International Journal of Mathematics and Computer Research

ISSN: 2320-7167
Volume 12 Issue 04 April 2024, Page no. - 4139-4144
Index Copernicus ICV: 57.55, Impact Factor: $\mathbf{8 . 3 1 6}$
DOI: 10.47191/ijmcr/v12i4.04

On Alpha and Gamma Gourava Indices

V. R. Kulli
Department of Mathematics, Gulbarga University, Gulbarga 585106, India

ARTICLE INFO	ABSTRACT
Published Online:	In this paper, we introduce the alpha Gourava and gamma Gourava indices of a graph. Also we
11 April 2024	compute the alpha and gamma Gourava indices of some standard graphs, armchair polyhex
Corresponding Author:	nanotubes and zigzag polyhex nanotubes.

V. R. Kulli

KEYWORDS: alpha Gourava index, gamma Gourava index, nanotube.

I. INTRODUCTION

The graph $G=(V(G), E(G))$, where $V(G)$ be the vertex set and $E(G)$ be the edge set. Let d_{u} be the degree of a vertex u. For undefined term and notation, we refer the book [1].
Graph indices [2] have their applications in various disciplines of Science and Engineering. A molecular structure is a graph whose vertices correspond to the atoms and edges to the bonds. Studying molecular structures is a constant focus in Chemical Graph Theory: an effort to better understand molecular structure of a molecule.

Recently some graph indices were studied in $[3,4,5,6]$.

The first and second Zagreb indices [7] of a graph G are defined as

$$
\begin{aligned}
& M_{1}(G)=\sum_{u v \in E(G)}\left(d_{u}+d_{v}\right) \\
& M_{2}(G)=\sum_{u v \in E(G)} d_{u} d_{v} .
\end{aligned}
$$

The F index [8] of a graph G is defined as

$$
F(G)=\sum_{u v \in E(G)}\left(d_{u}^{2}+d_{v}^{2}\right) .
$$

The Y index [9] of a graph G is defined as

$$
Y(G)=\sum_{u v \in E(G)}\left(d_{u}^{3}+d_{v}^{3}\right)
$$

In [10], the generalization of first Zagreb index was proposed, defined as
$M_{1}^{a+1}(G)=\sum_{u \in V(G)} d_{G}(u)^{a+1}=\sum_{u v \in E(G)}\left[d_{u}^{a}+d_{v}^{a}\right]$.

The first and second Gourava indices [11] of a graph G are defined as

$$
\begin{aligned}
G O_{1}(G) & =\sum_{u v \in E(G)}\left[d_{u}+d_{v}+d_{u} d_{v}\right] . \\
G O_{2}(G) & =\sum_{u v \in E(G)}\left(d_{u}+d_{v}\right)\left(d_{u} d_{v}\right) \\
& =\sum_{u v \in E(G)}\left(d_{u}^{2} d_{v}+d_{u} d_{v}^{2}\right) .
\end{aligned}
$$

Recently some Gourava indices were studied, for example, in [12-25].

Motivated by the definitions of the first and second Gourava indices, we define the first and second alpha Gourava indices of a graph G as

$$
\begin{aligned}
A G O_{1}(G) & =\sum_{u v \in E(G)}\left[d_{u}^{2}+d_{v}^{2}+d_{u} d_{v}\right] \\
A G O_{2}(G) & =\sum_{u v \in E(G)}\left(d_{u}^{2}+d_{v}^{2}\right)\left(d_{u} d_{v}\right) \\
& =\sum_{u v \in E(G)}\left(d_{u}^{3} d_{v}+d_{u} d_{v}^{3}\right) .
\end{aligned}
$$

Also we define the first and second gamma Gourava indices of a graph G as

$$
\begin{aligned}
G G O_{1}(G) & =\sum_{u v \in E(G)}\left[d_{u}^{3}+d_{v}^{3}+d_{u} d_{v}\right] \\
G G O_{2}(G) & =\sum_{u v \in E(G)}\left(d_{u}^{3}+d_{v}^{3}\right)\left(d_{u} d_{v}\right) \\
& =\sum_{u v \in E(G)}\left(d_{u}^{4} d_{v}+d_{u} d_{v}^{4}\right) .
\end{aligned}
$$

May be the following generalizations of Gourava indices would make sense:

$$
\begin{aligned}
G O_{1}^{a}(G) & =\sum_{u v \in E(G)}\left[d_{u}^{a}+d_{v}^{a}+d_{u} d_{v}\right] . \\
G O_{2}^{a}(G) & =\sum_{u v \in E(G)}\left(d_{u}^{a}+d_{v}^{a}\right)\left(d_{u} d_{v}\right) \\
& =\sum_{u v \in E(G)}\left(d_{u}^{a+1} d_{v}+d_{u} d_{v}^{a+1}\right)
\end{aligned}
$$

where a is a real number.

