Star Related V₄ Cordial graphs

L.Pandiselvi, S.Navaneethakrishnan,,A.Nellai Murugan, A.Nagarajan PG and Research Department of Mathematics,

V. O. Chidambaram College, Tuticorin-628008,

Tamilnadu, India.

 ${\it Email: lpandiselvibala@gmail.com\, snk.voc@gmail.com\, and\ anellai.vocc@gmail.com\, snk.voc@gmail.com\, and\ anellai.vocc@gmail.com\, and\, anellai.vocc@gmail.com\, anellai.vocc@gmail.com\,$

Abstract:

Let $\langle A, * \rangle$ be any abelian group. A graph G = (V(G), E(G)) is said to be A-cordial[6] if there is a mapping f: V(G) \rightarrow A which satisfies the following two conditions with each edge e = uv is labeled as f(u)*f(v).

(i) $|v_f(a) - v_f(b)| \le 1, \forall a, b \in A$

(ii) $|e_f(a) - e_f(b)| \le 1, \forall a, b \in A$

where $v_f(a)$ = the number of vertices with label a

 $v_f(b)$ = the number of vertices with label b

 $e_f(a)$ = the number of edges with label a

 $e_f(b)$ = the number of edges with label b

We note that if $A = \langle V_4, * \rangle$ is a multiplicative group. Then the labeling is known as

 V_4 Cordial Labeling. A graph is called a V_4 Cordial graph if it admits a V_4 Cordial Labeling.

In this paper, It is proved that Z-(P_n), Bookand $K_{1,1,n}$ are V₄Cordial graphs.

AMS Mathematics subject classification 2010:05C78

Keywords and Phrases: Cordial labeling, V4Cordial Labeling and V4Cordial Graph.

1.Introduction:

By a graph, it means a finite undirected graph without loops or multiple edges. For graph theoretic terminology, we referred Harary [4]. For labeling of graphs, we referredGallian[1].

A vertex labeling of a graph G is an assignment of labels to the vertices of G that induces for each edge uv a label depending on the vertex labels of u and v.

A graph *G* is said to be labeled if the *n* vertices are distinguished from one another by symbols such as v_1 , v_2 ,...., v_n .In a labeling of a particular type, the vertices are assigned distinct values from a given set, which induces distinguish edge values satisfying certain conditions. The concept of graceful labeling was introduced by Rosa[3] in 1967 and subsequently by Golomb[2].In this paper , It is proved that Z-(P_n), Book and $K_{1,1,n}$ are V₄Cordial graphs.

2.Preliminaries

Definition 2.1:

Let G = (V,E) be a simple graph.Let $f:V(G) \rightarrow \{0,1\}$ and for each edge uv, assign the label |f(u) - f(v)|. f is called a **cordial labeling** if the number of vertices labeled 0 and the the number of vertices labeled 1 differ by atmost

1 and also the number of edges labeled 0 and the the number of edges labeled 1 differ by atmost 1. A graph is called **Cordial** if it has a cordial labeling.

Definition 2.2:

Let $\langle A, * \rangle$ be any abelian group. A graph G = (V(G), E(G)) is said to be A-cordial if there is a mapping f: $V(G) \rightarrow A$ which satisfies the following two conditions with each edge

e = uv is labeled as f(u)*f(v).

(i) $|v_f(a) - v_f(b)| \le 1, \forall a, b \in A$

(ii) $\left|e_f(a) - e_f(b)\right| \le 1, \forall a, b \in A$

where $v_f(a)$ = the number of vertices with label a.

 $v_f(b)$ = the number of vertices with label b.

 $e_f(a)$ = the number of edges with label a.

 $e_f(b)$ = the number of edges with label b.

It is note that if $A = \langle V_4, * \rangle$ is a multiplicative group. Then the labeling is known as

 V_4 Cordial Labeling. A graph is called a V_4 Cordial graph if it admits a V_4 Cordial Labeling.

Definition 2.3:

Z-(**P**_n) is a graph obtained by, in a pair of path P_n , in which ith vertex of a path P₁ is joined with i+1th vertex of a path P₂.

Definition 2.4[1]:

Define the product $G_1 \times G_2$ by, consider any two vertices $u = (u_1, u_2)$, and $v = (v_1, v_2)$ in $V_1 \times V_2$.

