2^{2 t}-3.2^{t}+1\right)=2^{m}\left(2^{m}-1\right)$, which implies that $m=1$. But $q>5$ and hence, we get a contradiction. For $q^{\prime}+2 q^{\prime}+1=r$, similar to the above we get a contradiction.
2.2. If $K / H \cong A_{2}(4)$, then $\frac{q^{2}-q+1}{d} \in\{5,7,9\}$. Since $q>5$ is a prime power, we get a contradiction.
2.3. If $K / H \cong^{2} E_{6}(2)$, then $\frac{q^{2}-q+1}{d} \in\{13,17,19\}$. Let $\frac{q^{2}-q+1}{d}=19$ and $d=3$, then $q(q-1)=56, q=$ 8 and $|P S U(3,8)|=2^{9} .3^{4} .7 .19$. On the other hand $13 \|^{2} E_{6}(2) \mid$, which is a contradiction. For $r \in\{13,17\}$, similar to the above we get a contradiction.
2.4. If $K / H \cong E_{8}\left(q^{\prime}\right)$, then
$r \in\left\{q^{18}-q^{17}+q^{15}-q^{14}+q^{13}-q^{\prime}+1, q^{18}+q^{17}-q^{15}-q^{14}-q^{13}+\right.$ $\left.q^{18}-q^{16}+q^{14}-q^{12}+1, q^{18}-q^{14}+1\right\}$.

If $q^{18}-q^{17}+q^{15}-q^{14}+q^{13}-q^{\prime}+1=r$, then $r<q^{19}$. On the other hand, $r^{6}<q^{154}$ and $|G|<r^{6}$. Since $q^{120}| | K / H \mid$ and $|K / H|||G|$, we get a contradiction. For other cases, similarly we get a contradiction.

## 3. Third section

Corollary 1. Let $q=p^{\alpha}$ be a prime power. Then Thompson's conjecture holds for the simple groups $\operatorname{PSU}(3, q)$, where $\frac{q^{2}-q+1}{(3, q+1)}$ is prime number.

Proof. Let $G$ be a group with trivial center and $N(G)=N(\operatorname{PSU}(3, q))$. Then it is proved in [6], that $|G|=|\operatorname{PSU}(3, q)|$. Hence, the corollary follows from the main theorem.

## REFERENCES

1. N. Ahanjideh, Thompson's conjecture for some finite simple groups, J. Algebra 344 (2011), 205-228.
2. A. K. Asboei, R. Mohammadyari, M. Rahimi New characterization of some linear group, Int. J. Industrial Mathematics, 8 (2), (2016), 165-170.
3. A. K. Asboei, R. Mohammadyari, Recognition alternating groups by their order and one conjugacy class length, J. Algebra. Appl, 15 (2), (2016), 1650021.
4. A. K. Asboei, R. Mohammadyari, Characterization of the alternating groups by their order and one conjugacy class length, Czechoslovak Math. J, 66 (141), (2016),63-70.
"Characterization of $\operatorname{PSU}(3, q)$ by its order andone special conjugacy class size"
5. A. K. Asboei, R. Mohammadyari, M. R. Darafsheh, The influence of order and conjugacy class length on the structure of finite groups, Hokkaido Math. J, 47 , (2018), 25-32.
6. G. Y. Chen, On Thompson's conjecture, J. Algebra, 185(1) (1996), 184-193.
7. G. Y. Chen, On Frobenius and 2-Frobenius group, J. Southwest China Normal Univ, 20(5) (1995), 485-487.
8. G. Y. Chen, Futher refelections on Thompson's conjecture, J. Algebra, 218(1) (1999), 276-285.
9. G. Y. Chen, A new characterization of sporadic simple groups, Algebra Colloq 3(1) (1996), 49-58.
10. Y. Chen, G. Y. Chen, Recognizing $\operatorname{PSL}(2, p)$ by its order and one special conjugacy class size, J. Inequal. Apple, (2012), 310.
11. Y. H. Chen, G. Y. Chen, Reconization of $A l t_{10}$ and $\operatorname{PSL}(4,4)$ by two specialconjugacy class size, , Ital. J. Pure Appl. Math,29, (2012), 378-395.
12. J. H. Conway, R. T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas offinite groups, Clarendon Press, New York, 1985.
13. M. Foroudi ghasemabadi, N. Ahanjideh,

Characterization of the simple groups $D_{n}(3)$ by prime graph and spectrum, Iran. J. Math. Sci. Inform, 7(1) (2012), 91-106.
14. A. Iranmanesh, B. Khosravi, and S. H. Alavi, A characterization of $\operatorname{PSU}(3, q)$ for $q>5$, Southeast Asian Bulletin of Mathematics, 26 (2002), 33-44.
15. N. Iiyory, H. Yamaki, Prime graph components of the simple groups of Lie type over the field of even characteristic, Acta Mathematica Sinica, English Series, 18(3)(2002), 463-472.
16. E. I. Khukhro, V. D. Mazarove, Unsolved Problems in Group Theory, The Kourovka Notebook, $17^{\text {th }}$ edition, Sobolev Institute of Mathematics, Novosibrisk, (2010).
17. A. S. Kondratev and V. D. Mazarove, Recognition of Alternating groups of prime degree from their element orders, Sib. Math. J, 41 (2) (2000), 294-302.
18. J. B. Li, Finite groups with special conjugacy class sizes of generalized permutable subgroups, (2012), (Chongqing: Southwest University).
19. J. S. Williams, Prime graph components of finite groups, J. Algebra, 69 (2) (1981), 487513.

