Some New Results on Prime Graphs

Dr. S. Meena ${ }^{1}$, P. Kavitha ${ }^{2}$
${ }^{1}$ Associate Professor, Govt, Arts \& Science College, Chidambaram- 608 102, India.
E-mail: meenasaravana14@gmail.com,
${ }^{2}$ Assistant Professor, S.R.M University, Chennai- 603 203, India
E-mail: kavithavps@gmail.com,

Abstract

: A graph $G=(V, E)$ with n vertices is said to admit prime labeling if its vertices can be labeled with distinct positive integers not exceeding n such that the label of each pair of adjacent vertices are relatively prime. A graph G which admits prime labeling is called a prime graph. And a graph G is said to be a strongly prime graph if for any vertex v of G there exists a prime labeling f satisfying $f(v)=1$. In this paper we investigate prime labeling for some graphs related to Star, Cycle, $C_{n}\left(C_{n}\right)$ graph, H - graph and also we prove that Crown graph, $G \square S_{2}$ where G is a Cycle, are strongly prime Graphs.

Keywords: Prime Labeling, Prime Graph, Strongly Prime Graph .

1.0 Introduction:

In this paper, we consider only simple, finite, undirected and non trivial graph $G=(V(G), E(G))$ with the vertex $\operatorname{set} V(G)$ and the edge set $E(G)$. The set of vertices adjacent to a vertex u of $V(G)$ is denoted by $\mathrm{N}(\mathrm{u})$. For notations and terminology we refer to Bondy and Murthy [1].

The notion of a prime labeling was introduced by Roger Entringer and was discussed in a paper by Tout.A (1982 P 365-368) [7] Two integers a and b are said to be relatively prime if their greatest common divisor is 1 . Relatively prime numbers play an important role in both analytic and algebraic number theory. Many researchers have studied prime graph. For example Fu.H (1994 P 181-186) [3] have proved that path P_{n} on n vertices is a prime graph. Deresky.T (1991 P 359-369) [2] have proved that the C_{n} on n vertices is a prime graph. Lee.S (1998 P 59-67) [5] have proved that wheel W_{n} is a prime graph iff n is even. Around 1980 Roger Etringer conjectured that all trees having prime labeling which is not settled till today. In [8] S.K.Vaidya and K.K.Kanani have proved the Prime Labeling For Some Cycle Related Graph. In [9] S.K.Vaidya and Udayan M.Prajapati have introduced Strongly prime graph and has proved the C_{n}, P_{n} and $K_{1, n}$ are Strongly prime graphs and W_{n} is a Strongly prime graph for every even integer $n \geq 4$, in Some New Results On Prime Graph (2012 P 99-104).

In [6] S.Meena and K.Vaithiligam have proved some results on Prime Labeling For Some Helm Related Graphs (2013 P 1075-1085).In [10] R.Vasuki and A.Nagarajan have proved Some Results On Super Mean Graphs Vol. 3 (2009), 82-96.For latest Dynamic Survey On Graph Labeling we refer to [4] (Gallian J.A., 2009). Vast amount of literature is available on different types of graph labeling more than 1000 research papers have been published so far in last four decades.

Definition 1.1:

Let $G=(V(G), E(G))$ be a graph with p vertices. A bijection $f: \mathrm{V}(G) \rightarrow\{1,2, \ldots \ldots p\}$ is called a prime labeling if for each edge $e=u v, \operatorname{gcd}\{f(u), f(v)\}=1$. A graph which admits prime labeling is called a prime graph.

Definition 1.2:

A graph G is said to be a strongly prime graph if for any vertex v of G there exists a prime labeling f satisfying $f(v)=1$.

Definition 1.3:

A graph H is called a super subdivision of a graph G, if every edge $u v$ of G is replaced by $K_{2, m}$ ['m' may vary for each edge] by identifying u and v with the two vertices in $K_{2, m}$ that form one of the two partite sets.

Definition 1.4:

The corona of a graph G on p vertices $v_{1}, v_{2}, \ldots v_{p}$ is the graph obtained from G by adding p new vertices $u_{1}, u_{2}, \ldots u_{p}$ and the new edges $u_{i} v_{i}$ for $1 \leq i \leq p$, denoted by $G \square K_{1}$. For a graph G, the 2-Corona of G is the graph obtained from G by identifying the center vertex of the star at S_{2} at each vertex of G, denoted by $G \square S_{2}$.

Definition 1.5:

The H graph of a path P_{n} is the graph obtained from two copies of P_{n} with vertices $u_{1}, u_{2}, \ldots u_{n}$ and $v_{1}, v_{2}, \ldots v_{n}$ by joining the vertices $u_{\frac{n+1}{2}}$ and $v_{\frac{n+1}{2}}$ if n is odd and the vertices $u_{\frac{n}{2}+1}$ and $v_{\frac{n}{2}}$ if n is even.