Then u and v are adjacent in $G_1 \times G_2$

whenever $(u_1 = v_1 \text{ and } u_2 \text{ adj to } v_2)$ or $(u_2 = v_2 \text{ and } u_1 \text{ adj to } v_1)$.

The product $P_m \times P_n$ is called polar grids and $K_2 \times P_n$ is called Ladder.

The product $C_m \times P_n$ is called Grids on cylinder of order mn. In particular, $D_n = C_n \times K_2$ is called a prism and $B_m = K_{1,m} \times K_2$ is called a **book**.

Definition 2.5:

 $K_{1,1,n}$ is a graph obtained by attaching root of a star $K_{1,n}$ at one end of P_2 and other end is joined with each pendant vertex of $K_{1,n}$.

3.Main Results:

Theorem 3.1.

Z-(P_n) is a V₄ Cordial graph.

Proof:

Let $V(Z-(P_n)) = \{ u_i, v_i: 1 \le i \le n \}$. Let $E(Z-(P_n)) = \{ (u_iu_{i+1}) : 1 \le i \le n-1 \} \cup \{ (v_iu_{i+1}) : 1 \le i \le n \} \cup \{ (v_iv_{i+1}) : 1 \le i \le n-1 \}$. Define $f: V(Z-(P_n)) \to V_4$ by $f(u_i) = \begin{cases} -1 & \text{if } i \equiv 0,3 (mod \ 8) \\ -i & \text{if } i \equiv 1,6 (mod \ 8) \\ -i & \text{if } i \equiv 1,6 (mod \ 8) \end{cases}, \ 1 \le i \le n$

$$(u_i) = \begin{cases} -i & \text{if } i \equiv 1,6 \pmod{8} \\ i & \text{if } i \equiv 2,5 \pmod{8} \\ 1 & \text{if } i \equiv 4,7 \pmod{8} \end{cases}, \ 1 \le i \le n$$

$$\mathbf{f}(v_i) = \left\{ \begin{array}{ll} -i & if \ i \equiv 0,3 (mod \ 8) \\ 1 & if \ i \equiv 1,6 (mod \ 8) \\ -1 & if \ i \equiv 2,5 (mod \ 8) \\ i & if \ i \equiv 4,7 (mod \ 8) \end{array} \right. , \ 1 \leq i \leq n$$

The induced edge labelings are

$$\begin{split} \mathrm{f}(u_i) * \mathrm{f}(u_{i+1}) &= \left\{ \begin{array}{ll} i & \mbox{if } i \equiv 0 (mod \ 4) \\ 1 & \mbox{if } i \equiv 1 (mod \ 4) \\ -i & \mbox{if } i \equiv 2 (mod \ 4) \\ -1 & \mbox{if } i \equiv 3 (mod \ 4) \\ \end{array} \right., \ 1 \leq i \leq n-1 \\ \left\{ \begin{array}{ll} -1 & \mbox{if } i \equiv 0 (mod \ 4) \\ i & \mbox{if } i \equiv 1 (mod \ 4) \\ 1 & \mbox{if } i \equiv 2 (mod \ 4) \\ -i & \mbox{if } i \equiv 3 (mod \ 4) \\ \end{array} \right., \ 1 \leq i \leq n-1 \\ \left\{ \begin{array}{ll} -i & \mbox{if } i \equiv 2 (mod \ 4) \\ -i & \mbox{if } i \equiv 3 (mod \ 4) \\ -i & \mbox{if } i \equiv 3 (mod \ 4) \\ \end{array} \right., \ 1 \leq i \leq n-1 \\ \left\{ \begin{array}{ll} 0 \leq n-1 \\ -1 & \mbox{if } i \equiv 2 (mod \ 4) \\ 1 & \mbox{if } i \equiv 2 (mod \ 4) \\ 1 & \mbox{if } i \equiv 2 (mod \ 4) \\ 1 & \mbox{if } i \equiv 3 (mod \ 4) \end{array} \right., \ 1 \leq i \leq n-1 \end{split} \end{split}$$

Vertex Conditions:

