Star Related V_{4} Cordial graphs

L.Pandiselvi, S.Navaneethakrishnan,,A.Nellai Murugan, A.Nagarajan
$P G$ and Research Department of Mathematics,
V. O. Chidambaram College, Tuticorin-628008,
Tamilnadu, India.

Email: lpandiselvibala@gmail.com ,snk.voc@gmail.com and anellai.vocc@gmail.com

Abstract:

Let $<A, *>$ be any abelian group. A graph $\mathrm{G}=(\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G}))$ is said to be A-cordial[6] if there is a mapping f: $\mathrm{V}(\mathrm{G}) \rightarrow \mathrm{A}$ which satisfies the following two conditions with each edge $e=u v$ is labeled as $f(u) * f(v)$.
(i) $\left|v_{f}(a)-v_{f}(b)\right| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{A}$
(ii) $\left|e_{f}(a)-e_{f}(b)\right| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{A}$
where $v_{f}(a)=$ the number of vertices with label a
$v_{f}(b)=$ the number of vertices with label b
$e_{f}(a)=$ the number of edges with label a
$e_{f}(b)=$ the number of edges with label b
We note that if $\mathrm{A}=\left\langle\mathrm{V}_{4},{ }^{*}\right\rangle$ is a multiplicative group. Then the labeling is known as
\mathbf{V}_{4} Cordial Labeling. A graph is called a \mathbf{V}_{4} Cordial graph if it admits a V_{4} Cordial Labeling.
In this paper,It is proved thatZ- $\left(\mathrm{P}_{\mathrm{n}}\right)$, Bookand $K_{1,1, n}$ are \mathbf{V}_{4} Cordial graphs.

AMS Mathematics subject classification 2010:05C78

Keywords and Phrases: Cordial labeling, $\mathbf{V}_{\mathbf{4}}$ Cordial Labeling and $\mathbf{V}_{\mathbf{4}}$ Cordial Graph.

1.Introduction:

By a graph, it means a finite undirected graph without loops or multiple edges.For graph theoretic terminology, we referred Harary [4]. For labeling of graphs, we referredGallian[1].

A vertex labeling of a graph G is an assignment of labels to the vertices of G that induces for each edge $u v$ a label depending on the vertex labels of u and v.

A graph G is said to be labeled if the n vertices are distinguished from one another by symbols such as $v_{l}, v_{2}, \ldots ., v_{n}$.In a labeling of a particular type, the vertices are assigned distinct values from a given set, which induces distinguish edge values satisfying certain conditions. The concept of graceful labeling was introduced by Rosa[3] in 1967 and subsequently by Golomb[2].In this paper, It is proved that $\mathrm{Z}-\left(\mathrm{P}_{\mathrm{n}}\right)$, Book and $K_{1,1, n}$ are $\mathbf{V}_{\mathbf{4}}$ Cordial graphs.

2.Preliminaries

Definition 2.1:

Let $G=(V, E)$ be a simple graph.Let $f: V(G) \rightarrow\{0,1\}$ and for each edge $u v$, assign the label $|f(u)-f(v)|$. f is called a cordial labeling if the number of vertices labeled 0 and the the number of vertices labeled 1 differ by atmost

1 and also the number of edges labeled 0 and the the number of edges labeled 1 differ by atmost 1 . A graph is called Cordial if it has a cordial labeling.

Definition 2.2:

Let $\langle A, *\rangle$ be any abelian group. A graph $\mathrm{G}=(\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G}))$ is said to be A-cordial if there is a mapping f : $\mathrm{V}(\mathrm{G}) \rightarrow \mathrm{A}$ which satisfies the following two conditions with each edge $e=u v$ is labeled as $f(u) * f(v)$.
(i) $\left|v_{f}(a)-v_{f}(b)\right| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{A}$
(ii) $\left|e_{f}(a)-e_{f}(b)\right| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{A}$
where $v_{f}(a)=$ the number of vertices with label a.
$v_{f}(b)=$ the number of vertices with label b.
$e_{f}(a)=$ the number of edges with label a.
$e_{f}(b)=$ the number of edges with label b .
It is note that if $\mathrm{A}=\left\langle\mathrm{V}_{4}, *\right\rangle$ is a multiplicative group. Then the labeling is known as
$\mathbf{V}_{\mathbf{4}}$ Cordial Labeling. A graph is called a $\mathbf{V}_{\mathbf{4}}$ Cordial graph if it admits a V_{4} Cordial Labeling.