Definition 1.6:

Let $G=(V, E)$ be a graph. Let $e=u v$ be an edge of G and w is not a vertex of G. The edge e is subdivided when it is replaced by edges $e=u w$ and $e=w v$. Let $G=(V, E)$ be a graph. If every edge of graph G is subdivided, then the resulting graph is called barycentric subdivision of graph G. In other words barycentric subdivision is the graph obtained by inserting a vertex of degree two into every edge of original graph. Consider barycentric subdivision of cycle and join each newly inserted vertices of incident edges by an edge. We denote the new graph by $C_{n}\left(C_{n}\right)$ as it look like C_{n} inscribed in C_{n}.

Definition 1.7:

The Crown graph C_{n}^{*} is obtained from a cycle C_{n} by attaching a pendent edge at each vertex of the n-cycle.

2.0 Prime Graphs:

Theorem 2.1:

The graph H obtained by Super subdivision of a star graph G where every edge $u v$ of G is replaced by $K_{2,2}$ then H is a prime graph.

Proof:

Let H be the graph obtained by the super subdivision of a star graph G where every edge $u v$ of G is replaced by $K_{2,2}$. Now let G be the star graph with vertices $u_{0}, u_{1}, u_{2}, \ldots, u_{n}$ where u_{0} is the centre vertex. Let every edge $u_{0} u_{i}$ of G be replaced by v_{i} and w_{i} by joining $v_{i} u_{0}, v_{i} u_{i}$ and $w_{i} u_{0}, w_{i} u_{i}$ for $1 \leq i \leq n$. Then the required graph H has edge set, $E(H)=\left\{u_{0} v_{i}, u_{0} w_{i} / 1 \leq i \leq n\right\} \cup\left\{u_{1} v_{i}, u_{1} w_{i} / 1 \leq i \leq n\right\}$
and the vertex set $V(H)=\left\{u_{0}, u_{1}, u_{2}, \ldots u_{n}, v_{1}, v_{2}, \ldots v_{n}, w_{1}, w_{2}, \ldots w_{n}\right\}$
here $|V(H)|=3 n+1$ where n is a positive integer.
Define a labeling $f: \mathrm{V}(H) \rightarrow\{1,2, \ldots 3 \mathrm{n}+1\}$ as follows:
$f\left(\mathrm{u}_{0}\right)=1$,
$f\left(\mathbf{u}_{i}\right)=3 i, \quad$ for $1 \leq i \leq n$,
$f\left(v_{i}\right)=3 i-1, \quad$ for $1 \leq i \leq n$,
$f\left(w_{i}\right)=3 i+1, \quad$ for $1 \leq i \leq n$,
here $\operatorname{gcd}\left(f\left(u_{0}\right), f\left(v_{i}\right)\right)=\operatorname{gcd}\left(1, f\left(v_{i}\right)\right)=1$,
$\operatorname{gcd}\left(f\left(u_{0}\right), f\left(w_{i}\right)\right)=\operatorname{gcd}\left(1, f\left(w_{i}\right)\right)=1$,
$\operatorname{gcd}\left(f\left(v_{i}\right), f\left(u_{i}\right)\right)=\operatorname{gcd}(3 i-1,3 i)=1$,
and $\operatorname{gcd}\left(f\left(w_{i}\right), f\left(u_{i}\right)\right)=\operatorname{gcd}(3 i+1,3 i)=1$. for $1 \leq i \leq n$,

Since both are consecutive numbers.
Clearly vertex labels are distinct.
Thus labeling defined above gives a prime labeling for H. Thus H is a prime graph.

Figure 1: prime labeling of super subdivision of $K_{1,5}$ by $K_{2,2}$

Theorem 2.2:

The graph H obtained by Super subdivision of a star graph G where every edge $u v$ of G is replaced by $K_{2,3}$ is a prime graph.