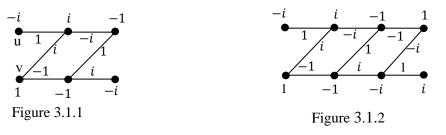
 $\begin{aligned} &(i)v_f(1) = v_f(i) = v_f(-i) = v_f(-1) = \frac{n}{2} \text{, when } n \equiv 0 \pmod{2} \\ &(ii)v_f(1) = v_f(-i) = \frac{n+1}{2} \text{ and } v_f(i) = v_f(-1) = \frac{n-1}{2} \text{, when } n \equiv 1 \pmod{8} \\ &(iii)v_f(1) = v_f(i) = \frac{n-1}{2} \text{ and } v_f(-i) = v_f(-1) = \frac{n+1}{2} \text{, when } n \equiv 3 \pmod{8} \\ &(iv)v_f(1) = v_f(-i) = \frac{n-1}{2} \text{ and } v_f(i) = v_f(-1) = \frac{n+1}{2} \text{, when } n \equiv 5 \pmod{8} \\ &(v)v_f(1) = v_f(i) = \frac{n+1}{2} \text{ and } v_f(-i) = v_f(-1) = \frac{n-1}{2} \text{, when } n \equiv 7 \pmod{8} \\ &\text{Hence, } |v_f(a) - v_f(b)| \leq 1, \forall a, b \in V_4. \end{aligned}$

Edge Conditions:

(i)
$$e_f(i) = e_f(-1) = e_f(-i) = 3\left(\frac{n}{4} - 1\right) + 2$$
 and $e_f(1) = 3\left(\frac{n}{4} - 1\right) + 3$, when $n \equiv 0 \pmod{4}$
(ii) $e_f(1) = e_f(i) = e_f(-1) = e_f(-i) = 3\left(\frac{n-1}{4}\right)$, when $n \equiv 1 \pmod{4}$
(iii) $e_f(1) = e_f(i) = e_f(-1) = 3\left(\frac{n-2}{4}\right) + 1$ and $e_f(-i) = 3\left(\frac{n-2}{4}\right)$, when $n \equiv 2 \pmod{4}$
(iv) $e_f(1) = e_f(i) = 3\left(\frac{n-3}{4}\right) + 2$ and $e_f(-1) = e_f(-i) = 3\left(\frac{n-3}{4}\right) + 1$, when $n \equiv 3 \pmod{4}$
Hence, $|e_f(a) - e_f(b)| \le 1$, $\forall a, b \in V_4$.

Hence, Z-(P_n) is a V₄ Cordial Graph.

For example, the V₄ Cordial Labeling of Z-(P_3), Z-(P_4), Z-(P_5), Z-(P_6), Z-(P_7), Z-(P_9) are shown in Figures 3.1.1-3.1.6.



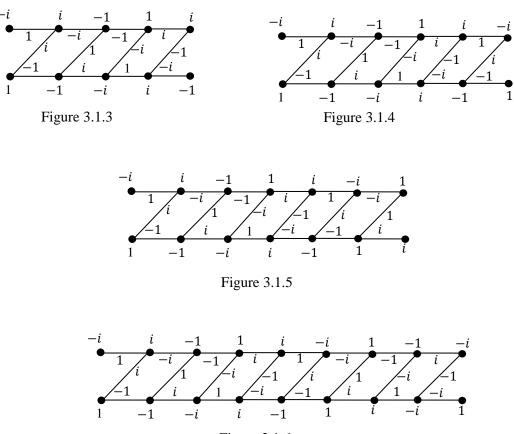


Figure 3.1.6

Theorem 3.2.

Book is a V₄ Cordial graph.

Proof:

-

Let $(V(G)) = \{u, w, v_i : 1 \le i \le n\}.$ Let $(E(G)) = \{(uv_i) : 1 \le i \le n\} \cup \{(wv_i) : 1 \le i \le n\}.$ Define $f: V(G) \rightarrow V_4$ by

Case(i): when $n \equiv 0 \pmod{4}$

Let f(u) = -1, f(w) = 1

$$\mathbf{f}(v_i) = \left\{ \begin{array}{ll} 1 & if \ i \equiv 0 (mod \ 4) \\ -i & if \ i \equiv 1 (mod \ 4) \\ i & if \ i \equiv 2 (mod \ 4) \\ -1 & if \ i \equiv 3 (mod \ 4) \end{array} \right. \ , \ 1 \leq i \leq n$$