In this paper, we compute the alpha and gamma Gourava indices of some standard graphs, armchair polyhex nanotubes and zigzag polyhex nanotubes.

II. RESULTS FOR SOME STANDARD GRPHS

Proposition 1. If G is an r-regular graph with n vertices, then $A G O_{1}(G)=\frac{3}{2} n r^{5}$.
Proof: If G is an r-regular graph with n vertices, then G has $\frac{n r}{2}$ edges. The degree of each vertex of G is r.

$$
\begin{aligned}
A G O_{1}(G) & =\sum_{u v \in E(G)}\left[d_{u}^{2}+d_{v}^{2}+d_{u} d_{v}\right] \\
& =\frac{1}{2} n r\left[\left(r^{2}+r^{2}\right)+r^{2}\right]=\frac{3}{2} n r^{5} .
\end{aligned}
$$

Corollary 1.1. Let C_{n} be a cycle with $n \geq 3$ vertices. Then $A G O_{1}\left(C_{n}\right)=48 n$.

Corollary 1.2. Let K_{n} be a complete graph with $n \geq 2$ vertices.
Then $A G O_{1}\left(K_{n}\right)=\frac{3}{2} n(n-1)^{5}$.
Proposition 2. Let $K_{m, n}$ be a complete bipartite graph with $1 \leq m \leq n$. Then

$$
A G O_{1}\left(K_{m, n}\right)=\left[\left(m^{2}+n^{2}\right)+(m \times n)\right] m n .
$$

Proof: Let $K_{m, n}$ be a complete bipartite graph with $1 \leq m \leq n$. Then $K_{m, n}$ has $m+n$ vertices and $m n$ edges such that $\left|V_{1}\right|=m$, $\left|V_{2}\right|=n, \quad V\left(K_{m, n}\right)=V_{1} \cup V_{2}$. Clearly every vertex of V_{1} is adjacent with n vertices and every vertex of V_{2} is adjacent with m vertices.
We have

$$
\begin{gathered}
A G O_{1}\left(K_{m, n}\right)=\sum_{u v \in E\left(K_{m, n}\right)}\left[d_{u}^{2}+d_{v}^{2}+d_{u} d_{v}\right] \\
=\left[\left(m^{2}+n^{2}\right)+(m \times n)\right] m n .
\end{gathered}
$$

Corollary 2.1. Let $K_{n, n}$ be a complete bipartite graph with n ≥ 1 vertices. Then

$$
A G O_{1}\left(K_{n, n}\right)=3 n^{4}
$$

Corollary 2.2. Let $K_{l, n}$ be a complete bipartite graph with n ≥ 1 vertices. Then

$$
A G O_{1}\left(K_{1, n}\right)=n\left(1+n+n^{2}\right)
$$

Proposition 3. Let P_{n} be a path with $n \geq 3$ vertices. Then $A G O_{1}\left(P_{n}\right)=12 n-8$.

Proof: Let $G=P_{n}$ be a path with $n \geq 3$ vertices. We obtain two partitions of edge set of P_{n} as follows:
$E_{3}=\left\{u v \in E(G) \mid d_{G}(u)=1, d_{G}(v)=2\right\}, \quad\left|E_{3}\right|=2$.
$E_{4}=\left\{u v \in E(G) \mid d_{G}(u)=d_{G}(v)=2\right\}, \quad\left|E_{4}\right|=n-3$.
We have

$$
\begin{aligned}
& \quad A G O_{1}(G)=\sum_{u v \in E(G)}\left[d_{u}^{2}+d_{v}^{2}+d_{u} d_{v}\right] \\
& =\left[\left(1^{2}+2^{2}\right)+(1 \times 2)\right] 2+\left[\left(2^{2}+2^{2}\right)+(2 \times 2)\right](n-3) \\
& =12 n-8 .
\end{aligned}
$$

Similarly the second alpha Gourava index of some standard classes of graphs are computed

Proposition 4.