Proof:

Let H be the graph obtained by the super subdivision of a star graph G where every edge $u v$ of G is replaced by $K_{2,3}$. In G let the vertices be $u_{0}, u_{1}, u_{2}, \ldots u_{n}$ with u_{0} as the centre vertex and every edge $u_{0} u_{i}$ of G be replaced by $v_{i} w_{i} x_{i}$ by joining $v_{i} u_{0}, v_{i} u_{i}, w_{i} u_{0}, w_{i} u_{i}, x_{i} u_{0}$, and $x_{i} u_{i}$ for $1 \leq i \leq n$. Then we get the required graph H whose vertex set is $V(H)=\left\{u_{0}, u_{1}, u_{2}, \ldots u_{n}, v_{1}, v_{2}, \ldots v_{n}, w_{1}, w_{2}, \ldots w_{n}, x_{1}, x_{2}, \ldots x_{n}\right\}$ and the edge set is $E(H)=\left\{u_{0} v_{i}, u_{0} w_{i}, u_{0} x_{i} / 1 \leq i \leq n\right\} \cup\left\{u_{1} v_{i}, u_{1} w_{i}, u_{1} x_{i} / 1 \leq i \leq n\right\}$.
Now $|V(H)|=4 n+1$ where n is a positive integer.

Define a labeling $f: \mathrm{V}(H) \rightarrow\{1,2, \ldots 4 \mathrm{n}+1\}$ as follows:
$f\left(\mathrm{u}_{0}\right)=1$,
$f\left(\mathrm{u}_{i}\right)=4 i-1, \quad$ for $1 \leq i \leq n$,
$f\left(v_{i}\right)=4 i-2, \quad$ for $1 \leq i \leq n$,
$f\left(w_{i}\right)=4 i, \quad$ for $1 \leq i \leq n$,
$f\left(x_{i}\right)=4 i+1, \quad$ for $1 \leq i \leq n$,
here $\operatorname{gcd}\left(f\left(u_{0}\right), f\left(v_{i}\right)\right)=\operatorname{gcd}\left(1, f\left(v_{i}\right)\right)=1$,
$\operatorname{gcd}\left(f\left(u_{0}\right), f\left(w_{i}\right)\right)=\operatorname{gcd}\left(1, f\left(w_{i}\right)\right)=1$,
$\operatorname{gcd}\left(f\left(u_{0}\right), f\left(x_{i}\right)\right)=\operatorname{gcd}\left(1, f\left(x_{i}\right)\right)=1$,
$\operatorname{gcd}\left(f\left(v_{i}\right), f\left(u_{i}\right)\right)=\operatorname{gcd}(4 i-2,4 i-1)=1$,
and $\operatorname{gcd}\left(f\left(w_{i}\right), f\left(u_{i}\right)\right)=\operatorname{gcd}(4 i, 4 i-1)=1$,
Since both are consecutive numbers.
$\operatorname{gcd}\left(f\left(\mathrm{x}_{i}\right), f\left(u_{i}\right)\right)=\operatorname{gcd}(4 i+1,4 i-1)=1$,
for $1 \leq i \leq n$,

Since it is a consecutive odd numbers.
Clearly vertex labels are distinct.
Thus labeling defined above gives a prime labeling for H. Thus H is a prime graph.

Figure 2: Prime labeling of super subdivision of $K_{1,8}$ by $K_{2,3}$

Theorem 2.3:

The graph G obtained by attaching $K_{1,3}$ at each vertex of a cycle C_{n} is a prime graph.

Proof:

Let C_{n} be the cycle $u_{1}, u_{2}, \ldots u_{n}, u_{1}$. Let $v_{i}, x_{i}, y_{i}, z_{i}$ be the vertices of ith copy of $K_{1,3}$ in which v_{i} is the central vertex. Identify z_{i} with $u_{i}, 1 \leq i \leq n$. Let the resultant graph be G.

Now the vertex set of G is $\left\{u_{1}, u_{2}, \ldots u_{n}, v_{1}, v_{2}, \ldots v_{n}, x_{1}, x_{2}, \ldots x_{n}, y_{1}, y_{2}, \ldots y_{n}\right\}$.

