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This study analyzed the availability of a warm standby system that works with fault detection 

delay and general repair times. The time-to-detection delay is also considered as exponentially 

distributed. The detection state is used to detect the faults in the failed unit. The steady state 

availability of the system is obtained by using supplementary variable technique. Three types 

of repair time distributions are compared to find the best one. 

KEYWORDS: Availability; Repair time distributions; Warm standby; Detection delay; Supplementary variable technique 

 

1. INTRODUCTION

Availability has increased tremendously in accordance with 

the present day applications. It is used extensively in various 

field of engineering, such as production system, 

manufacturing system, parallel redundant system, 

multiprogramming system, and industrial system. The 

motivation of the system used in this study is from power 

plants, solar energy systems, steam turbine power plants as 

used in-house in distillery industries and other industries. The 

standby units are used to enhance the availability of systems. 

There are three types of standby units: cold standby, warm 

standby and hot standby. One of the ways increasing system 

availability is to allowed repair of primary units as well as 

standby units.  

A lot of work has been done in this context; Cox (1955) 

introduced supplementary variable technique. According to 

this technique, a non-Markovian process is made Markovian 

by the inclusion of supplementary variables. Gupta and Rao 

(1994) gave an explanation of steady state probabilities for 

different models. Trivedi (2002) explained detection delay for 

repairable systems. Wang and Pearn (2003) analyzed cost 

benefit of various systems with warm standbys. Wang and 

Chen (2009) compared steady state availability of three 

systems that worked with switching failures. El-Sherbeny 

(2012) discussed series systems with Erlang repair time 

distribution. Singh et al. (2013) obtained MTTF and 

availability of a system. They also analyzed cost benefits of 

that system. Levitin et al. (2014) introduced reliability of non-

Coherent warm standby system. Yu et al. (2014) optimized 

availability by dependency modeling. Ke and Liu (2014) 

expressed a system with reboot. Wang et al. (2014) obtained 

availability of M/G/1 model with imperfect coverage. 

Adlakha et al. (2017) considered reliability of a system which 

worked with two cold standby systems. This system used for 

communication. Kim (2018) worked on optimization of 

reliability of a system with component sequencing. 

 Ke et al. (2018) discussed a model with standbys. In this 

model unreliable repairman facility was also available. Wang 

et al. (2018) expressed a cold standby system with 

maintenance. Patowary et al. (2019) discussed redundancy 

modeling of hot standby system. Yen et al. (2020) compared 

availability of different systems with general repair time and 

detection delay. Lv (2021) examined a system with unreliable 

server. Tenekedjiev et al. (2021) evaluated reliability of warm 

standby system with switching. 

The purpose of this study is to achieve three objectives. The 

first one is to derive steady state availability of the system by 

exploiting the supplementary variable technique (remaining 

repair time treated as supplementary variable). Second one is 

to derive explicit expressions for steady state availability for 

three different repair time distributions: exponential (M), k-

stage Erlang, (EK) and deterministic (D), respectively. Third 

one is to perform numerical analysis in terms of availability 

(AV) for three different repair time distributions.  

2. 2. SYSTEM DESCRIPTION 

The system studied here is useful for many industries where 

availability of system plays an important role. Electricity 

distribution is one of them, to make electricity available 

without break; we consider a warm standby system with 
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detection delay and general repair times. The system worked 

under the statement that the times to failure and repair of units 

(primary and warm standby) are dispersed exponentially and 

generally, respectively. The primary and warm standby units 

are considered with failure rate λ and α (0 < α < λ < 1) 

respectively. A fault detecting method is used in the system to 

detect fault whenever warm standby or primary unit fails. If a 

unit fails, it is instantaneously inferred a detection delay. 

Detection delay is the time from detecting the fault to replace 

the failed unit to primary unit. Detection delay rate also has an 

exponential distribution with parameter δ. It is assumed that 

units can be repaired. We suppose that times to repair of failed 

units are random variables (i.i.d.) which having the 

distribution B(u) (u ≥ 0) with a probability density function 

b(u) (u ≥ 0)  and mean repair time b1. When a primary unit 

fails it is replaced immediately by a warm standby and failed 

unit will go to repair after fault detection as FCFS. 

As per state transition diagram, the initial state of the system 

is (3, 0) with one primary and two warm standby units. On the 

failing of primary unit, the system goes to state (2, 1) which is 

known as detection state. A fault will be detected in this state. 