Definition 2.3:

Z-($\mathbf{P}_{\mathbf{n}}$) is a graph obtained by, in a pair of path P_{n}, in which $\mathrm{i}^{\text {th }}$ vertex of a path P_{1} is joined with $\mathrm{i}+1^{\text {th }}$ vertex of a path P_{2}.

Definition 2.4[1]:

Define the product $G_{1} \times G_{2}$ by, consider any two vertices $u=\left(u_{1}, u_{2}\right)$, and $v=\left(v_{1}, v_{2}\right)$ in $V_{1} \times V_{2}$. Then u and v are adjacent in $G_{1} \times G_{2}$
whenever $\left(u_{1}=v_{1}\right.$ and u_{2} adj to $\left.v_{2}\right)$ or ($u_{2}=v_{2}$ and u_{1} adj to $\left.v_{1}\right)$.
The product $\mathrm{P}_{\mathrm{m}} \times \mathrm{P}_{\mathrm{n}}$ is called polar grids and $\mathrm{K}_{2} \times \mathrm{P}_{\mathrm{n}}$ is called Ladder.
The product $C_{m} \times P_{n}$ is called Grids on cylinder of order mn. In particular, $D_{n}=C_{n} \times K_{2}$ is called a prism and $B_{m}=$ $\mathrm{K}_{1, \mathrm{~m}} \times \mathrm{K}_{2}$ is called a book.

Definition 2.5:

$\boldsymbol{K}_{\mathbf{1}, \mathbf{1}, \mathrm{n}}$ is a graph obtained by attaching root of a star $K_{1, n}$ at one end of P_{2} and other end is joined with each pendant vertex of $K_{1, n}$.

3.Main Results:

Theorem 3.1.

Z- $\left(P_{n}\right)$ is a V_{4} Cordial graph.

Proof:

Let $\mathrm{V}\left(\mathrm{Z}-\left(P_{n}\right)\right)=\left\{\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}: 1 \leq i \leq n\right\}$.
Let $\mathrm{E}\left(\mathrm{Z}-\left(P_{n}\right)\right)=\left\{\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right): 1 \leq i \leq n-1\right\} \cup\left\{\left(\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right): 1 \leq i \leq n\right\} \cup\left\{\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right): 1 \leq i \leq n-1\right\}$.
Define $\mathrm{f}: \mathrm{V}\left(\mathrm{Z}-\left(P_{n}\right)\right) \rightarrow \mathrm{V}_{4}$ by
$\mathrm{f}\left(u_{i}\right)=\left\{\begin{array}{cl}-1 & \text { if } i \equiv 0,3(\bmod 8) \\ -i & \text { if } i \equiv 1,6(\bmod 8) \\ i & \text { if } i \equiv 2,5(\bmod 8) \\ 1 & \text { if } i \equiv 4,7(\bmod 8)\end{array} \quad, 1 \leq i \leq n\right.$
$\mathrm{f}\left(v_{i}\right)=\left\{\begin{array}{rl}-i & \text { if } i \equiv 0,3(\bmod 8) \\ 1 & \text { if } i \equiv 1,6(\bmod 8) \\ -1 & \text { if } i \equiv 2,5(\bmod 8) \\ i & \text { if } i \equiv 4,7(\bmod 8)\end{array} \quad, 1 \leq i \leq n\right.$
The induced edge labelings are
$\mathrm{f}\left(u_{i}\right) * \mathrm{f}\left(u_{i+1}\right)=\left\{\begin{array}{rl}i & \text { if } i \equiv 0(\bmod 4) \\ 1 & \text { if } i \equiv 1(\bmod 4) \\ -i & \text { if } i \equiv 2(\bmod 4) \\ -1 & \text { if } i \equiv 3(\bmod 4)\end{array} \quad, 1 \leq i \leq n-1\right.$
$\mathrm{f}\left(v_{i}\right) * \mathrm{f}\left(u_{i+1}\right)=\left\{\begin{array}{rl}-1 & \text { if } i \equiv 0(\bmod 4) \\ i & \text { if } i \equiv 1(\bmod 4) \\ 1 & \text { if } i \equiv 2(\bmod 4) \\ -i & \text { if } i \equiv 3(\bmod 4)\end{array} \quad, 1 \leq i \leq n-1\right.$
$\mathrm{f}\left(v_{i}\right) * \mathrm{f}\left(v_{i+1}\right)=\left\{\begin{array}{rl}-i & \text { if } i \equiv 0(\bmod 4) \\ -1 & \text { if } i \equiv 1(\bmod 4) \\ i & \text { if } i \equiv 2(\bmod 4) \\ 1 & \text { if } i \equiv 3(\bmod 4)\end{array} \quad, 1 \leq i \leq n-1\right.$