The induced edge labelings are

$$\begin{array}{l} \text{Let } \mathrm{f}(u) * \mathrm{f}(w) = -1 \\ \mathrm{f}(u) * \mathrm{f}(v_i) = \begin{cases} -1 & if \ i \equiv 0 \pmod{4} \\ i & if \ i \equiv 1 \pmod{4} \\ -i & if \ i \equiv 2 \pmod{4} \\ 1 & if \ i \equiv 3 \pmod{4} \end{cases}, \ 1 \leq i \leq n \\ 1 & if \ i \equiv 3 \pmod{4} \end{cases} \\ \mathrm{f}(w) * \mathrm{f}(v_i) = 1 = \begin{cases} 1 & if \ i \equiv 0 \pmod{4} \\ -i & if \ i \equiv 1 \pmod{4} \\ i & if \ i \equiv 2 \pmod{4} \\ -1 & if \ i \equiv 3 \pmod{4} \end{cases}, \ 1 \leq i \leq n \\ \end{array}$$

Vertex Conditions:

Here, $v_f(1) = v_f(-1) = \frac{n}{4} + 1$ and $v_f(i) = v_f(-i) = \frac{n}{4}$.

Hence, $|v_f(a) - v_f(b)| \le 1, \forall a, b \in V_4.$

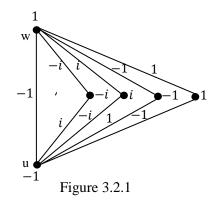
Edge Conditions:

Here, $e_f(1) = e_f(i) = e_f(-i) = \frac{n}{2}$ and $e_f(-1) = \frac{n}{2} + 1$.

Hence, $|e_f(a) - e_f(b)| \le 1, \forall a, b \in V_4$.

Hence, Book is a V_4 Cordial Graph .

For example, the V_4 Cordial Labeling of Book is shown in the Figure 3.2.1.



Case(ii): when $n \equiv 1 \pmod{4}$

$$\begin{array}{l} \text{Let } {\rm f}({\rm u}) = i \;, \, {\rm f}({\rm w}) = -1 \\ {\rm f}(v_i) = \left\{ \begin{array}{ll} -1 & if \; i \; \equiv \; 0 (mod \; 4) \\ 1 & if \; i \; \equiv \; 1 (mod \; 4) \\ -i & if \; i \; \equiv \; 2 (mod \; 4) \\ i & if \; i \; \equiv \; 3 (mod \; 4) \end{array} \right. \;, \; 1 \leq i \leq n \\ \end{array} \right.$$

The induced edge labelings are

$$\begin{aligned} & \text{Let } \mathrm{f}(u) * \mathrm{f}(w) = -i \\ & \text{f}(u) * \mathrm{f}(v_i) = \begin{cases} -i & \text{if } i \equiv 0 \pmod{4} \\ i & \text{if } i \equiv 1 \pmod{4} \\ 1 & \text{if } i \equiv 2 \pmod{4} \\ -1 & \text{if } i \equiv 3 \pmod{4} \\ \end{pmatrix} , \ 1 \leq i \leq n \\ & \text{f}(w) * \mathrm{f}(v_i) = \begin{cases} 1 & \text{if } i \equiv 0 \pmod{4} \\ -1 & \text{if } i \equiv 1 \pmod{4} \\ i & \text{if } i \equiv 2 \pmod{4} \\ -i & \text{if } i \equiv 3 \pmod{4} \\ \end{pmatrix} , \ 1 \leq i \leq n \end{aligned}$$

Vertex Conditions:

Here, $v_f(1) = v_f(-1) = v_f(i) = \frac{n-1}{4} + 1$ and $v_f(-i) = \frac{n-1}{4}$. Hence, $|v_f(a) - v_f(b)| \le 1, \forall a, b \in V_4$.

Edge Conditions:

Here, $e_f(1) = \frac{n-1}{2}$ and $e_f(i) = e_f(-1) = e_f(-i) = \frac{n-1}{2} + 1$. Hence, $|e_f(a) - e_f(b)| \le 1, \forall a, b \in V_4$. Hence, Book is a V4 Cordial Graph .

For example, the V_4 Cordial Labelingof Book is shown in the Figure 3.2.2.

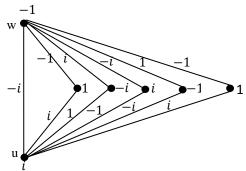


Figure 3.2.2.

