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ABSTRACT 

In this paper, we have proposed the numerical solutions of the system of six coupled nonlinear Ordinary 

Differential Equations (ODEs), which are obtained by reducing stratified Boussinesq Equations. We have 

obtained the numerical solutions on unstable and stable manifolds by Adomian Decomposition Method 

(ADM). The minimum error in the solution is of the order 10
-6

. This error can be reduced by reducing size of 

interval. We have used MATHEMATICA 9 for programming and calculations. We have compared the 

results with Euler Modified Method (EMM also referred as Modified Euler Method (MEM)) and Runge-

Kutta Fourth Order (RK4) Method. 

Keywords: Stratified Boussinesq equations, Adomian Polynomials, Coupled Differential Equations,  

Integrable systems. 

TITLE:  Numerical solution to system of six coupled nonlinear ODEs by Adomian Decomposition Method. 

1 INTRODUCTION 

The stratified Boussinesq equations form a system of Partial Differential Equations modeling the 

movements of planetary atmospheres. The literature also refers Boussinesq approximation as Oberbeck-

mailto:bsdesale@rediffmail.com
mailto:narendasre@rediffmail.com
mailto:narendasre@rediffmail.com


IJMCR  www.ijmcr.in| 3:2|February|2015|876-887 | |  877 

 

Boussinesq approximation [1]. In this view Desale [2] has given the complete analysis of an ideal rotating 

stratified system of ODEs. Further, in extension of this work Desale and Sharma [3] have given the special 

solutions of rotating stratified Boussinesq equations. On the other hand Desale and Dasre [4, 5] have given 

the numerical solutions to the system (1) through the deployment of Euler Modified Method and Runge-

Kutta fourth order method. In this paper we have deployed the Adomian Decomposition Method (ADM) to 

find the numerical solution of system (1) with initial values on the stable and unstable manifolds. We have 

discussed the implementation of this method in the section 4.1. 

 

2 PRELIMINARY NOTES 

 

In their paper, Srinivasan et. al. [6] have discussed the complete integrability system (1). Also, the system 

(1) have been tested for integrability via Painleve` test by the authors Desale and Srinivasan [7]. The 

following is the system of six coupled nonlinear ODEs, which is aroused in the reduction of stratified 

Boussinesq equations. 

  

  

 

  

 

where w = (w1,w2,w3)
T 

is the velocity vector, b = (b1, b2, b3)
T
 is the density gradient and  

 

  
  is a non-

dimensional constant as mentioned by Desale [8] in his thesis. The above system can be written as 

component wise as below 
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More detail mathematical analysis of system (1) can be obtained from Desale [8]. The above system (1) is 

completely integrable and flow of vector field is complete, that is to say, all solutions exists on an invariant 

surface given by  

| |               ̂             | |
  

  

  
 ̂                     ( ) 

This invariant surface is made up by three pieces named as stable, unstable and center manifolds. These 

manifolds glue together and forms a two dimensional torus pinched at critical point. In a particular case c1 = 

1, c2 = 1, c3 = 1 and     
 

 
  

  

  
.  A critical point ( ̂ ,  ̂ ) lies on invariant surface. Hence, we have 
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In above equations k is a function of b3, and it can be expressed as, 

   
(    )

 

(    ) 
[
  (    )    

  
]              ( ) 

Since, | |   , which would enable to introduce the angular coordinates θ and ϕ given by 
                                     

     
   ( )    ( )       

}                ( ) 

Because of these angular coordinates, we have   
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Since k is real, we have the constraint on ϕ as           (√
  

  
)  given by Desale [8]. Consequently we 

have 

       (
 

 
)√
  

  
    (

 

 
)                               ( ) 

Furthermore, k = 0 gives us the central manifold, k > 0 results into an unstable manifold and k < 0 results 

into the stable manifold. One may concern Srinivasan et. al. [6] for more detail analysis of these manifolds. 

 

3 ADOMIAN DECOMPOSITION METHOD (ADM) 

 

          In the 1980’s, George Adomian [9] introduced a new powerful method for solving nonlinear 

functional equations. Since then, this method has been recognized as the Adomian Decomposition Method 

(ADM). The technique in this method is based on a decomposition of the solution of a nonlinear operator 

equation in a series of functions. Each term of the series is then obtained from a polynomial generated by an 

expansion of an analytic function into a power series. The details for this method can be referred from [9–

15].  