Vertex Conditions:

(i) $v_{f}(1)=v_{f}(i)=v_{f}(-i)=v_{f}(-1)=\frac{n}{2}$, when $\mathrm{n} \equiv 0(\bmod 2)$
(ii) $v_{f}(1)=v_{f}(-i)=\frac{n+1}{2}$ and $v_{f}(i)=v_{f}(-1)=\frac{n-1}{2}$, when $\mathrm{n} \equiv 1(\bmod 8)$
(iii) $v_{f}(1)=v_{f}(i)=\frac{n-1}{2}$ and $v_{f}(-i)=v_{f}(-1)=\frac{n+1}{2}$, when $\mathrm{n} \equiv 3(\bmod 8)$
(iv) $v_{f}(1)=v_{f}(-i)=\frac{n-1}{2}$ and $v_{f}(i)=v_{f}(-1)=\frac{n+1}{2}$, when $\mathrm{n} \equiv 5(\bmod 8)$
(v) $v_{f}(1)=v_{f}(i)=\frac{n+1}{2}$ and $v_{f}(-i)=v_{f}(-1)=\frac{n-1}{2} \quad$,when $\mathrm{n} \equiv 7(\bmod 8)$

Hence, $\left|v_{f}(a)-v_{f}(b)\right| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{V}_{4}$.

Edge Conditions:

(i) $e_{f}(i)=e_{f}(-1)=e_{f}(-i)=3\left(\frac{n}{4}-1\right)+2$ and $e_{f}(1)=3\left(\frac{n}{4}-1\right)+3$, when $\mathrm{n} \equiv 0(\bmod 4)$
(ii) $e_{f}(1)=e_{f}(i)=e_{f}(-1)=e_{f}(-i)=3\left(\frac{n-1}{4}\right)$, when $\mathrm{n} \equiv 1(\bmod 4)$
(iii) $e_{f}(1)=e_{f}(i)=e_{f}(-1)=3\left(\frac{n-2}{4}\right)+1$ and $e_{f}(-i)=3\left(\frac{n-2}{4}\right)$, when $\mathrm{n} \equiv 2(\bmod 4)$
(iv) $e_{f}(1)=e_{f}(i)=3\left(\frac{n-3}{4}\right)+2$ and $e_{f}(-1)=e_{f}(-i)=3\left(\frac{n-3}{4}\right)+1$, when $\mathrm{n} \equiv 3(\bmod 4)$

Hence, $\left|e_{f}(a)-e_{f}(b)\right| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{V}_{4}$.
Hence, $\mathrm{Z}-\left(P_{n}\right)$ is a V_{4} Cordial Graph .
For example, the V_{4} Cordial Labeling of Z- $\left(P_{3}\right)$, Z- $\left(P_{4}\right)$, Z- $\left(P_{5}\right)$, Z- $\left(P_{6}\right)$, Z- $\left(P_{7}\right)$, Z- $\left(P_{9}\right)$ are shown in Figures 3.1.13.1.6.