The edge set of G is $E(G)=\left\{u_{i} u_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{u_{n} u_{1}\right\} \cup\left\{u_{i} v_{i}, x_{i} v_{i}, y_{i} v_{i} / 1 \leq i \leq n\right\}$
here $|V(G)|=4 n$
Define a function $f: \mathrm{V}(G) \rightarrow\{1,2,3, \ldots 4 \mathrm{n}\}$ by
$f\left(\mathbf{u}_{i}\right)=4 i-3, \quad$ for $1 \leq i \leq n$,
$f\left(v_{i}\right)=4 i-1, \quad$ for $1 \leq i \leq n$,
$f\left(x_{i}\right)=4 i-2, \quad$ for $1 \leq i \leq n$,
$f\left(y_{i}\right)=4 i, \quad$ for $1 \leq i \leq n$,
here $\operatorname{gcd}\left(f\left(u_{i}\right), f\left(u_{i+1}\right)\right)=\operatorname{gcd}(4 i-3,4 i+1)=1, \quad$ for $1 \leq i \leq n-1$,
as these two numbers are odd and their difference is 4
$\operatorname{gcd}\left(f\left(u_{i}\right), f\left(v_{i}\right)\right)=\operatorname{gcd}(4 i-3,4 i-1)=1, \quad$ for $1 \leq i \leq n-1$
Since it is consecutive odd numbers.
$\begin{array}{ll}\operatorname{gcd}\left(f\left(v_{i}\right), f\left(x_{i}\right)\right)=\operatorname{gcd}(4 i-1,4 i-2)=1, & \text { for } 1 \leq i \leq n-1, \\ \operatorname{gcd}\left(f\left(v_{i}\right), f\left(y_{i}\right)\right)=\operatorname{gcd}(4 i-1,4 i)=1, & \text { for } 1 \leq i \leq n-1,\end{array}$
Since both are consecutive positive integers.
$\operatorname{gcd}\left(f\left(u_{1}\right), f\left(u_{n}\right)\right)=\operatorname{gcd}\left(1, f\left(u_{n}\right)\right)=1$.
Clearly vertex labels are distinct.
Thus the labeling defined above gives a prime labeling for G. Thus G is a prime graph.

Figure 3: Prime labeling of C_{9} with $K_{1,3}$

Theorem 2.4:

The graph $G \square K_{1}$ is a prime graph where G is a $C_{n}\left(C_{n}\right)$ graph.

Proof:

Let G be the graph with vertices $u_{1}, u_{2}, \ldots u_{n}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{n}$. Let $u_{1}^{\prime}, u_{2}^{\prime}, \ldots u_{n}^{\prime}$ and $\mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}^{\prime}, \ldots \mathrm{v}_{n}^{\prime}$ be the corresponding new vertices, join $u_{i} u_{i}^{\prime}$ and $v_{i} v_{i}^{\prime}$ in G. we get the graph G_{1} i.e., $G \square K_{1}$ where $G=C_{n}\left(C_{n}\right)$.

Now the vertex set of G_{1} is $\left\{u_{1}, u_{2}, \ldots u_{n}, v_{1}, v_{2}, \ldots v_{n}, u_{1}^{\prime}, u_{2}^{\prime}, \ldots u_{n}^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots v_{n}^{\prime}\right\}$.

The edge set $E\left(G_{1}\right)=\left\{v_{i} v_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}, u_{i} u_{i}^{\prime}, v_{i} v_{i}^{\prime} / 1 \leq i \leq n\right\} \cup\left\{v_{i} u_{i+1} / 1 \leq i \leq n-1\right\}$.
Then $\left|V\left(G_{1}\right)\right|=4 n$.
Define a labeling $f: \mathrm{V}\left(G_{1}\right) \rightarrow\{1,2,3, \ldots 4 \mathrm{n}\}$ by
$f\left(\mathrm{u}_{1}\right)=4 n-1$,
$f\left(u_{1}^{\prime}\right)=4 n$,
$f\left(\mathrm{u}_{i}\right)=4 i-5, \quad$ for $2 \leq i \leq n$,
$f\left(u_{i}^{\prime}\right)=4 i-4, \quad$ for $2 \leq i \leq n$,
$f\left(v_{i}\right)=4 i-3, \quad$ for $1 \leq i \leq n$,
$f\left(v_{i}^{\prime}\right)=4 i-2, \quad$ for $1 \leq i \leq n$.
here $\operatorname{gcd}\left(f\left(\mathrm{v}_{i}\right), f\left(v_{i}^{\prime}\right)\right)=\operatorname{gcd}(4 i-3,4 i-2)=1, \quad$ for $1 \leq i \leq n-1$,
$\operatorname{gcd}\left(f\left(u_{i}\right), f\left(u_{i}\right)\right)=\operatorname{gcd}(4 i-5,4 i-4)=1, \quad$ for $2 \leq i \leq n-1$,
Since these are consecutive positive integers.
$\operatorname{gcd}\left(f\left(\mathrm{v}_{i}\right), f\left(v_{i+1}\right)\right)=\operatorname{gcd}(4 i-3,4 i+1)=1, \quad$ for $1 \leq i \leq n-1$,
as these two numbers are odd and their difference is 4

$$
\begin{array}{ll}
\operatorname{gcd}\left(f\left(v_{i}\right), f\left(\mathrm{u}_{i+1}\right)\right)=\operatorname{gcd}(4 i-3,4 i-1), & \text { for } 1 \leq i \leq n-1, \\
\operatorname{gcd}\left(f\left(u_{i}\right), f\left(v_{i}\right)\right)=\operatorname{gcd}(4 i-5,4 i-3), & \text { for } 2 \leq i \leq n-1,
\end{array}
$$

$\operatorname{gcd}\left(f\left(v_{n}\right), f\left(u_{1}\right)\right)=1$,
Since these are consecutive odd integers.
Clearly vertex labels are distinct.
Thus labeling defined above gives a prime labeling for G_{1}. Thus $G \square K_{1}$ is a prime graph.