(1) Let G is an r-regular graph with n vertices. Then

$$
A G O_{2}(G)=n r^{5} .
$$

(2) Let C_{n} be a cycle with $n \geq 3$ vertices, then

$$
A G O_{2}\left(C_{n}\right)=32 n .
$$

(3) Let K_{n} be a complete graph with $n \geq 2$ vertices. Then

$$
A G O_{2}\left(K_{n}\right)=n(n-1)^{5}
$$

(4) Let $K_{m, n}$ be a complete bipartite graph with $1 \leq m \leq n$. Then $A G O_{2}\left(K_{m, n}\right)=\left(m^{2}+n^{2}\right) m^{2} n^{2}$.
(5) Let P_{n} be a path with $n \geq 3$ vertices. Then

$$
A G O_{2}\left(P_{n}\right)=32 n-76
$$

Proposition 5. If G is an r-regular graph with n vertices, then $G G O_{1}(G)=\frac{1}{2} n r^{3}(2 r+1)$.
Proof: If G is an r-regular graph with n vertices, then G has $\frac{n r}{2}$ edges. The degree of each vertex of G is r.

$$
\begin{aligned}
G G O_{1}(G) & =\sum_{u v \in E(G)}\left[d_{u}^{3}+d_{v}^{3}+d_{u} d_{v}\right] \\
& =\frac{1}{2} n r\left[\left(r^{3}+r^{3}\right)+r^{2}\right]=\frac{1}{2} n r^{3}(2 r+1) .
\end{aligned}
$$

Corollary 5.1. Let C_{n} be a cycle with $n \geq 3$ vertices. Then $G G O_{1}\left(C_{n}\right)=20 n$.

Corollary 5.2. Let K_{n} be a complete graph with $n \geq 2$ vertices.
Then $G G O_{1}\left(K_{n}\right)=\frac{1}{2} n(n-1)^{3}(2 n-1)$.
Proposition 6. Let $K_{m, n}$ be a complete bipartite graph with $1 \leq m \leq n$. Then

$$
G G O_{1}\left(K_{m, n}\right)=\left[\left(m^{3}+n^{3}\right)+(m \times n)\right] m n
$$

Proof: Let $K_{m, n}$ be a complete bipartite graph with $1 \leq m \leq n$. Then $K_{m, n}$ has $m+n$ vertices and $m n$ edges such that $\left|V_{1}\right|=m$, $\left|V_{2}\right|=n, \quad V\left(K_{m, n}\right)=V_{1} \cup V_{2}$. Clearly every vertex of V_{1} is adjacent with n vertices and every vertex of V_{2} is adjacent with m vertices.
We have

$$
\begin{gathered}
G G O_{1}\left(K_{m, n}\right)=\sum_{u v \in E\left(K_{m, n}\right)}\left[d_{u}^{3}+d_{v}^{3}+d_{u} d_{v}\right] \\
=\left[\left(m^{3}+n^{3}\right)+(m \times n)\right] m n .
\end{gathered}
$$

Corollary 6.1. Let $K_{n, n}$ be a complete bipartite graph with n ≥ 1 vertices. Then

$$
G G O_{1}\left(K_{n, n}\right)=(2 n+1) n^{4}
$$

Corollary 6.2. Let $K_{l, n}$ be a complete bipartite graph with n ≥ 1 vertices. Then

$$
G G O_{1}\left(K_{1, n}\right)=n\left(1+n+n^{3}\right)
$$

Proposition 7. Let P_{n} be a path with $n \geq 3$ vertices. Then $G G O_{1}\left(P_{n}\right)=20 n-38$.
Proof: Let $G=P_{n}$ be a path with $n \geq 3$ vertices. We obtain two partitions of edge set of P_{n} as follows:
$\begin{array}{ll}E_{3}=\left\{u v \in E(G) \mid d_{G}(u)=1, d_{G}(v)=2\right\}, & \left|E_{3}\right|=2 . \\ E_{4}=\left\{u v \in E(G) \mid d_{G}(u)=d_{G}(v)=2\right\}, & \left|E_{4}\right|=n-3 .\end{array}$

$$
\left|E_{4}\right|=n-3 .
$$

We have

$$
\begin{aligned}
& \quad G G O_{1}(G)=\sum_{u v \in E(G)}\left[d_{u}^{3}+d_{v}^{3}+d_{u} d_{v}\right] \\
& =\left[\left(1^{3}+2^{3}\right)+(1 \times 2)\right] 2+\left[\left(2^{3}+2^{3}\right)+(2 \times 2)\right](n-3) \\
& =20 n-38
\end{aligned}
$$

Similarly the second alpha Gourava index of some standard classes of graphs are computed

Proposition 8.