Figure 3.1.1

Figure 3.1.2

Figure 3.1.3

Figure 3.1.4

Figure 3.1.5

Figure 3.1.6

Theorem 3.2.

Book is a V_{4} Cordial graph.

Proof:

Let $(\mathrm{V}(\mathrm{G}))=\left\{u, w, v_{i}: 1 \leq i \leq n\right\}$.
Let $(\mathrm{E}(\mathrm{G}))=\left\{\left(\mathrm{uv}_{\mathrm{i}}\right): 1 \leq i \leq n\right\} \cup\left\{\left(\mathrm{wv}_{\mathrm{i}}\right): 1 \leq i \leq n\right\}$.
Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow \mathrm{V}_{4}$ by
Case(i): when $n \equiv 0(\bmod 4)$
Let $\mathrm{f}(\mathrm{u})=-1, \mathrm{f}(\mathrm{w})=1$

The induced edge labelings are
Let $\mathrm{f}(u) * \mathrm{f}(w)=-1$
$\mathrm{f}(u) * \mathrm{f}\left(v_{i}\right)=\left\{\begin{array}{rl}-1 & \text { if } i \equiv 0(\bmod 4) \\ i & \text { if } i \equiv 1(\bmod 4) \\ -i & \text { if } i \equiv 2(\bmod 4) \\ 1 & \text { if } i \equiv 3(\bmod 4)\end{array} \quad, 1 \leq i \leq n\right.$
$\mathrm{f}(w) * \mathrm{f}\left(v_{i}\right)=1=\left\{\begin{array}{rl}1 & \text { if } i\end{array}=0(\bmod 4) \quad\right.$ (\quad if $i \equiv 1(\bmod 4) \quad . \quad 1 \leq i \leq n$

Vertex Conditions:

Here, $v_{f}(1)=v_{f}(-1)=\frac{n}{4}+1$ and $v_{f}(i)=v_{f}(-i)=\frac{n}{4}$.
Hence, $\left|v_{f}(a)-v_{f}(b)\right| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{V}_{4}$.

Edge Conditions:

Here, $e_{f}(1)=e_{f}(i)=e_{f}(-i)=\frac{n}{2}$ and $e_{f}(-1)=\frac{n}{2}+1$.
Hence, $\left|e_{f}(a)-e_{f}(b)\right| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{V}_{4}$.
Hence, Book is a V_{4} Cordial Graph .
For example, the V_{4} Cordial Labeling of Book is shown in the Figure 3.2.1.

Figure 3.2.1

Case(ii): when $n=1(\bmod 4)$

Let $\mathrm{f}(\mathrm{u})=i, \mathrm{f}(\mathrm{w})=-1$
$\mathrm{f}\left(v_{i}\right)=\left\{\begin{array}{rl}-1 & \text { if } i \equiv 0(\bmod 4) \\ 1 & \text { if } i \equiv 1(\bmod 4) \\ -i & \text { if } i \equiv 2(\bmod 4) \\ i & \text { if } i \equiv 3(\bmod 4)\end{array} \quad, 1 \leq i \leq n\right.$
The induced edge labelings are
Let $\mathrm{f}(u) * \mathrm{f}(w)=-i$
$\mathrm{f}(u) * \mathrm{f}\left(v_{i}\right)=\left\{\begin{array}{rl}-i & \text { if } i \equiv 0(\bmod 4) \\ i & \text { if } i \equiv 1(\bmod 4) \\ 1 & \text { if } i \equiv 2(\bmod 4) \\ -1 & \text { if } i \equiv 3(\bmod 4)\end{array} \quad, 1 \leq i \leq n\right.$
$\mathrm{f}(w) * \mathrm{f}\left(v_{i}\right)=\left\{\begin{array}{rl}1 & \text { if } i \equiv 0(\bmod 4) \\ -1 & \text { if } i \equiv 1(\bmod 4) \\ i & \text { if } i \equiv 2(\bmod 4) \\ -i & \text { if } i \equiv 3(\bmod 4)\end{array} \quad, 1 \leq i \leq n\right.$

Vertex Conditions:

Here, $v_{f}(1)=v_{f}(-1)=v_{f}(i)=\frac{n-1}{4}+1$ and $v_{f}(-i)=\frac{n-1}{4}$.
Hence, $\left|v_{f}(a)-v_{f}(b)\right| \leq 1, \forall a, b \in \mathrm{~V}_{4}$.