Figure 4: : Prime labeling of $G_{1}=C_{7}\left(C_{7}\right) \square K_{1}$

Theorem 2.5:

The graph $G \square S_{2}$ is a prime graph, where G is a H-graph.

Proof:

Let G be the graph with vertices $u_{1}, u_{2}, \ldots u_{n}, \mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{n}$. Let $u_{1}^{\prime}, u_{2}^{\prime}, \ldots u_{n}^{\prime} u_{1}^{\prime \prime}, u_{2}^{\prime \prime}, \ldots u_{n}^{\prime \prime}$, and $v_{1}^{\prime}, v_{2}^{\prime}, \ldots v_{n}^{\prime}, v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, \ldots v_{n}^{\prime \prime}$ be the corresponding new vertices, join $u_{i} u_{i}, u_{i} u_{i}^{\prime \prime}$ and $v_{i} v_{i}, v_{i} v_{i}^{\prime \prime}$ in G. we get the graph G_{1} i.e., $G \square S_{2}$ where G is a H-graph Now the vertex set of G_{1} is $\left\{u_{1}, u_{2}, \ldots u_{n}, v_{1}, v_{2}, \ldots v_{n}, u_{1}^{\prime}, u_{2}^{\prime}, \ldots u_{n}^{\prime}, u_{1}^{\prime \prime}, u_{2}^{\prime \prime}, \ldots u_{n}^{\prime \prime}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots v_{n}^{\prime}, v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, \ldots v_{n}^{\prime \prime}\right\}$.

The edge set $E\left(G_{1}\right)=\left\{\mathrm{u}_{i} u_{i+1}, v_{i} v_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{\mathrm{u}_{i} u_{i}^{\prime}, \mathrm{u}_{i} u_{i}^{\prime \prime}, \mathrm{v}_{i} v_{i}^{\prime}, \mathrm{v}_{i} v_{i}^{\prime \prime} / 1 \leq i \leq n\right\}$

$$
\cup\left\{u_{\frac{n+1}{2}} v_{\frac{n+1}{2}} \text { if } n \text { is odd }\right\} \text { (or) } \cup\left\{u_{\frac{n}{2}+1} v_{\frac{n}{2}} \text { if } n \text { is even }\right\} .
$$

here $V\left(G_{1}\right)=6 n$.
Define a labeling $f: \mathrm{V}\left(G_{1}\right) \rightarrow\{1,2,3, \ldots 6 \mathrm{n}\}$ by considering the following cases:
Case (i): When n is odd.

$f\left(u_{i}\right)=3 i+2$,	for $1 \leq i \leq n$,
$f\left(u_{i}^{\prime}\right)=3 i+1$,	for $1 \leq i \leq n$,
$f\left(u_{i}^{\prime \prime}\right)=3 i+3$,	for $1 \leq i \leq n$,