(1) Let G is an r-regular graph with n vertices. Then $G G O_{2}(G)=n r^{6}$.
(2) Let C_{n} be a cycle with $n \geq 3$ vertices, then $G G O_{2}\left(C_{n}\right)=64 n$.

$$
G G O_{2}\left(K_{n}\right)=n(n-1)^{6} .
$$

(4) Let $K_{m, n}$ be a complete bipartite graph with $1 \leq m \leq n$. Then

$$
G G O_{2}\left(K_{m, n}\right)=\left(m^{3}+n^{3}\right) m^{2} n^{2} .
$$

(5) Let P_{n} be a path with $n \geq 3$ vertices. Then $G G O_{2}\left(P_{n}\right)=64 n-156$.

III. SOME PROPERTIES OF ALPHA AND GAMMA INDICES

Theorem 1. Let G be a connected graph on $n \geq 2$ vertices. Then

$$
A G O_{1}(G)=F(G)+M_{2}(G)
$$

Proof: We have

$$
\begin{aligned}
A G O_{1}(G) & =\sum_{u v \in E(G)}\left[d_{u}^{2}+d_{v}^{2}+d_{u} d_{v}\right] \\
& =\sum_{u v \in E(G)}\left(d_{u}^{2}+d_{v}^{2}\right)+\sum_{u v \in E(G)} d_{u} d_{v} \\
= & F(G)+M_{2}(G)
\end{aligned}
$$

From Theorem 1, the mathematical properties of $A G O_{1}$ can be directly deduced from these of $F(G)$ and $M_{2}(G)$.

Theorem 2. Let G be a connected graph on $n \geq 2$ vertices. Then

$$
G G O_{1}(G)=Y(G)+M_{2}(G)
$$

Proof: We have

$$
\begin{aligned}
G G O_{1}(G) & =\sum_{u v \in E(G)}\left[d_{u}^{3}+d_{v}^{3}+d_{u} d_{v}\right] \\
& =\sum_{u v \in E(G)}\left(d_{u}^{3}+d_{v}^{3}\right)+\sum_{u v \in E(G)} d_{u} d_{v} \\
= & Y(G)+M_{2}(G) .
\end{aligned}
$$

From Theorem 2, the mathematical properties of $G G O_{1}$ can be directly deduced from these of $Y(G)$ and $M_{2}(G)$.

Theorem 3. Let G be a connected graph on $n \geq 2$ vertices. Then

$$
G O_{1}^{a}(G)=M_{1}^{a+1}(G)+M_{2}(G)
$$

Proof: We have

$$
\begin{aligned}
G O_{1}^{a}(G) & =\sum_{u v \in E(G)}\left[d_{u}^{a}+d_{v}^{a}+d_{u} d_{v}\right] \\
& =\sum_{u v \in E(G)}\left(d_{u}^{a}+d_{v}^{a}\right)+\sum_{u v \in E(G)} d_{u} d_{v} \\
& =M_{1}^{a+1}(G)+M_{2}(G) .
\end{aligned}
$$

(3) Let K_{n} be a complete graph with $n \geq 2$ vertices. Then

From Theorem 3, the mathematical properties of $G O_{1}^{a}$ can be directly deduced from these of $M_{1}^{a+1}(G)$ and $M_{2}(G)$.

IV. RESULTS FOR ARMCHAIR POLYHEX NANOTUBES

Carbon polyhex nanotubes are the nanotubes whose cylindrical surface nanotubes are the nanotubes whose cylindrical surface is made up of entirely hexagons. These polyhex nanotubes exist in nature with remarkable stability and poses very interesting electrical, mechanical and thermal properties. Armchair polyhex nanotube is denoted by $T U A C_{6}[p, q]$, where p is the number of hexagons in a row and q is the number of hexagons in a column. A graph of $T U A C_{6}[p, q]$ is shown in Figure 1.