After fault detection system goes from state (2, 1) to state (2, 

0) as working state or to state (1, 2). In state (2, 0) the failed 

unit is under repair, one unit is primary and another as warm 

standby. State (1, 2) is a detection state where one primary 

and one warm standby unit are failed and one unit as warm 

standby. Now from state (2, 0) on failure of a unit system goes 

to state (1, 1) known as detection state one failed unit and one 

as standby. From state (1, 2) system goes to state (1, 1) or 

system failure state (SF). After this from state (1, 1) system 

may go to state (1, 0) where two failed units are in repair and 

one as primary unit, no unit remains as warm standby or to 

system failure state (SF). At last from state (1, 0) system goes 

to system failure state (SF) after failing of one remaining 

primary unit. In the system, state (3, 0), (2, 0) and (1, 0) are 

working states and failure unit is being repaired. The state (2, 

1), (1, 2) and (1, 1) are known as detection states for fault 

detection and (SF) is a system failure state. 

3. NOTATIONS 

Following notations are used in the derivation. 

M (t): Number of working units, 

N (t): Number of detecting units, 

U (t): Lasting repair time for the units being repaired,  

δ: Detection delay rate, 

λ:  Failure rate of primary units in the system,  

α:  Failure rate of a warm standby units in the system, 

B (u): Repair time distribution function, 

b (u): Probability density function of repair time. 

Pm, n (t): The probability at time t, where m units are operating 

and n units are under detection respectively at time t ≥ 0, 

 sP*

n,m
: Laplace-Stieltjes transformation of Pm, n (t), 

  sP 1*

n,m
: First order derivative of Pm, n (t) with respect to s

4. STATE TRANSITION RATE DIAGRAM 

                 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 3.1 STATE TRANSITION DIAGRAM 
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5. System Equations: 

The differential equations of each state are given as 

following. 

        t,0PtP2tP 0,20,3
'

0,3                             … (1)                                                        

         (t)P2tPtP 3,01,2
'

1,2                     … (2) 

        

 t,uP)u(b

t,uPt,uPt,uP
ut

0,1

1,20,20,2




















             … (3)                                                                               

       (t)P2(t)P(t)PtP 2,1,021,1
'
1,1                … (4)                                                                                   

       (t)P(t)P2tP 1,22,1
'
2,1                          … (5)      

      

 t,uP)u(b

t,uPt,uPt,uP
ut

sf

1,10,10,1




















                     …

     

 t,uP

t,uPt,uPt,uP
ut

0,1

2,11,1sf




















                    … (7)                                                                                                                                                                                                                                                                                                                                                                                                  

We get the following steady state equations from differential 

difference equations. 

      0PP20 0,20,3                                     … (8)   

       3,01,2 P2P0                                 … (9) 

       

 0P)u(b

uPuPuP
u

0,1

1,20,20,2







                      … (10)                                                                                          

    2,1,021,1 P2PP0                           … (11)                

    1,22,1 PP20                                     … (12)                      

       0P)u(buPuPuP
u

sf1,10,10,1 



                … (13)                                                                                                                                                                                                                                                                                                                                                                                                 

        uPuPuPuP
u

0,12,11,1sf 



                … (14)           

In steady state, we define further more 

           1,21,2 PubuP   

           1,11,1 PubuP   

  &      2,12,1 PubuP   

Further, we describe the following LST expressions. 

     duubeudBeSB
0

su

0

su*


   

   duuPeSP m,n
0

su*
m,n 

    

   duP0PP
0

m,n
*

mn,mn, 


       

     0PSSPduuP
dt

d
e mn,

*
mn,m,n

0

su 
                                                               

It follows from Equations (8), (9) & (12). 

    0,30,2 P20P                                             … (15)                                                                                                         

 
  3,01,2 P

2
P




                                                 … (16)                                                                                                        

 
  1,22,1 P

2
P




                                                       … (17) 

We obtain the following value after putting Equation (16) 

into Equation (17). 

  
   0,32,1 P

2

2
P




                                    … (18)                

On taking the LST on both sides of Equation (10) and 

using     1,21,2 PubuP  we obtain,      

          

 0P

0PsBPsBsPS

0,2

0,1
*

1,2
**

0,2



                … (19)                                                                                                         

Setting S=λ+α And S=0 in Equation (19). We obtain, 

 
   

 




*

1,2
*

0,2
0,1

B

PB0P
0P                                 … (20) 

 
   

 




0P0PP
0PP

0,20,11,2*
0,20,2

                          … (21)                                                                          

After substituting Equations (15) & (16) into Equation (20), 

we get the following result. 

 
      

   
0,3*

*

0,1 P
B

B2
0P






                … (22)                                                          

  0,30,1 P0P                                                      … (23)                                                          

Where 

      
   




*

*

B

B2  

This implies from after putting Equations (15), (16) and (22) 

into Equation (21). 