         J. Biazar et. al. [16] have stated the ADM for solving a system of ordinary differential equations as 

below. A system of ordinary differential equations of 

the first order can be considered as: 

 

Each equation in above system represents the first derivative of the unknown functions f1, …, fn in which x is 

the independent variable.  

        Since every ordinary differential equation of order n can be written as a system consisting of n ordinary 

differential equation of order one, so they restricted their study to a system of differential equations of the 

first order.  

        Now, we look into systematic implementation of ADM with the reference of J. Biazar et. al. [16]. They 

have presented the system (9) in the compact form as: 
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where L is the linear operator 
 

  
  with the inverse     ∫ ( )  

 

 
.  Applying the inverse operator on both 

sides of (10), we get the following canonical form which is computationally comfort for deployment of 

ADM. 

 
As usual in ADM the solution of (11) is considered to be the sum of the series: 

 
and the integrand in (11) is the sum of the following series: 

 
where  Ai,j(fi,0, fi,1, …, fi,n) are called as Adomian polynomials. Substituting (12) and (13) into (11), which 

will result into the following equations. 

 
The above equations  enables to define: 

 
In the following section we implement this method systematically to the six coupled ODEs (2) and obtained 

the numerical solutions on stable and unstable manifolds as described the previous section. 

 

4 NUMERICAL SOLUTION OF SIX COUPLED ODES 

 

         In this paper, we have obtained the numerical solutions of a system (2) with the initial values on stable 

and unstable manifolds by ADM. We have used alternative algorithm to calculate Adomian Polynomials 

[17, 18]. 

 

4.1 Implementation of ADM 

 

         Proceeding towards to determine the numerical solutions we took the help of mathematical software 

MATHEMATICA 9 for faster calculations and generating the graphs. We have used the alternative 

algorithm as described in [17,18] to calculate the Adomian Polynomials. Jun-Sheng Duan [19] have 

obtained the recurrence relations for the simplified index matrices, which provide a convenient algorithm for 

rapid generation of the multivariable Adomian polynomials. E. Babolian and Sh. Javadi [21] have presented 

a good scheme of calculation for Adomian polynomials. Also, in this section we have compared results 

obtained by using this ADM with the earlier results which were obtained by Euler Modified Method and 

Runge-Kutta Fourth Order Method. Now we deploy Adomian Decomposition Method to the system (2) so 

that we start with the initial conditions b0=(b10, b20, b30) and w0 = (w10, w20 , w30)  at t = 0. Where b0 and w0 

satisfy the equation (3) in particular case c1 = 1, c2 = 1, c3 = 1 and      
 

 
  

  

  
. The values b0 and w0 lie on 

the invariant surface.  Furthermore k = k(b3), if k = k(b3) > 0 then b0 and w0 lie on the unstable manifold and 

if    

 k = k(b3) < 0 then b0 and w0 lie on the stable manifold. Accordingly we can find the general solutions on 

unstable and stable manifold. Now we proceed to general solutions in the form of series as below 



IJMCR  www.ijmcr.in| 3:2|February|2015|876-887 | |  880 

 

 
Now we determine w1,j ,w2,j , b1,j , b2,j , b3,j by implementation of ADM. Consider the following iterations. 

Let 
 

  
    be a non dimensional constant and 

 
Where b0 and w0 satisfy the conditions given in equation (3) with particular values and lie on invariant 

surface. Consider the first iteration, 

 
Using the initial conditions given from (17) , we get the first iteration for the solution of the system (1) as 

 
Again integrating (19) from ′0′ to ′t′,  we get 2

nd
 iteration to the system (1) as 
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Using the values from equation (17) we get 

 
Applying the alternative algorithm [17–21] to compute general integrations by ADM , with the condition 

that w3,n = 1 for all n, we get 

                    
Using these values in equation (16), we obtain the analytic solution in the form of series and the 

convergence is guaranteed by [22–24]. 