Edge Conditions:

Here, $e_{f}(1)=\frac{n-1}{2}$ and $e_{f}(i)=e_{f}(-1)=e_{f}(-i)=\frac{n-1}{2}+1$.
Hence, $\left|e_{f}(a)-e_{f}(b)\right| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{V}_{4}$.

Hence, Book is a V_{4} Cordial Graph .
For example, the V_{4} Cordial Labelingof Book is shown in the Figure 3.2.2.

Figure 3.2.2.

Case(iii): when $n \equiv 2(\bmod 4)$

Let $\mathrm{f}(\mathrm{u})=i, \mathrm{f}(\mathrm{w})=1, \mathrm{f}\left(v_{n}\right)=-1$
$\mathrm{f}\left(v_{i}\right)=\left\{\begin{array}{rl}i & \text { if } i \equiv 0(\bmod 4) \\ -i & \text { if } i \equiv 1(\bmod 4) \\ 1 & \text { if } i \equiv 2(\bmod 4) \\ -1 & \text { if } i \equiv 3(\bmod 4)\end{array} \quad, 1 \leq i \leq n-1\right.$
The induced edge labelings are
Let $\mathrm{f}(u) * \mathrm{f}(w)=i, \mathrm{f}(u) * \mathrm{f}\left(v_{n}\right)=-i$ and $\mathrm{f}(w) * \mathrm{f}\left(v_{n}\right)=-1$
$\mathrm{f}(u) * \mathrm{f}\left(v_{i}\right)=\left\{\begin{array}{rl}-1 & \text { if } i \equiv 0(\bmod 4) \\ 1 & \text { if } i \equiv 1(\bmod 4) \\ i & \text { if } i \equiv 2(\bmod 4) \\ -i & \text { if } i \equiv 3(\bmod 4)\end{array} \quad, 1 \leq i \leq n-1\right.$
$\mathrm{f}(w) * \mathrm{f}\left(v_{i}\right)=\left\{\begin{array}{rl}i & \text { if } i \equiv 0(\bmod 4) \\ -i & \text { if } i \equiv 1(\bmod 4) \\ 1 & \text { if } i \equiv 2(\bmod 4) \\ -1 & \text { if } i \equiv 3(\bmod 4)\end{array} \quad, 1 \leq i \leq n-1\right.$

Vertex Conditions:

Here, $v_{f}(1)=v_{f}(-1)=v_{f}(i)=v_{f}(-i)==\frac{n-2}{4}+1$.
Hence, $\left|v_{f}(a)-v_{f}(b)\right| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{V}_{4}$.

Edge Conditions:

$e_{f}(1)=e_{f}(i)=e_{f}(-1)=\frac{n-2}{2}+1$ and $e_{f}(-i)=\frac{n-2}{2}+2$.
Hence, $\left|e_{f}(a)-e_{f}(b)\right| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{V}_{4}$.
Hence, Book is a V_{4} Cordial Graph .
For example, the V_{4} Cordial Labelingof Book is shown in the Figure3.2.3.

Figure 3.2.3

Case(iv): when $\mathrm{n} \equiv \mathbf{3}(\bmod 4)$

Let $\mathrm{f}(\mathrm{u})=1, \mathrm{f}(\mathrm{w})=-i$
$\mathrm{f}\left(v_{i}\right)=\left\{\begin{array}{rl}-i & \text { if } i\end{array}=0(\bmod 4) \quad . \quad . \quad 1 \leq i \leq n\right.$
The induced edge labelings are
Let $\mathrm{f}(u) * \mathrm{f}(w)=-i$

Vertex Conditions:

Here, $v_{f}(1)=\frac{n+1}{4}+1 \operatorname{and} v_{f}(-1)=v_{f}(i)=v_{f}(-i)==\frac{n+1}{4}$.
Hence, $\left|v_{f}(a)-v_{f}(b)\right| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{V}_{4}$.