     
   

0,3*

*

0,2 P
B

B12
P




                                  … (24) 

Substituting Equations (18) and (24) into Equation (11). We 

obtain, 

 
0,31,1 PP                                                            … (25) 

Where 
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         
     




*

*22

B2

B222
 

Again taking LST of Equation (13) on both sides and using 

    1,11,1 PubuP   

           0P0PsBPsBsPs 0,1sf
*

1,1
**

0,1                 … (26) 

Setting S=λ and S=0 in Equation (26). We obtain,  

 
   

 




*

1,1
*

0,1
sf

B

PB0P
0P                                       … (27)                   

Substituting Equations (23) and (25) into Equation (27). We 

get,                                 

 
  

  0,3*

*

sf P
B

B
0P




                                       … (28) 

And S=0 into Equation (26) 

  
   






0P0PP
0P

0,1sf1,1*
0,1

                                … (29) 

We get after substituting Equations (23), (25) and (28) into 

Equation (29). 

 
  

  0,3*

*
*
0,10,1 P

B

B1
0PP




                                    … (30)                    

After taking LST on both sides of Equation (14) and using 

    1,11,1 PubuP  &     2,12,1 PubuP  . We get, 

          sPPsBPsB0PssP *
0,12,1

*
1,1

*
sf

*
sf             … (31)                                                                                                                                                                                                    

We get the result on differentiating Equation (31) with 

respect to S and putting S=0.   

     2,111,11
1*
0,1

*
sf PbPb0P0P                          … (32)                                       

Where   0Bb 1*

1  , 

Now differentiating Equation (26) with respect to S and 

after this putting S=0 into obtained result 

  
   






0PbPb0P
0P

sf11,11
*
0,11*

0,1
                          … (33)           

Substituting the value of Equations (25), (28) and (30) into 

Equation (33). We obtain, 

    
  

 
0,3*2

*
11*

0,1 P
B

Bb1
0P




                              … (34) 

Applying Equations (18), (25) and (34) to Equation (32) 

yielded 

 
     0,3*

*
sfsf P

B2
0PP




                … (35)                                                                                                                       

Where 

       

        



*
1

2*

1
2*

1

B2bB

2bB1b2  

The normalizing condition is given below. We obtain 
0,3P  

with the help of this condition. 

1PPPPPPP sf0,11,12,10,21,20,3                  … (36)                                                                                                                                                                                                                                                                                                     

We can’t show this expression here because it is too ample. 

There are three detection states which are (2, 1), (1, 2) and 

(1, 1). These states are considered as system down states. 

Therefore we get the following steady state availability. 

0,10,20,3V PPPA                                                    … (37)                                                                                                                                                                                                                      

Now substituting Equations (24) and (30) into Equation 

(37). We obtain, 

    
   

  
  0,3*

*

*

*

V P
B

B1

B

B12
1A 

















                 … (38)                                                                                                          

6. Special cases:  

In this exploration, three different repair time distributions 

such as exponential (M), k-stage Erlang (
kE ), and 

deterministic (D) are investigated. Following are the explicit 

expressions for the repair time distributions as mentioned 

above.  

6.1 Exponential repair time distribution: 

This distribution contains the value of  /1b1
which is 

mean repair time. Where μ is repair rate of primary and 

standby units. We obtain the following expressions after 

taking the LST.  

  



*B                                                        … (39) 

 



*B                                                   … (40)                                                                 

From Equation (38), 

0,3
1

VM P
2

A 











                                   … (41) 

Where 
1  is obtained by substituting the value of                              

 



*B    

     
 




2
1

                   … (42) 

                                                                                                          

6.2 K-stage Erlang repair time distribution:  

This distribution consists of k stages that are independent 

and identical respectively, each stage with same 



“Availability Evaluation of Warm Standby System with Fault Detection Delay and General Repair Times” 

4135 Kanta1, IJMCR Volume 12 Issue 04 April 2024 

 

mean  k/1b1
. After taking the LST, we get the following 

results and we set the mean repair time  /1b1
. 

 
k

*

k

k
B 












                                                       … (43)                                                                           

 
k

*

k

k
B 












                                            … (44)                                                                                                                                                 

From equation (38), 
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Where 
2  is obtained by substituting the value of  
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6.3 Deterministic repair time distribution: 

The distribution function of the repair time has the following 

Laplace transformation. We set the mean repair 

time  /1b1
. 
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On substituting these values into equation (38), we obtain 
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Where 
3  is obtained by substituting the value of 
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7. COMPARISON OF AVAILABILITY 

Availability is compared on the basis of different repair time 

distributions. Three types of distribution are used for repair 

time as exponential, three-stage Erlang and deterministic. 

The values of different parameter are set as following. 

1000
1



days, 10000 days, 100000 days;   2000

1


   

days; 10
1



days; 

24

101



days  

  i.e. λ = 0.001, 0.0001, 0.00001; 0005.0 ; 1.0 ; 

4.2  

In the following three cases ,  and   are keep fixed. We 

see variation in λ.  

Case a: The value of   vary from 0.001 to 0.01. 