 

5 EXPERIMENTAL RESULTS 

 

           We have used MATHEMATICA 9 for calculating polynomials and solutions. After calculations, we 

have verified the results with exact solutions. The following graphs show results obtained by ADM with the 

initial conditions b10 =0.001, b20 = 0.0, b30 = 1.0, w10 = 0.0005,                 w20 = 0.00309, w30 = 1.00.  For this 

initial conditions, we have k = 0.00000155 > 0 , hence b0 and w0 lie on the unstable manifold of invariant 

surface. With the above initial values, we have obtained the following general solutions on unstable 

manifold as 

 

 

 

 
 

 

(22) 



IJMCR  www.ijmcr.in| 3:2|February|2015|876-887 | |  882 

 

 

 
 

 
 

 
 

We have plotted the following graphs using MATHEMATICA 9. 

 
Figure 1: Graph for b1 on unstable manifold.                      Figure 2: Graph for b2 on unstable manifold. 

 
Figure 3: Graph for b3 on unstable manifold.                  Figure 4: Graph for w1 on unstable manifold. 

 

 

 
Figure 5: Graph for w2 on unstable manifold. 
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5.1 Comparison of results obtained by ADM and Exact Solutions 
 

Here we have the comparison of the values of b(b1, b2, b3) and w(w1,w2,w3) obtained by ADM and exact 

solutions. The error decreases after refinement of the intervals. ADM gives more accurate results if 

implemented to very small intervals. 

 

Table 1: Values of b1 and error before and after refinement. 

 

 

      b1     

    ADM 

t Exact Before refinement Error After refinement Error 

0 0.001 0.001 0 0.001 0 

0.0001 0.001 0.001000309 3.09x10
-7

 0.001000309 3.09 x10
-7

 

0.0002 0.001 0.001000618 6.18 x10
-7

 0.001000618 6.18 x10
-7

 

0.0003 0.001 0.001000927 9.27 x10
-7

 0.001000927 9.27 x10
-7

 

0.0004 0.001001 0.001001236 2.36 x10
-7

 0.001001237 2.37 x10
-7

 

0.0005 0.001001 0.001001545 5.45 x10
-7

 0.001001546 5.46 x10
-7

 

0.0006 0.001001 0.001001854 8.54 x10
-7

 0.001001856 8.55 x10
-7

 

0.0007 0.001001 0.001002164 1.16 x10
-6

 0.001002165 1.16 x10
-6

 

0.0008 0.001001 0.001002473 1.47 x10
-6

 0.001002474 1.47 x10
-6

 

0.0009 0.001001 0.001002782 1.78 x10
-6

 0.001002784 1.78 x10
-6

 

 

Abbreviations: ADM-Adomian Decomposition Method, 

 

 

 

Table 2: Values of b2 and error before and after refinement. 

 

 

      b2     

    ADM 

t Exact Before refinement Error After refinement Error 

0 0 0 0 0 0 

0.0001 0 5.00 x10
-8

 5.00 x10
-8

 -7.95 x10
-8

 7.95 x10
-8

 

0.0002 0 1.00 x10
-7

 1.00 x10
-7

 -1.59 x10
-7

 1.59 x10
-7

 

0.0003 0 1.50 x10
-7

 1.50 x10
-7

 -2.38 x10
-7

 2.38 x10
-7

 

0.0004 0 2.00 x10
-7

 2.00 x10
-7

 -3.18 x10
-7

 3.18 x10
-7

 

0.0005 0 2.50 x10
-7

 2.50 x10
-7

 -3.97 x10
-7

 3.97 x10
-7

 

0.0006 0 3.00 x10
-7

 3.00 x10
-7

 -4.77 x10
-7

 4.77 x10
-7

 

0.0007 0 3.50 x10
-7

 3.50 x10
-7

 -5.56 x10
-7

 5.56 x10
-7

 

0.0008 0 4.00 x10
-7

 4.00 x10
-7

 -6.36 x10
-7

 6.36 x10
-7

 

0.0009 0 4.50 x10
-7

 4.50 x10
-7

 -7.15 x10
-7

 7.15 x10
-7
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Table 3: Values of b3 and error before and after refinement. 