Figure 1. Graph of $T U A C_{6}[p, q]$

Let $G=T U A C_{6}[p, q]$ where $p, q \geq 1$. By calculation, G has $2 p(q+1)$ vertices and $3 p q+2 p$ edges. There are three types of edges based on degree of end vertices of each edge as given Table 1

Table 1. Edge partition of TUAC6[p, q]

$d_{u}, d_{v} \backslash u v \in E(G)$	Number of edges
	p
$(2,2)$	$2 p$
$(2,3)$	$3 p q-p$

Theorem 4. The general first Gourava index of $T U A C_{6}[p, q]$ is

$$
\begin{align*}
G O_{1}^{a}(G) & =p\left[2^{a+1}+4\right]+2 p\left[2^{a}+3^{a}+6\right] \\
& +(3 p q-p)\left[2 \times 3^{a}+9\right] \tag{1}
\end{align*}
$$

Proof: Let $G=$ TUAC $_{6}[p, q]$. By using equation (1) and Table 1, we deduce

$$
\begin{aligned}
& G{ }_{1}^{a}(O)=\sum_{u \in(v)}^{G}\left[{ }_{u}{ }_{E}^{+{ }^{a}}{ }_{G}+{ }_{v} d^{a}\right] \\
& =p\left[2^{a}+2^{a}+(2 \times 2)\right]+2 p\left[2^{a}+3^{a}+(2 \times 3)\right] \\
& +(3 p q-p)\left[3^{a}+3^{a}+(3 \times 3)\right] \\
& =p\left[2^{a+1}+4\right]+2 p\left[2^{a}+3^{a}+6\right]+(3 p q-p)\left[2 \times 3^{a}+9\right] .
\end{aligned}
$$

We obtain the following results by using Theorem 4.

Corollary 4.1. The first Gourava index of $T U A C_{6}[p, q]$ is $G O_{1}(G)=45 p q+15 p$.
Corollary 4.2. The first alpha Gourava index of $T U A C_{6}[p, q]$ is

$$
A G O_{1}(G)=81 p q+23 p
$$

Corollary 4.3. The first gamma Gourava index of $T U A C_{6}[p$, q] is

$$
G G O_{1}(G)=189 p q+39 p
$$

Proof: Put $a=1,2,3$ in equation (1), we get the desired results respectively.

Theorem 5. The general second Gourava index of $T U A C_{6}[p$, q] is

$$
\begin{align*}
G O_{2}^{a}(G)= & 2^{a+3} p+12\left(2^{a}+3^{a}\right) p \\
& +2 \times 3^{a+2}(3 p q-p) \tag{2}
\end{align*}
$$

Proof: Let $G=T U A C_{6}[p, q]$. We have

$$
\begin{aligned}
& G O_{2}^{a}(G)=\sum_{u v \in E(G)}\left(d_{u}^{a}+d_{v}^{a}\right)\left(d_{u} d_{v}\right) \\
= & p\left[\left(2^{a}+2^{a}\right)(2 \times 2)\right]+2 p\left[\left(2^{a}+3^{a}\right)(2 \times 3)\right] \\
+ & (3 p q-p)\left[\left(3^{a}+3^{a}\right)(3 \times 3)\right] \\
= & 2^{a+3} p+12\left(2^{a}+3^{a}\right) p+2 \times 3^{a+2}(3 p q-p) .
\end{aligned}
$$

We obtain the following results by using Theorem 5 .

Corollary 5.1. The second Gourava index of $T U A C_{6}[p, q]$ is $G O_{2}(G)=162 p q+22 p$.

Corollary 5.2. The second alpha Gourava index of $T U A C_{6}[p$, q] is

$$
A G O_{2}(G)=486 p q+26 p
$$

Corollary 5.3. The second gamma Gourava index of $T U A C_{6}$ $[p, q]$ is

$$
G G O_{2}(G)=1458 p q-2 p .
$$

Proof: Put $a=1,2,3$ in equation (2), we get the desired results respectively.

V. RESULTS FOR ZIGZAG POLYHEX NANOTUBES

Zigzag polyhex nanotube is denoted by $T U Z C_{6}[p, q]$, where p is the number of hexagons in a row and q is the number of hexagons in a column. A graph of $T U Z C_{6}[p, q]$ is presented in Figure 2.