$f\left(v_{i}\right)=3 n+3 i+2, \quad$ for $1 \leq i<\frac{n+1}{2}$,
$f\left(v_{i}\right)=3 n+3 i-1, \quad$ for $\frac{n+1}{2}<i \leq n$,
$f\left(v_{i}^{\prime}\right)=3 n+3 i+1, \quad$ for $1 \leq i<\frac{n+1}{2}$,
$f\left(v_{i}^{\prime}\right)=3 n+3 i-2, \quad$ for $\frac{n+1}{2}<i \leq n$,
$f\left(v_{i}{ }_{i}^{\prime \prime}\right)=3 n+3 i+3, \quad$ for $1 \leq i<\frac{n+1}{2}$,
$f\left(v_{i}^{\prime \prime}\right)=3 n+3 i, \quad$ for $\frac{n+1}{2}<i \leq n$,
$f\left(v_{\frac{n+1}{2}}\right)=1$,
$f\binom{v^{\prime}}{\frac{n+1}{2}}=2$,
$f\binom{v_{n+1}^{\prime}}{\frac{n}{2}}=3$,
here $\operatorname{gcd}\left(f\left(u_{i}\right), f\left(u_{i}^{\prime}\right)\right)=\operatorname{gcd}(3 i+2,3 i+1)=1$,
$\operatorname{gcd}\left(f\left(u_{i}\right), f\left(u_{i}{ }_{i}\right)\right)=\operatorname{gcd}(3 i+2,3 i+3)=1$,
for $1 \leq i \leq n$,
Since these are consecutive positive integers.
$\operatorname{gcd}\left(f\left(v_{\frac{n+1}{2}}\right), f\left(u_{\frac{n+1}{2}}\right)\right)=\operatorname{gcd}\left(1, f\left(u_{\frac{n+1}{2}}\right)\right)=1$,
$\operatorname{gcd}\left(f\left(v_{\frac{n+1}{2}}\right), f\left(v_{\frac{n-1}{2}}\right)\right)=\operatorname{gcd}\left(1, f\left(v_{\frac{n-1}{2}}\right)\right)=1$,
$\operatorname{gcd}\left(f\left(v_{\frac{n+1}{2}}\right), f\left(v_{\frac{n+3}{2}}\right)\right)=\operatorname{gcd}\left(1, f\left(v_{\frac{n-1}{2}}\right)\right)=1$,
$\operatorname{gcd}\left(f\left(\mathrm{u}_{i}\right), f\left(\mathrm{u}_{i+1}\right)\right)=\operatorname{gcd}(3 i+2,3 i+5)=1, \quad$ for $1 \leq i \leq n-1$,
$\operatorname{gcd}\left(f\left(\mathrm{v}_{i}\right), f\left(v_{i+1}\right)\right)=\operatorname{gcd}(3 \mathrm{n}+3 i+2,3 \mathrm{n}+3 i+5)=1$, for $1 \leq i<\frac{n-3}{2}$,
$\operatorname{gcd}\left(f\left(\mathrm{v}_{i}\right), f\left(v_{i+1}\right)\right)=\operatorname{gcd}(3 \mathrm{n}+3 i-1,3 \mathrm{n}+3 i+2)=1$, for $\frac{n+3}{2}<i \leq n-1$,
as one of these numbers is even then the other number is odd. Also the difference of these two numbers is 3 .
$\operatorname{gcd}\left(f\left(\mathrm{v}_{i}\right), f\left(\mathrm{v}_{i}^{\prime}\right)\right)=1, \quad$ for $1 \leq i \leq n$,
$\operatorname{gcd}\left(f\left(\mathrm{v}_{i}\right), f\left(\mathrm{v}_{i}{ }_{i}\right)\right)=1, \quad$ for $1 \leq i \leq n$,
Since they are consecutive integers.
Clearly vertex labels are distinct.
Thus labeling defined above gives a prime labeling for a graph G_{1}.

Figure 5: Prime labeling of $G_{1}=H_{7} \square S_{2}$
Case (ii): When n is even.

If n is even then we join the vertices $u_{\frac{n}{2}+1}$ and $v_{\frac{n}{2}}$ in two copies of path P_{n}.Then let f_{2} be the labeling obtained from f in case (i) by changing the labels $f\left(\begin{array}{c}v_{\frac{n}{2}}^{2}\end{array}\right)=1, f\left(\begin{array}{c}v_{\frac{n}{2}}^{\prime}\end{array}\right)=2, f\left(v_{\frac{n}{2}}^{\prime \prime}\right)=3$,
$f\left(v_{i}\right)=3 n+3 i+2, \quad$ for $1 \leq i<\frac{n}{2}$,
$f\left(v_{i}\right)=3 n+3 i-1, \quad$ for $\frac{n}{2}<i \leq n$,
$f\left(v_{i}^{\prime}\right)=3 n+3 i+1, \quad$ for $1 \leq i<\frac{n}{2}$,
$f\left(v_{i}^{\prime}\right)=3 n+3 i-2, \quad$ for $\frac{n}{2}<i \leq n$,
$f\left(v_{i}^{\prime \prime}\right)=3 n+3 i+3, \quad$ for $1 \leq i<\frac{n}{2}$,
$f\left(v_{i}{ }_{i}^{\prime \prime}\right)=3 n+3 i, \quad$ for $\frac{n}{2}<i \leq n$,
and for all other remaining vertices $f_{2}(v)=f(v)$. Then the resulting labeling f_{2} is a prime labeling. Thus labeling defined above gives a prime labeling for a graph G_{1}.

Thus $G \square S_{2}$ is a prime graph.

Figure 6: Prime labeling of $G_{1}=H_{6} \square S_{2}$

3.0 Strongly Prime Graphs:

Theorem 3.1:

The Crown graph C_{n}^{*} is a strongly prime graph.

Proof:

Let C_{n}^{*} be the crown graph with vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{n}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots v_{n}^{\prime}$. Let $E\left(C_{n}^{*}\right)$ be the edges of the crown graph where, $E\left(C_{n}^{*}\right)=\left\{v_{i} v_{i}^{\prime} / 1 \leq i \leq n\right\} \cup\left\{v_{i} v_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{v_{1} v_{n}\right\}$.