 

 

      b3     

    ADM 

t Exact Before refinement Error After refinement Error 

0 1 1 0 1 0 

0.0001 0.999999 0.999999998 9.98 x10
-7

 0.999999 3.09 x10
-10

 

0.0002 0.999999 0.999999997 9.96 x10
-7

 0.999998999 6.18 x10
-10

 

0.0003 0.999999 0.999999995 9.94 x10
-7

 0.999998999 9.27 x10
-10

 

0.0004 0.999999 0.999999993 9.93 x10
-7

 0.999998999 1.23 x10
-9

 

0.0005 0.999999 0.999999992 9.91 x10
-7

 0.999998998 1.54 x10
-9

 

0.0006 0.999999 0.99999999 9.89 x10
-7

 0.999998998 1.85 x10
-9

 

0.0007 0.999999 0.999999988 9.88 x10
-7

 0.999998998 2.16 x10
-9

 

0.0008 0.999999 0.999999986 9.86 x10
-7

 0.999998998 2.47 x10
-9

 

0.0009 0.999999 0.999999985 9.84 x10
-7

 0.999998997 2.78 x10
-9

 

 

 

Table 4: Values of w1 and error before and after refinement. 

 

 

   

W1 

  

  

ADM 

t Exact Before refinement Error After refinement Error 

0 0.0005 0.0005 0 0.0005 1.33 x10
-11

 

0.0001 0.0005 0.0005 1.83 x10
-11

 0.0005 1.33 x10
-11

 

0.0002 0.0005 0.0005 7.35 x10
-11

 0.0005 5.34 x10
-11

 

0.0003 0.0005 0.0005 1.65 x10
-10

 0.0005 1.20 x10
-10

 

0.0004 0.0005 0.0005 2.94 x10
-10

 0.0005 2.13 x10
-10

 

0.0005 0.0005 0.0005 4.59 x10
-10

 0.0005 3.33 x10
-10

 

0.0006 0.0005 0.000499999 6.62 x10
-10

 0.0005 4.80 x10
-10

 

0.0007 0.0005 0.000499999 9.01 x10
-10

 0.000500001 6.54 x10
-10

 

0.0008 0.0005 0.000499999 1.17 x10
-9

 0.000500001 8.54 x10
-10

 

0.0009 0.0005 0.000499999 1.49 x10
-9

 0.000500001 1.08 x10
-9

 

 

 

 

Table 5: Values of w2 and error before and after refinement. 

 

   

W2 

  

  

ADM 

t Exact Before refinement Error After refinement Error 

0 0.00309 0.00309 0 0.00309 0 

0.0001 0.003091 0.00309098 1.98 x10
-8

 0.00309098 1.98 x10
-8

 

0.0002 0.003091 0.00309196 9.60 x10
-7

 0.00309196 9.60 x10
-7

 

0.0003 0.003092 0.003092941 9.41 x10
-7

 0.003092941 9.41 x10
-7

 

0.0004 0.003092 0.003093922 1.92 x10
-6

 0.003095922 3.92 x10
-6

 

0.0005 0.003093 0.003094903 1.90 x10
-6

 0.003096903 3.90 x10
-6

 

0.0006 0.003093 0.003095884 2.88 x10
-6

 0.003097884 4.88 x10
-6

 

0.0007 0.003094 0.003096866 2.86 x10
-6

 0.003098866 4.86 x10
-6

 

0.0008 0.003094 0.003097847 3.84 x10
-6

 0.003099847 5.84 x10
-6

 

0.0009 0.003095 0.003098829 3.82 x10
-6

 0.003100829 5.82 x10
-6

 

 

5.2 Comparison of results by ADM, EMM and RK4 methods 
 

In this section we have compared the results obtained by ADM with the results obtained by Desale and 

Dasre [4, 5] using MEM and RK4 methods and exact solutions. The accuracy of the solution almost same. 

The Euler Modified Method and Runge-Kutta Fourth order methods give more accurate results than ADM 

on any intervals but after refinement of interval ADM also gives good results. 
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Table 6: Comparison for values of b1 obtained by ADM, MEM, RK4 and Exact. 

 

b1 

t ADM MEM RK4 Exact 

0 0.001 0.001 0.001 0.001 

0.001 0.001 0.001002 0.001002 0.001002 

0.002 0.001001 0.001003 0.001003 0.001003 

0.003 0.001001 0.001005 0.001005 0.001005 

0.004 0.001001 0.001006 0.001006 0.001006 

0.005 0.001002 0.001008 0.001008 0.001008 

0.006 0.001002 0.001009 0.001009 0.001009 

0.007 0.001002 0.001011 0.001011 0.001011 

0.008 0.001002 0.001012 0.001012 0.001012 

0.009 0.001003 0.001014 0.001014 0.001014 

Abbreviations: ADM-Adomian Decomposition Method, MEM- Modified Euler Method,  

                         RK4-Runge-Kutta Fourth Order Method. 