Case(iii): when $n \equiv 2 \pmod{4}$

 $\begin{array}{l} \mbox{Let } {\rm f}({\rm u})=i\,,\,{\rm f}({\rm w})=1,\,{\rm f}(v_n)=-1 \\ \\ {\rm f}(v_i)= \left\{ \begin{array}{ll} i \quad if \ i \ \equiv \ 0(mod \ 4) \\ -i \quad if \ i \ \equiv \ 1(mod \ 4) \\ 1 \quad if \ i \ \equiv \ 2(mod \ 4) \\ -1 \quad if \ i \ \equiv \ 3(mod \ 4) \end{array} \right., \ 1\leq i\leq n-1 \\ \end{array} \right.$

The induced edge labelings are

$$\begin{aligned} & \text{Let } \mathrm{f}(u) * \mathrm{f}(w) = i \text{, } \mathrm{f}(u) * \mathrm{f}(v_n) = -i \text{ and } \mathrm{f}(w) * \mathrm{f}(v_n) = -1 \\ & \text{f}(u) * \mathrm{f}(v_i) = \begin{cases} -1 & if \ i \equiv 0 \pmod{4} \\ 1 & if \ i \equiv 1 \pmod{4} \\ -i & if \ i \equiv 2 \pmod{4} \\ -i & if \ i \equiv 3 \pmod{4} \end{cases} \text{, } 1 \leq i \leq n-1 \\ & \text{f}(w) * \mathrm{f}(v_i) = \begin{cases} i & if \ i \equiv 0 \pmod{4} \\ -i & if \ i \equiv 1 \pmod{4} \\ 1 & if \ i \equiv 2 \pmod{4} \\ -1 & if \ i \equiv 3 \pmod{4} \end{cases} \text{, } 1 \leq i \leq n-1 \end{aligned}$$

Vertex Conditions:

Here, $v_f(1) = v_f(-1) = v_f(i) = v_f(-i) = = \frac{n-2}{4} + 1$. Hence, $|v_f(a) - v_f(b)| \le 1, \forall a, b \in V_4$.

Edge Conditions:

 $e_f(1) = e_f(i) = e_f(-1) = \frac{n-2}{2} + 1$ and $e_f(-i) = \frac{n-2}{2} + 2$. Hence, $|e_f(a) - e_f(b)| \le 1, \forall a, b \in V_4$.

Hence, Book is a V₄ Cordial Graph.

For example, the V₄ Cordial Labelingof Book is shown in the Figure 3.2.3.

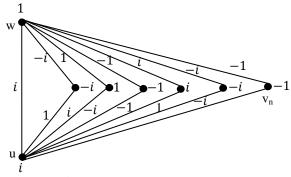


Figure 3.2.3

Case(iv): when $n \equiv 3 \pmod{4}$

Let
$$f(u) = 1$$
, $f(w) = -i$

$$f(v_i) = \begin{cases}
-i & \text{if } i \equiv 0 \pmod{4} \\
i & \text{if } i \equiv 1 \pmod{4} \\
-1 & \text{if } i \equiv 2 \pmod{4} \\
1 & \text{if } i \equiv 3 \pmod{4}
\end{cases}, \ 1 \le i \le n$$

The induced edge labelings are

Let
$$f(u) * f(w) = -i$$

$$f(u) * f(v_i) = \begin{cases}
-i & if \ i \equiv 0 \pmod{4} \\
i & if \ i \equiv 1 \pmod{4} \\
-1 & if \ i \equiv 2 \pmod{4} \\
1 & if \ i \equiv 3 \pmod{4}
\end{cases}, \ 1 \le i \le n$$

$$f(w) * f(v_i) = = \begin{cases}
-1 & if \ i \equiv 0 \pmod{4} \\
1 & if \ i \equiv 1 \pmod{4} \\
i & if \ i \equiv 2 \pmod{4} \\
-i & if \ i \equiv 3 \pmod{4}
\end{cases}, \ 1 \le i \le n$$

Vertex Conditions:

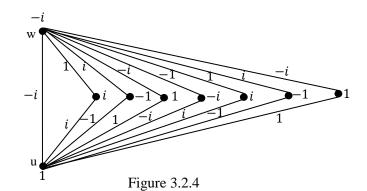
Here,
$$v_f(1) = \frac{n+1}{4} + 1$$
 and $v_f(-1) = v_f(i) = v_f(-i) = = \frac{n+1}{4}$.
Hence, $|v_f(a) - v_f(b)| \le 1, \forall a, b \in V_4$.

Edge Conditions:

Here, $e_f(1) = e_f(i) = e_f(-i) = \frac{n+1}{2}$ and $e_f(-1) = \frac{n+1}{2} - 1$. Hence, $|e_f(a) - e_f(b)| \le 1$, $\forall a, b \in V_4$.