Here $V\left|C_{n}^{*}\right|=2 n$, where n is a positive integer.
If v is any arbitrary vertex of C_{n}^{*} then we have the following possibilities.
Case (i): When v is of degree 3 .
If $v=v_{j}$ for some $j \in\{1,2,3, \ldots n\}$ then the function $f: V\left(C_{n}^{*}\right) \rightarrow\{1,2,3, \ldots 2 n\}$ defined by
$f\left(v_{i}\right)= \begin{cases}2 n+2 i-2 j+1, & \text { if } i=1,2, \ldots j-1 ; \\ 2 i-2 j+1, & \text { if } i=j+1, j+2, \ldots n,\end{cases}$
$f\left(v_{j}\right)=1$,
$f\left(v_{i}^{\prime}\right)= \begin{cases}2 n+2 i-2 j+2, & \text { if } i=1,2, \ldots j-1 ; \\ 2 i-2 j+2, & \text { if } i=j+1, j+2, \ldots n,\end{cases}$
$f\left(v_{j}^{\prime}\right)=2$.
is a prime labeling for C_{n}^{*} with $f(v)=f\left(v_{j}\right)=1$. Thus f admits prime labeling as well as it is possible to assign label 1 to any arbitrary vertex of degree 3 in C_{n}^{*}.

Figure 7: Strongly Prime labeling of C_{7}^{*} when $j=4, v_{j}=1$
Case (ii): When v is of degree 1 .
Let $v=v_{j}^{\prime}$ for some $j \in\{1,2,3, \ldots n\}$. Then let f_{2} be the labeling obtained from f in case (i) by interchanging the labels $f\left(v_{j}\right)$ and $f\left(v_{j}^{\prime}\right)$ and for all other remaining vertices $f_{2}(v)=f(v)$. Then the resulting labeling f_{2} is a prime labeling as well as it is possible to assign label 1 to any arbitrary vertex of C_{n}^{*}. Thus from all the cases described above C_{n}^{*} is a strongly prime graph.

Figure 8: case(ii) Strongly Prime labeling of C_{7}^{*} when $j=4, v_{j}^{\prime}=1$

Theorem 3.2:

The graph $G \square S_{2}$ is a Strongly prime graph where G is a cycle with n vertices.

Proof:

Let G be the graph with vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{n}$. Let $\mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}^{\prime}, \ldots \mathrm{v}_{n}^{\prime}$ and $\mathrm{v}_{1}{ }^{\prime}, \mathrm{v}_{2}{ }_{2}, \ldots \mathrm{v}_{n}$ be the corresponding new vertices, join $v_{i} v_{i}^{\prime}$ and $v_{i} v_{i}^{\prime \prime}$ in G. we get the graph G_{1} ie., $G \square S_{2}$ graph. Now the vertex set of G_{1} is $\left\{v_{1}, v_{2}, \ldots v_{n}, v_{1}^{\prime}, v_{2}^{\prime}, \ldots v_{n}^{\prime}, v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, \ldots v_{n}^{\prime \prime}\right\}$.The sedge is, $E\left(G_{1}\right)=\left\{v_{i} v_{i}^{\prime} / 1 \leq i \leq n\right\} \cup\left\{v_{i} v_{i}^{\prime \prime} / 1 \leq i \leq n\right\} \cup\left\{v_{i} v_{i+1} / i=1,2, \ldots n-1\right\} \cup\left\{v_{n} v_{1}\right\}$.
Here $\left|V\left(G_{1}\right)\right|=3 n$. If v is any arbitrary vertex of G_{1} then we have the following possibilities.
Case (i): When n is even in G_{1}.
Sub case (i): If $v=v_{j}^{\prime}$ for some $j \in\{1,2,3, \ldots n\}$ then the function $f: V\left(G_{1}\right) \rightarrow\{1,2,3, \ldots 3 n\}$ defined by
$f\left(v_{i}\right)= \begin{cases}3 n+3 i-3 j+2, & \text { if } i=1,2, \ldots j-1 ; \\ 3 i-3 j+2, & \text { if } i=j+1, j+2, \ldots n,\end{cases}$
$f\left(v_{i}^{\prime}\right)= \begin{cases}3 n+3 i-3 j+1, & \text { if } i=1,2, \ldots j-1 ; \\ 3 i-3 j+1, & \text { if } i=j+1, j+2, \ldots n,\end{cases}$
$f\left(v_{i}^{\prime \prime}\right)= \begin{cases}3 n+3 i-3 j+3, & \text { if } i=1,2, \ldots j-1 ; \\ 3 i-3 j+3, & \text { if } i=j+1, j+2, \ldots n,\end{cases}$
$f\left(v_{j}\right)=2$,
$f\left(v_{j}^{\prime}\right)=1$,
$f\left(v_{j}{ }_{j}\right)=3$,
is a prime labeling for G_{1} with $f(v)=f\left(v_{j}^{\prime}\right)=1$. Thus f admits prime labeling as well as it is possible to assign label 1 to any arbitrary vertex of v_{j}^{\prime} in G_{1}.