 

Table 7: Comparison for values of b2 obtained by ADM, MEM, RK4 and Exact. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8: Comparison for values of b3 obtained by ADM, MEM, RK4 and Exact. 

 

b3 

t ADM MEM RK4 Exact 

0 1 1 1 1 

0.001 0.999999 0.999999 0.999999 0.999999 

0.002 0.999999 0.999999 0.999999 0.999999 

0.003 0.999999 0.999999 0.999999 0.999999 

0.004 0.999999 0.999999 0.999999 0.999999 

0.005 0.999999 0.999999 0.999999 0.999999 

0.006 0.999999 0.999999 0.999999 0.999999 

0.007 0.999999 0.999999 0.999999 0.999999 

0.008 0.999999 0.999999 0.999999 0.999999 

0.009 0.999999 0.999999 0.999999 0.999999 

 

Table 9: Comparison for values of w1 obtained by ADM, MEM, RK4 and Exact. 

 

    w1     

t ADM MEM RK4 Exact 

0 0.0005 0.0005 0.0005 0.0005 

0.001 0.0005 0.0005 0.0005 0.0005 

0.002 0.0005 0.0005 0.0005 0.0005 

0.003 0.0005 0.0005 0.0005 0.0005 

0.004 0.0005 0.0005 0.0005 0.0005 

0.005 0.0005 0.0005 0.0005 0.0005 

0.006 0.0005 0.0005 0.0005 0.0005 

0.007 0.0005 0.0005 0.0005 0.0005 

0.008 0.0005 0.0005 0.0005 0.0005 

0.009 0.0005 0.0005 0.0005 0.0005 

 

        b2 

t ADM MEM RK4 Exact 

0 0 0 0 0 

0.001 5.00x10
-8

 0 0 0 

0.002 1.00 x10
-7

 0.000001 0.000001 0.000001 

0.003 1.5 x10
-7

 0.000001 0.000001 0.000001 

0.004 2 x10
-7

 0.000001 0.000001 0.000001 

0.005 2.5 x10
-7

 0.000001 0.000001 0.000001 

0.006 3 x10
-7

 0.000002 0.000002 0.000002 

0.007 3.51 x10
-7

 0.000002 0.000002 0.000002 

0.008 4.01 x10
-7

 0.000002 0.000002 0.000002 

0.009 4.51 x10
-7

 0.000002 0.000002 0.000002 
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Table 10: Comparison for values of w2 obtained by ADM, MEM, RK4 and Exact. 

 

    w2     

t ADM MEM RK4 Exact 

0 0.00309 0.00309 0.00309 0.00309 

0.001 0.0030909 0.003095 0.003095 0.003095 

0.002 0.0030919 0.0031 0.0031 0.0031 

0.003 0.0030929 0.003105 0.003105 0.003105 

0.004 0.0030939 0.00311 0.00311 0.00311 

0.005 0.0030949 0.003115 0.003115 0.003115 

0.006 0.0030958 0.00312 0.00312 0.00312 

0.007 0.0030968 0.003125 0.003125 0.003125 

0.008 0.0030978 0.00313 0.00313 0.00313 

0.009 0.0030988 0.003135 0.003135 0.003135 

 

 

6 CONCLUSION 

          Here we have presented the scheme of Adomian Decomposition Method for the numerical solution of 

the system of six coupled nonlinear ODEs (1). In our calculation initially we have the error of 10
−6

. This 

method is very useful for numerical solutions on the small intervals but gives more error on large intervals. 

The error in all variables decreases after refinement except in b2. The error in b1 and b3 decreases whereas 

the error in b2 increases this is due to  | |   . The convergence of this method is guaranteed and the error 

is bounded. The error can be made smaller by taking refinement of the interval. This method gives very 

good results if the large interval is refined into finite number of small intervals and ADM is applied on this 

small intervals. We have used alternative approach [17–21] to calculate the Adomian polynomials. 
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