Edge Conditions:

Here, $e_{f}(1)=e_{f}(i)=e_{f}(-i)=\frac{n+1}{2}$ and $e_{f}(-1)=\frac{n+1}{2}-1$.
Hence, $\left|e_{f}(a)-e_{f}(b)\right| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{V}_{4}$.
Hence, Book is a V_{4} Cordial Graph .
For example, the V_{4} Cordial Labeling of Book is shown in the Figure3.2.4.

Figure 3.2.4

Theorem 3.3.

$K_{1,1, n}$ is a V_{4} Cordial graph .

Proof:

Let $\mathrm{V}\left(K_{1,1, n}\right)=\left\{u, v, v_{i}: 1 \leq i \leq n\right\}$.
Let $\mathrm{E}\left(K_{1,1, n}\right)=\{(\mathrm{uv}): 1 \leq i \leq n\} \cup\left\{\left(\mathrm{uv}_{\mathrm{i}}\right): 1 \leq i \leq n\right\} \cup\left\{\left(\mathrm{vv}_{\mathrm{i}}\right): 1 \leq i \leq n\right\}$.
Define $\mathrm{f}: \mathrm{V}\left(K_{1,1, n}\right) \rightarrow \mathrm{V}_{4}$ by

Case(i): when $n \equiv 0(\bmod 4)$

Let $\mathrm{f}(\mathrm{u})=-1, \mathrm{f}(\mathrm{v})=1$
$\mathrm{f}\left(v_{i}\right)=\left\{\begin{array}{rl}1 & \text { if } i \equiv 0(\bmod 4) \\ -1 & \text { if } i \equiv 1(\bmod 4) \\ i & \text { if } i \equiv 2(\bmod 4) \\ -i & \text { if } i \equiv 3(\bmod 4)\end{array} \quad, 1 \leq i \leq n\right.$
The induced edge labelings are
Let $\mathrm{f}(u) * \mathrm{f}(v)=-1$
$\mathrm{f}(u) * \mathrm{f}\left(v_{i}\right)=\left\{\begin{array}{rl}-1 & \text { if } i \\ 1 & \equiv 0(\bmod 4) \\ \text { if } i & \equiv 1(\bmod 4) \\ -i & \text { if } i \\ i & \text { if } i \equiv 2(\bmod 4)\end{array} \quad, 1 \leq i \leq n\right.$
$\mathrm{f}(v) * \mathrm{f}\left(v_{i}\right)=\left\{\begin{array}{rl}1 & \text { if } i\end{array}=0(\bmod 4) \quad\right.$ (\quad if $i \equiv 1(\bmod 4) \quad, \quad, 1 \leq i \leq n$

Vertex Conditions:

Here, $v_{f}(1)=v_{f}(-1)=\frac{n}{4}+1$ and $v_{f}(i)=v_{f}(-i)=\frac{n}{4}$.
Hence, $\left|v_{f}(a)-v_{f}(b)\right| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{V}_{4}$.

Edge Conditions:

Here, $e_{f}(1)=e_{f}(i)=e_{f}(-i)=\frac{n}{2}$ and $e_{f}(-1)=\frac{n}{2}+1$.
Hence, $\left|e_{f}(a)-e_{f}(b)\right| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{V}_{4}$.
Hence, $K_{1,1, n}$ is a V_{4} Cordial Graph .
For example, the V_{4} Cordial Labeling of $K_{1,1,4}$ is shown in the Figure 3.3.1.