Subcase (ii): If $v=v_{j}{ }_{j}$ for some $j \in\{1,2,3, \ldots n\}$. Then let f_{2} be the labeling obtained from f in subcase (i) by interchanging the labels $f\left(v_{j}^{\prime}\right)$ and $f\left(v_{j}{ }_{j}\right)$ and for all other remaining vertices $f_{2}(v)=f(v)$. Then f_{2} is a prime labeling as well as it is possible to assign label 1 to any arbitrary vertex of $v_{j}{ }_{j}$ in G_{1}.

Subcase (iii): If $v=v_{j}$ for some $j \in\{1,2,3, \ldots n\}$.Then let f_{3} be the labeling obtained from f in subcase (i) by interchanging the labels $f\left(v_{j}^{\prime}\right)$ and $f\left(v_{j}\right)$ and for all other remaining vertices $f_{3}(v)=f(v)$. Then f_{3} is a prime labeling as well as it is possible to assign label 1 to any arbitrary vertex of v_{j} in G_{1}. Thus from all the cases described above gives G_{1} is a strongly prime graph when n is even.

Figure 8: Subase(i) Strongly Prime labeling of $G \square S_{2}$ where $G=C_{6}$ here $j=4, v_{j}^{\prime}=1$
Case (ii): When n is odd in G_{1}.
If $v=v_{j}^{\prime}$ for some $j \in\{1,2,3, \ldots n\}$. Then let f_{4} be the labeling obtained from f in subcase (i) by interchanging the labels $f\left(v_{j-1}\right)$ and $f\left(v_{j-1}{ }_{j-1}\right)$ and for all other remaining vertices $f_{4}(v)=f(v)$.

If $v=v_{j}^{\prime \prime}$ for some $j \in\{1,2,3, \ldots n\}$. Then let f_{5} be the labeling obtained from f_{2} in subcase (ii) by interchanging the labels $f\left(v_{j-1}\right)$ and $f\left(v_{j-1}{ }_{j-1}\right)$ and for all other remaining vertices $f_{5}(v)=f_{2}(v)$. If $v=v_{j}$ for some $j \in\{1,2,3, \ldots n\}$ then label the vertices as same as subcase (iii).

Thus from all the cases described above G_{1} is a strongly prime graph for all n

Figure 9: Case(ii) Strongly Prime labeling of $G \square S_{2}$ where $G=C_{7}$ here $j=4, v_{j}^{\prime}=1$

References :

[1] J.A.Bondy and U.S.R.Murthy, "Graph Theory and Applications" (North-Holland), Newyork, 1976.
[2] To Dretskyetal "on Vertex Prime labeling of graphs in graph theory", Combinatories and applications vol. 1 J.Alari (Wiley. N.Y.) pp 299-359, 1991.
[3] H.C. Fu and K.C.Huany "on Prime labeling Discrete Math", 127 pp 181-186, 1994
[4] Gallian J. A, "A dynamic survey of graph labeling", The Electronic Journal of Combinations 16 \# DS6, 2009.
[5] S.M.lee, L.Wui and J.Yen "on the amalgamation of Prime graphs Bull", Malaysian Math.Soc.(Second Series) 11, pp 59- 67, 1988.
[6] S. Meena and K. Vaithilingam, "Prime labeling for some helm related graphs", International Journal of Innovative Research in Science, Engineering and Technology vol.2,Issue 4,April 2013.
[7] A.Tout A.N.Dabboucy and K.Howalla "Prime labeling of graphs". Nat. Acad. Sci letters 11 pp 365-368, 1982.
[8] S.K.Vaidya and K.K.Kanmani "Prime labeling for some cycle related graphs", Journal of Mathematics Research, vol.2. No.2.pp 98-104, May 2010.
[9] S.K.Vaidya and Udayan M.Prajapati "Some new results on prime graph", Open Journal of Discrete Mathematics (2012 P 99-104).
[10] R. Vasuki and A. Nagarajan" Some Results on Super Mean Graphs", International J.Math. Combin. Vol. 3 (2009), 82-96.