Hence, Book is a V_4 Cordial Graph .

For example, the V_4 Cordial Labeling of Book is shown in the Figure 3.2.4.



Theorem 3.3.

 $K_{1,1,n}$ is a V₄ Cordial graph.

Proof:

Let $V(K_{1,1,n}) = \{u, v, v_i : 1 \le i \le n\}.$ Let $E(K_{1,1,n}) = \{(uv) : 1 \le i \le n\} \cup \{(uv_i) : 1 \le i \le n\} \cup \{(vv_i) : 1 \le i \le n\}.$

Define f : V($K_{1,1,n}$) \rightarrow V₄ by

Case(i): when $n \equiv 0 \pmod{4}$

$$\begin{array}{l} \text{Let } {\rm f}({\rm u}) = -1 \;, \, {\rm f}({\rm v}) = 1 \\ \\ {\rm f}(v_i) = \left\{ \begin{array}{ll} 1 & if \; i \; \equiv \; 0(mod \; 4) \\ -1 & if \; i \; \equiv \; 1(mod \; 4) \\ i & if \; i \; \equiv \; 2(mod \; 4) \\ -i & if \; i \; \equiv \; 3(mod \; 4) \end{array} \right. \;, \; 1 \leq i \leq n \\ \end{array} \right.$$

The induced edge labelings are

$$\begin{aligned} &\text{Let } \mathrm{f}(u) * \mathrm{f}(v) = -1 \\ &\text{f}(u) * \mathrm{f}(v_i) = \begin{cases} -1 & \text{if } i \equiv 0 \pmod{4} \\ 1 & \text{if } i \equiv 1 \pmod{4} \\ -i & \text{if } i \equiv 2 \pmod{4} \\ i & \text{if } i \equiv 3 \pmod{4} \end{cases} , 1 \leq i \leq n \\ &f(v) * \mathrm{f}(v_i) = \begin{cases} 1 & \text{if } i \equiv 0 \pmod{4} \\ -1 & \text{if } i \equiv 1 \pmod{4} \\ i & \text{if } i \equiv 2 \pmod{4} \\ -i & \text{if } i \equiv 3 \pmod{4} \end{cases} , 1 \leq i \leq n \\ \end{aligned}$$

Vertex Conditions:

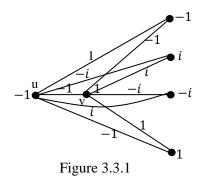
Here,
$$v_f(1) = v_f(-1) = \frac{n}{4} + 1$$
 and $v_f(i) = v_f(-i) = \frac{n}{4}$.
Hence, $|v_f(a) - v_f(b)| \le 1, \forall a, b \in V_4$.

Edge Conditions:

Here, $e_f(1) = e_f(i) = e_f(-i) = \frac{n}{2}$ and $e_f(-1) = \frac{n}{2} + 1$. Hence, $|e_f(a) - e_f(b)| \le 1, \forall a, b \in V_4$.

Hence, $K_{1,1,n}$ is a V₄ Cordial Graph.

For example, the V₄ Cordial Labeling of $K_{1,1,4}$ is shown in the Figure 3.3.1.



Case(ii): when $n \equiv 1 \pmod{4}$

$$\begin{array}{l} \text{Let } {\rm f}({\rm u})=i \ , {\rm f}({\rm v})=1 \\ \\ {\rm f}(v_i)= \left\{ \begin{array}{ll} 1 & if \ i \ \equiv \ 0(mod \ 4) \\ -1 & if \ i \ \equiv \ 1(mod \ 4) \\ i & if \ i \ \equiv \ 2(mod \ 4) \\ -i & if \ i \ \equiv \ 3(mod \ 4) \end{array} \right. \ , \ 1\leq i\leq n \\ \end{array} \right.$$

The induced edge labelings are

Let
$$f(u) * f(v) = i$$

$$f(u) * f(v_i) = \begin{cases} i & if \ i \equiv 0 \pmod{4} \\ -i & if \ i \equiv 1 \pmod{4} \\ -1 & if \ i \equiv 2 \pmod{4} \\ 1 & if \ i \equiv 3 \pmod{4} \end{cases}, \ 1 \le i \le n$$

$$f(v) * f(v_i) = \begin{cases} 1 & if \ i \equiv 0 \pmod{4} \\ -1 & if \ i \equiv 1 \pmod{4} \\ i & if \ i \equiv 2 \pmod{4} \\ -i & if \ i \equiv 3 \pmod{4} \end{cases}, \ 1 \le i \le n$$