Figure 3.3.1

Case(ii): when $n \equiv 1(\bmod 4)$

Let $\mathrm{f}(\mathrm{u})=i, \mathrm{f}(\mathrm{v})=1$
$\mathrm{f}\left(v_{i}\right)=\left\{\begin{array}{rl}1 & \text { if } i \equiv 0(\bmod 4) \\ -1 & \text { if } i \equiv 1(\bmod 4) \\ i & \text { if } i \equiv 2(\bmod 4) \\ -i & \text { if } i \equiv 3(\bmod 4)\end{array} \quad, 1 \leq i \leq n\right.$
The induced edge labelings are
Let $\mathrm{f}(u) * \mathrm{f}(v)=i$
$\mathrm{f}(u) * \mathrm{f}\left(v_{i}\right)=\left\{\begin{array}{rl}i & \text { if } i \equiv 0(\bmod 4) \\ -i & \text { if } i \equiv 1(\bmod 4) \\ -1 & \text { if } i \equiv 2(\bmod 4) \\ 1 & \text { if } i \equiv 3(\bmod 4)\end{array} \quad, 1 \leq i \leq n\right.$
$\mathrm{f}(v) * \mathrm{f}\left(v_{i}\right)=\left\{\begin{array}{rl}1 & \text { if } i \equiv 0(\bmod 4) \\ -1 & \text { if } i \equiv 1(\bmod 4) \\ i & \text { if } i \equiv 2(\bmod 4) \\ -i & \text { if } i \equiv 3(\bmod 4)\end{array} \quad, 1 \leq i \leq n\right.$

Vertex Conditions:

Here, $v_{f}(1)=v_{f}(-1)=v_{f}(i)=\frac{n-1}{4}+1$ and $v_{f}(-i)=\frac{n-1}{4}$.
Hence, $\left|v_{f}(a)-v_{f}(b)\right| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{V}_{4}$.

Edge Conditions:

Here, $e_{f}(1)=\frac{n-1}{2}$ and $e_{f}(i)=e_{f}(-1)=e_{f}(-i)=\frac{n+1}{2}$.
Hence, $\left|e_{f}(a)-e_{f}(b)\right| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{V}_{4}$.
Hence, $K_{1,1, n}$ is a V_{4} Cordial Graph .
For example, the V_{4} Cordial Labeling of $K_{1,1,5}$ is shown in the Figure3.3.2.

Case(iii): when $n \equiv 2(\bmod 4)$

Let $\mathrm{f}(\mathrm{u})=-i, \mathrm{f}(\mathrm{v})=1$
$\mathrm{f}\left(v_{i}\right)=\left\{\begin{array}{rl}1 & \text { if } i \equiv 0(\bmod 4) \\ -1 & \text { if } i \equiv 1(\bmod 4) \\ i & \text { if } i \equiv 2(\bmod 4) \\ -i & \text { if } i \equiv 3(\bmod 4)\end{array} \quad, 1 \leq i \leq n\right.$
The induced edge labelingare
Let $\mathrm{f}(u) * \mathrm{f}(v)=-i$
$\mathrm{f}(u) * \mathrm{f}\left(v_{i}\right)=\left\{\begin{array}{rl}-i & \text { if } i \equiv 0(\bmod 4) \\ i & \text { if } i \equiv 1(\bmod 4) \\ 1 & \text { if } i \equiv 2(\bmod 4) \\ -1 & \text { if } i \equiv 3(\bmod 4)\end{array} \quad, 1 \leq i \leq n\right.$
$\mathrm{f}(v) * \mathrm{f}\left(v_{i}\right)=\left\{\begin{array}{rl}1 & \text { if } i \equiv 0(\bmod 4) \\ -1 & \text { if } i \equiv 1(\bmod 4) \\ i & \text { if } i \equiv 2(\bmod 4) \\ -i & \text { if } i \equiv 3(\bmod 4)\end{array} \quad, 1 \leq i \leq n\right.$

Vertex Conditions:

Here, $v_{f}(1)=v_{f}(-1)=v_{f}(i)=v_{f}(-i)=\frac{n-2}{4}+1$.
Hence, $\left|v_{f}(a)-v_{f}(b)\right| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{V}_{4}$.

Edge Conditions:

(i) $e_{f}(1)=e_{f}(-i)=e_{f}(-1)=\frac{n}{2}$ and $e_{f}(i)=\frac{n+2}{2}$.

Hence, $\left|e_{f}(a)-e_{f}(b)\right| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{V}_{4}$.
Hence, $K_{1,1, n}$ is a V_{4} Cordial Graph .