Case b: The value of  vary from 0.0001 to 0.001. 

Case c: The value of vary from 0.00001 to 0.0001. 

 Symbols used for different availability are as follows  

VMA  – Availability for exponential repair time distribution, 

VEA  – Availability for Erlang repair time distribution, 

VDA – Availability for deterministic repair time 

distribution. 

The comparisons of availability
VMA , VEA and  

VDA  using 

numerical results are given as following in Tables 7.1 – 7.3 

and fig.2 - fig.10.      

 

Table 7.1 Comparison of availability for case a 

 

 

 

 

 

          

λ α δ μ VMA  
VEA  

VDA  

0.001 0.0005 2.4 0.1 0.997532034 0.955308434 0.997530812 

0.002 0.0005 2.4 0.1 0.996316349 0.934160471 0.996310044 

0.003 0.0005 2.4 0.1 0.995121027 0.913780407 0.995103534 

0.004 0.0005 2.4 0.1 0.993951784 0.894144748 0.993915016 

0.005 0.0005 2.4 0.1 0.992814022 0.875229828 0.992748172 

0.006 0.0005 2.4 0.1 0.991712836 0.857011971 0.991606635 

0.007 0.0005 2.4 0.1 0.990653025 0.839467628 0.990493977 

0.008 0.0005 2.4 0.1 0.9896391 0.82257349 0.989413713 

0.009 0.0005 2.4 0.1 0.9886753 0.806306584 0.98836929 

0.01 0.0005 2.4 0.1 0.987765597 0.79064435 0.987364084 
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Table 7.2 Comparison of availability for case b 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

λ α δ μ VMA  
VEA  VDA  

0.0001 0.0005 2.4 0.1 0.998638574 0.975017283 0.998638577 

0.0002 0.0005 2.4 0.1 0.998515194 0.972795253 0.999407183 

0.0003 0.0005 2.4 0.1 0.998391907 0.970581316 0.998391815 

0.0004 0.0005 2.4 0.1 0.998268719 0.968375447 0.998268549 

0.0005 0.0005 2.4 0.1 0.998145637 0.996177626 0.998145366 

0.0006 0.0005 2.4 0.1 0.998022667 0.963987829 0.998022268 

0.0007 0.0005 2.4 0.1 0.997899815 0.961806034 0.99789926 

0.0008 0.0005 2.4 0.1 0.997777089 0.959632218 0.997776345 

0.0009 0.0005 2.4 0.1 0.997654492 0.957466359 0.997736764 

0.001 0.0005 2.4 0.1 0.997532034 0.955308434 0.997530812 

Fig. 2 Fig. 3 

Fig. 4 

Fig. 5 Fig. 6 Fig. 5 
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Table 7.3 Comparison of availability for case c 

 

 

 

 

 

 

                

 

 

 

 

 

   

 

                      
         

 

 
  

                                             

8. CONCLUSION 

In this study firstly, we obtain steady state availability of a 

warm standby system with fault detection delay and general 

repair times. The supplementary variable technique helps us 

very much to form a recursive method by which we able to 

get system availability. After this we derive expressions of 

availability for three types distribution of repair time as 

exponential, three-stage Erlang, and deterministic, 

respectively. We compare all three repair time distributions 

numerically, for this we consider three cases. In all cases 

three parameters ,  and   are keep fixed. We vary the 

value of λ from 0.001- 0.01in first case (table 7.1), from 

λ α δ μ VMA  
VEA  VDA  

0.00001 0.0005 2.4 0.1 0.998749691 0.977024046 0.998749714 

0.00002 0.0005 2.4 0.1 0.998737341 0.976800748 0.998737363 

0.00003 0.0005 2.4 0.1 0.998724992 0.976577531 0.998725013 

0.00004 0.0005 2.4 0.1 0.998712645 0.976354394 0.998712662 

0.00005 0.0005 2.4 0.1 0.998700297 0.976131339 0.998700314 

0.00006 0.0005 2.4 0.1 0.998679664 0.975908365 0.998687965 

0.00007 0.0005 2.4 0.1 0.998683893 0.975685473 0.998675617 

0.00008 0.0005 2.4 0.1 0.998663261 0.975462662 0.998663269 

0.00009 0.0005 2.4 0.1 0.998650917 0.975239932 0.998650923 

0.0001 0.0005 2.4 0.1 0.998638574 0.975017283 0.998638577 

Fig. 7 

Fig. 9 

Fig. 10 

Fig. 8 
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0.0001- 0.001in second case (table 7.2) and from 0.00001- 

0.0001in third case (table 7.2). We also make comparison of 

availabilities of three cases with the help of graphs as shown 

in fig.2 - fig.10.  On the basis of these cases, we find 

exponential repair time distribution is the best one in all 

three cases. 
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