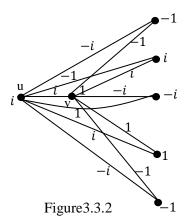
Vertex Conditions:

Here, $v_f(1) = v_f(-1) = v_f(i) = \frac{n-1}{4} + 1$ and $v_f(-i) = \frac{n-1}{4}$. Hence, $|v_f(a) - v_f(b)| \le 1, \forall a, b \in V_4$.

Edge Conditions:

Here, $e_f(1) = \frac{n-1}{2}$ and $e_f(i) = e_f(-1) = e_f(-i) = \frac{n+1}{2}$. Hence, $|e_f(a) - e_f(b)| \le 1$, $\forall a, b \in V_4$. Hence, $K_{1,1,n}$ is a V₄ Cordial Graph.

For example, the V₄ Cordial Labeling of $K_{1,1,5}$ is shown in the Figure 3.3.2.



Case(iii): when $n \equiv 2 \pmod{4}$

$$\begin{array}{l} \text{Let } {\rm f}({\rm u}) = -i \;, \, {\rm f}({\rm v}) = 1 \\ \\ {\rm f}(v_i) = \left\{ \begin{array}{ll} 1 & if \; i \; \equiv \; 0(mod \; 4) \\ -1 & if \; i \; \equiv \; 1(mod \; 4) \\ i & if \; i \; \equiv \; 2(mod \; 4) \\ -i & if \; i \; \equiv \; 3(mod \; 4) \end{array} \right. \;, \; 1 \leq i \leq n \\ \end{array} \right.$$

The induced edge labelingare

.

$$\begin{aligned} &\text{Let } \mathrm{f}(u) * \mathrm{f}(v) = -i \\ &\text{f}(u) * \mathrm{f}(v_i) = \begin{cases} -i & \text{if } i \equiv 0 \pmod{4} \\ i & \text{if } i \equiv 1 \pmod{4} \\ 1 & \text{if } i \equiv 2 \pmod{4} \\ -1 & \text{if } i \equiv 3 \pmod{4} \end{cases} , \ 1 \leq i \leq n \\ &\text{f}(v) * \mathrm{f}(v_i) = \begin{cases} 1 & \text{if } i \equiv 0 \pmod{4} \\ -1 & \text{if } i \equiv 1 \pmod{4} \\ i & \text{if } i \equiv 2 \pmod{4} \\ -i & \text{if } i \equiv 3 \pmod{4} \end{cases} , \ 1 \leq i \leq n \\ &\text{if } i \equiv 3 \pmod{4} \end{cases}$$

Vertex Conditions:

Here, $v_f(1) = v_f(-1) = v_f(i) = v_f(-i) = \frac{n-2}{4} + 1.$ Hence, $|v_f(a) - v_f(b)| \le 1, \forall a, b \in V_4$.

Edge Conditions:

(i) $e_f(1) = e_f(-i) = e_f(-1) = \frac{n}{2}$ and $e_f(i) = \frac{n+2}{2}$. Hence, $|e_f(a) - e_f(b)| \le 1, \forall a, b \in V_4$. Hence, $K_{1,1,n}$ is a V₄ Cordial Graph .

For example, the V₄ Cordial Labeling of $K_{1,1,6}$ is shown in the

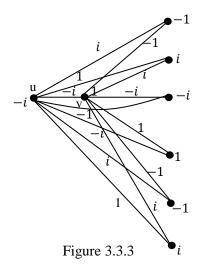


Figure3.3.3.