For example, the V_{4} Cordial Labeling of $K_{1,1,6}$ is shown in the

Figure3.3.3.

Case(iv): when $n \equiv 3(\bmod 4)$

Let $\mathrm{f}(\mathrm{u})=1, \mathrm{f}(\mathrm{v})=1$
$\mathrm{f}\left(v_{i}\right)=\left\{\begin{array}{rl}1 & \text { if } i \equiv 0(\bmod 4) \\ -1 & \text { if } i \equiv 1(\bmod 4) \\ i & \text { if } i \equiv 2(\bmod 4) \\ -i & \text { if } i \equiv 3(\bmod 4)\end{array} \quad, 1 \leq i \leq n\right.$
The induced edge labelings are
Let $\mathrm{f}(u) * \mathrm{f}(v)=1$

$\mathrm{f}(u) * \mathrm{f}\left(v_{i}\right)=\left\{\begin{array}{rl}1 & \text { if } i \equiv 0(\bmod 4) \\ -1 & \text { if } i \equiv 1(\bmod 4) \\ i & \text { if } i \equiv 2(\bmod 4) \\ -i & \text { if } i \equiv 3(\bmod 4)\end{array} \quad, 1 \leq i \leq n\right.$

Vertex Conditions:

Here, $v_{f}(1)=\frac{n+1}{4}+1$ and $v_{f}(-1)=v_{f}(i)=v_{f}(-i)=\frac{n+1}{4}$.
Hence, $\left|v_{f}(a)-v_{f}(b)\right| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{V}_{4}$.

Edge Conditions:

Here, $e_{f}(i)=e_{f}(-1)=e_{f}(-i)=\frac{n+1}{2}$ and $e_{f}(1)=\frac{n-1}{2}$.
Hence, $\left|e_{f}(a)-e_{f}(b)\right| \leq 1, \forall \mathrm{a}, \mathrm{b} \in \mathrm{V}_{4}$.
Hence, $K_{1,1, n}$ is a V_{4} Cordial Graph .
For example, the V_{4} Cordial Labeling of $K_{1,1,7}$ is shown in the Figure3.3.4.

4.References

1. G.J. Gallian, A Dynamic survey of graph labeling, The electronic journal of combinotorics, 16 (2009), \#DS6.
2. S.W Golomb, How to number a graph in graph Theory and computing, R.C. Read, ed., Academic Press, New York (1972), 23-37.
3. A. Rosa, On certain valuations of the vertices of a graph, Theory of graphs (International Symposium, Rome), July (1966).
4. Frank Harary, Graph Theory, Narosa publishing house pvt. Ltd.,10 ${ }^{\text {th }}$ reprint 2001.
5. J Gross and J Yeiien, Handbook of graph theory, CRC Press, 2004.
6. M. Hovey, A-cordial graphs, Discrete Math.,Vol 93(1991), 183-194.
7. R. Tao, On k-cordiality of cycles, crowns and wheels, Systems Sci., 11 (1998), 227-229.
8. M.Z. Youssef, On k-cordial labeling,Australas.J. Combin.,Vol 43(2009),31-37.
9. M.V.Modha, K.K.Kanani, Some new families of 5-cordial graphs, International Journal of Mathematics and Soft Computing, Vol.5, No.1(2015), 129-141.
10. L.Pandiselvi, S.NavaneethaKrishnan and A.NellaiMurugan, Path Related V_{4} Cordial graphs International Journal of Recent advances in Multidisiplinary Research, Vol. 03, Issue 02, pp.1285-1294, February, 2016,
11. L.Pandiselvi, S.NavaneethaKrishnan and A.NellaiMurugan, Bi-Star V_{4} Cordial Graphs International Journal Of Advanced Science and Research Vol. 1,Issue 2, Feb 2016. Pg no:14-21.
12. L.Pandiselvi, A.NellaiMurugan, and S.NavaneethaKrishnan V_{4} Cordial Graphs of Fan and Globe International Journal of Applied Research2016; 2(4): 344-350.