Figure 2. Graph of $\operatorname{TUZC}_{6}[p, q]$

Let $G=T U Z C_{6}[p, q]$, where $p, q \geq 1$. By calculation, G has $2 p(q+1)$ vertices and $3 p q+2 p$ edges. There are two types of edges based on degree of end vertices of each edge as given in Table 2.

Table 2. Edge partition of $\operatorname{TUZC}_{6}[p, q]$

$d_{u}, d_{v} \backslash u v \in E(G)$	$(2,3)$	$(3,3)$
Number of edges	$4 p$	$3 p q-2 p$

Theorem 6. The general first Gourava index of $T U Z C_{6}[p, q]$ is

$$
G O_{1}^{a}(G)=4 p\left[2^{a}+3^{a}+6\right]+(3 p q-2 p)\left[2 \times 3^{a}+9\right]
$$

(3)

Proof: Let $G=$ TUZC $_{6}[p, q]$. We have

$$
\begin{aligned}
G O_{1}^{a}(G) & =\sum_{u v \in E(G)}\left[d_{u}^{a}+d_{v}^{a}+d_{u} d_{v}\right] \\
& =4 p\left[2^{a}+3^{a}+(2 \times 3)\right] \\
& +(3 p q-2 p)\left[3^{a}+3^{a}+(3 \times 3)\right] \\
=4 p & {\left[2^{a}+3^{a}+6\right]+(3 p q-2 p)\left[2 \times 3^{a}+9\right] . }
\end{aligned}
$$

We obtain the following results by using Theorem 6.

Corollary 6.1. The first Gourava index of $T U Z C_{6}[p, q]$ is

$$
G O_{1}(G)=45 p q+14 p
$$

Corollary 6.2. The first alpha Gourava index of $T U Z C_{6}[p, q]$ is

$$
A G O_{1}(G)=81 p q+22 p
$$

Corollary 6.3. The first gamma Gourava index of $T U Z C_{6}[p$, q] is

$$
G G O_{1}(G)=189 p q+38 p
$$

Proof: Put $a=1,2,3$ in equation (3), we get the desired results respectively.

Theorem 7. The general second Gourava index of $T U Z C_{6}[p$, $q]$

$$
\begin{equation*}
G O_{2}^{a}(G)=24\left(2^{a}+3^{a}\right) p+2 \times 3^{a+2}(3 p q-2 p) \tag{4}
\end{equation*}
$$

Proof: Let $G=T U Z C_{6}[p, q]$. We have

$$
\begin{aligned}
& \quad G O_{2}^{a}(G)=\sum_{u v \in E(G)}\left(d_{u}^{a}+d_{v}^{a}\right)\left(d_{u} d_{v}\right) \\
& =4 p\left[\left(2^{a}+3^{a}\right)(2 \times 3)\right]+(3 p q-2 p)\left[\left(3^{a}+3^{a}\right)(3 \times 3)\right] \\
& =24\left(2^{a}+3^{a}\right) p+2 \times 3^{a+2}(3 p q-2 p) .
\end{aligned}
$$

We obtain the following results by using Theorem 7.

Corollary 7.1. The second Gourava index of $T U A C_{6}[p, q]$ is $G O_{2}(G)=162 p q+12 p$.

Corollary 7.2. The second alpha Gourava index of $T U A C_{6}[p$, q] is

$$
A G O_{2}(G)=486 p q-12 p
$$

Corollary 7.3. The second gamma Gourava index of $T U A C_{6}$ $[p, q]$ is

$$
G G O_{2}(G)=729 p q+354 p
$$

Proof: Put $a=1,2,3$ in equation (4), we get the desired results respectively.

VI. CONCLUSION

In this paper, two novel invariants are considered which are the alpha Gourava index and gamma Gourava index. The alpha Gourava and gamma Gourava indices of some standard graphs, armchair polyhex nanotubes and zigzag polyhex nanotubes are determined.