Case(iv): when $n \equiv 3 \pmod{4}$

$$\begin{array}{l} \mbox{Let } {\rm f}({\rm u}) = 1 \;, \, {\rm f}({\rm v}) = 1 \\ {\rm f}(v_i) = \left\{ \begin{array}{ll} 1 & if \; i \; \equiv \; 0 (mod \; 4) \\ -1 & if \; i \; \equiv \; 1 (mod \; 4) \\ i & if \; i \; \equiv \; 2 (mod \; 4) \\ -i & if \; i \; \equiv \; 3 (mod \; 4) \end{array} \right. \;, \; 1 \leq i \leq n \\ \end{array} \right.$$

The induced edge labelings are

$$\begin{aligned} & \text{Let } \mathrm{f}(u) * \mathrm{f}(v) = 1 \\ & \text{f}(u) * \mathrm{f}(v_i) = \begin{cases} 1 & if \ i \equiv 0 \pmod{4} \\ -1 & if \ i \equiv 1 \pmod{4} \\ i & if \ i \equiv 2 \pmod{4} \\ -i & if \ i \equiv 3 \pmod{4} \end{cases} , \ 1 \leq i \leq n \\ & \text{f}(u) * \mathrm{f}(v_i) = \begin{cases} 1 & if \ i \equiv 0 \pmod{4} \\ -1 & if \ i \equiv 1 \pmod{4} \\ i & if \ i \equiv 2 \pmod{4} \\ -i & if \ i \equiv 3 \pmod{4} \\ -i & if \ i \equiv 3 \pmod{4} \end{cases} , \ 1 \leq i \leq n \\ & \text{f}(u) * \mathrm{f}(v_i) = \begin{cases} 1 & if \ i \equiv 1 \pmod{4} \\ i & if \ i \equiv 2 \pmod{4} \\ -i & if \ i \equiv 3 \pmod{4} \end{cases} , \ 1 \leq i \leq n \\ & \text{f}(u) = \begin{cases} 1 & if \ i \equiv 2 \pmod{4} \\ i & if \ i \equiv 3 \pmod{4} \end{cases} \end{cases}$$

Vertex Conditions:

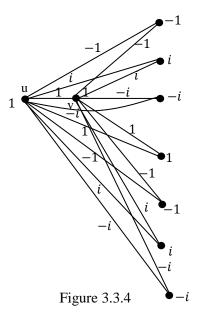
Here,
$$v_f(1) = \frac{n+1}{4} + 1$$
 and $v_f(-1) = v_f(i) = v_f(-i) = \frac{n+1}{4}$
Hence, $|v_f(a) - v_f(b)| \le 1, \forall a, b \in V_4$.

Edge Conditions:

Here,
$$e_f(i) = e_f(-1) = e_f(-i) = \frac{n+1}{2}$$
 and $e_f(1) = \frac{n-1}{2}$
Hence, $|e_f(a) - e_f(b)| \le 1, \forall a, b \in V_4$.

Hence, $K_{1,1,n}$ is a V₄ Cordial Graph.

For example, the V₄ Cordial Labeling of $K_{1,1,7}$ is shown in the Figure 3.3.4.



4.References

- 1. G.J. Gallian, A Dynamic survey of graph labeling, The electronic journal of combinotorics, 16 (2009), #DS6.
- 2. S.W Golomb, *How to number a graph in graph Theory and computing*, R.C. Read, ed., Academic Press, New York (1972), 23-37.
- 3. A. Rosa, *On certain valuations of the vertices of a graph*, Theory of graphs (International Symposium, Rome), July (1966).
- 4. Frank Harary, *Graph Theory*, Narosa publishing house pvt. Ltd., 10th reprint 2001.
- 5. J Gross and J Yeiien, *Handbook of graph theory*, CRC Press, 2004.
- 6. M. Hovey, A-cordial graphs, Discrete Math., Vol 93(1991), 183-194.
- 7. R. Tao, On k-cordiality of cycles, crowns and wheels, Systems Sci., 11 (1998), 227-229.
- 8. M.Z. Youssef, On k-cordial labeling, Australas.J. Combin., Vol 43(2009), 31-37.
- M.V.Modha, K.K.Kanani, Some new families of 5-cordial graphs, International Journal of Mathematics and Soft Computing, Vol.5, No.1(2015), 129-141.
- L.Pandiselvi, S.NavaneethaKrishnan and A.NellaiMurugan, Path Related V₄ Cordial graphs International Journal of Recent advances in Multidisiplinary Research, Vol. 03, Issue 02, pp.1285-1294, February, 2016,
- L.Pandiselvi, S.NavaneethaKrishnan and A.NellaiMurugan, *Bi-Star V₄ Cordial Graphs* International Journal Of Advanced Science and Research Vol. 1, Issue 2, Feb 2016. Pg no:14-21.
- 12. L.Pandiselvi, A.NellaiMurugan, and S.NavaneethaKrishnan V_4 Cordial Graphs of Fan and Globe International Journal of Applied Research2016; 2(4): 344-350.