REFERENCES

1. V.R.Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India (2012).
2. V.R. Kulli, Graphs indices, in Hand Book of Research in Advanced Applications of Graph Theory in Modern Society, M.Pal, S.Samanta, A.Pal (eds.) IGI Global, USA (2020) 66-91.
3. V.R.Kulli, K-edge index of some nanostructures, Journal of Computer and Mathematical Sciences, 7(7) (2016) 373-378.
4. V.R. Kulli New Kulli-Basava indices of graphs, International Research Journal of Pure Algebra, 9(7) (2019) 58-63.
5. V.R.Kulli, Geometric-quadratic and quadraticgeometric indices, Annals of Pure and Applied Mathematics, 25(1) (2022) 1-5. DOI: http://dx.doi.org/10.22457/apam.v25n1a01854.
6. V.R.Kulli, New direction in the theory of graph index in graphs, International Journal of Engineering Sciences \& Research Technology, 11(12) (2022) 1-8. DOI: 10.5281 /zenodo. 7505790.
7. I.Gutman and N.Trinajstic, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Let. 17 (1972) 535-538.
8. B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015), 1184-1190.
9. A.Alameri, N.Al-Naggar, M.Al-Rumaima and M.Alsharafi, Y-index of some graph operations, Int. J. of Applied Engineering Research, 15(2) (2020) 173-179.
10. $\mathrm{X} . \mathrm{Li}$ and $\mathrm{H} . \mathrm{Zhao}$, Trees with the first three smallest and largest generalized topological indices, MATCH Commun. Math. Comput. Chem. 50(2004) 57-62.
11. V.R.Kulli, The Gourava indices and coindices of graphs, Annals of Pure and Applied Mathematics, 14(1), (2017) 33-38. DOI: http://dx.doiorg/10.22457/apam.v14n1a4
12. M.Aruvi, J.M.Joseph and E.Ramganesh, The second Gourava index of some graph products, Advances in Mathematics: Scientific Journal, 9(12) (2020) 10241-10249.
13. G.N.Adithya, N.D.Soner and M.Kirankumar, Gourava indices for Jahangir graph and phase transfer catalyst, Journal of Emerging Technologies and Innovative Research, 10(6) (2023) f394-f399.
14. B.Basavanagoud and S.Policepatil, Chemical applicability of Gourava and hyper Gourava indices, Nanosystems: Physics, Chemistry, Mathematics, 12(2) (2021) 142-150.
15. V.R.Kulli, G.N.Adithya and N.D.Soner, Gourava indices of certain windmill graphs, International Journal of Mathematics Trends and Technology, 68(9) (2022) 51-59. https://doi.org/ 10.14445/22315373/IJMTT-V68I9P508.
16. V.R.Kulli, Gourava Sombor indices, International Journal of Engineering Sciences \& Research Technology, 11(11) (2022) 29-38. DOI: 10.5281/zenodo. 7505774.
17. V.R. Kulli, Gourava Nirmala indices of certain nanostructures, International Journal of Mathematical Archive, 14(2) (2023) 1-9.
18. V.R.Kulli, Gourava domination indices of graphs, International Journal of Mathematics and

Computer Research, 11(8) (2023) 3680-3684. DOI:10.47191/ijmcr/v11i8.08.
19. V.R.Kulli, Sum and product connectivity Gouravs domination indices of graphs, International Journal of Mathematics and Statistics Invention, 11(4) (2023) 35-43. DOI:10.35629/4767-11043543.
20. V.R.Kulli, On hyper Gourava domination indices, International Journal of Engineering Sciences \& Research Technology, 12(10) (2023) 12-20. DOI: 10.5281/zenodo.10036777.
21. K.G.Mirajkar and B.Pooja, On Gourava indices of som chemical graphs, International Journal of Applied Engineering research, 14(3) (2019) 743749.
22. P.Poojary, A.Raghavendra, B.G.Shenoy, M.R.Farahani and B.Sooryanarayana, Certain topological indices and polynomials for the Isaac graphs, Journal of Discrete Mathematical Sciences \&Cryptography, 24(2) (2021) 511-525.
23. Qi-Zhao Li, A.Virk, K.Nazar, I.Ahmed and I.Tlili, Valency based descriptors for silicon carbides bismuth (III) iodide and dendrimers in drug applications, Journal of Chemistry, vol. 2020, article ID 8616309, 17 pages.
24. M.C.Shanmukha, K.N.Anilkumar, N.S.Basavarajappa and K.M.Niranjan, Topological indices on properties of line graph of subdivision of plane graphs, Advances in Mathematics: Scientific Journal 9(4) (2020) 2121-2135.
25. Y.Wang, S.Kanwal, M.Liaqat, A.Aslam and U.Bashir, On second Gourava invariant for q-apex trees, Journal of Chemistry, vol. 2022, Article ID 7513770, 7 pages.

