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ABSTRACT:

In this paper, first we prove that, let R be a prime *- ring .If R admits a generalized *- higher derivation f
with an associated non zero reverse *- higher derivation d then either (d(x),d(z)=0)(or) f is a left
*multiplier. And next we prove that, let R be a prime ring, if R admits a generalized * left higher derivation
associated with * left higher derivation d, then either (d(y),d(z)=0) (or) fis a right * multiplier.
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Introduction:

Let R be an associative ring not necessarily with an identity element .A derivation (resp.Jordan derivation)
‘d’ of R is an additive mapping d:R — R Such that d(xy) = d(x)y + x(dy), for every x,yeR (resp.
d(x?)=d(x)x+xd(x), forevery x,ye R ).As its is well known, every derivation is a Jordan derivation and

the converse is, in general not true .If R is a 2-torsion free semi prime ring, then by the results of I.N
.Herstein and M. Bresar ,every Jordan derivation of R is a derivation ((1),(2),(3).
Following B.Hvala page (4) an additive mapping F:R — R is called a generalized derivation if there

exists a derivation d:R — R such that F(xy)=F(x)y +xd(y) holds for all x,y e R.we call an additive
mapping F:R—R a Jordan generalizeﬂ ﬁerivation if there exists a derivation d:R — R such that
F(x?)= F(x)x+ xd(x) holds for all x e R 1 _

On the other hand, higher derivations have been studied in many papers mainly in commutative rings, but

also in non- commutative rings. M. Ferrero and C.Haetinger extended some of the above results to the
higher derivations, in particular ,they ponateﬂ out that every Jordan higher derivation in a 2-torsion —free

semi prime ring is a higher derivation .Thus, it is natural to ask whether every Jordan generalized

higher derivation on a ring R is a generalized higher derivation.
Now we give the Corresponding definitions.

As usual, [x, y] will denote the commutator xy — yx and N is the set of natural numbers including 0.

1. Definitions

Definition 1.1 Let D =(d,),_, is a family of additive mappings of R such that d, =id,.D is said to be a

higher derivation if every ne N we have d Zd for all x,ye R
i+j=n
A Jordan higher derivation If for every ne N we have dn(x ) Zd x) forall xeR
i+j=n
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Definition 1.2: Let F =(f;),_, be a family of additive mappings of R such that f, =id.F is said to be a
generalized higher derivation if there exists a higher derivation D =(d,)._, of R such that for every ne N
we have f (xy)= > f,(x)d,(y) forall x,yeR

i+j=n

Definition 1.3: Let D =(d,)._, be a family of additive mappings of R such that d, =id, D is said to be
higher *-derivation, if for every ne N we have d xy Zd ( *)i X,yeR

i+j=n
A Jordan higher *- derivation of R, if for eachn e N ,dn(xz): > d, (x)dj(x*)i forall xeR,
i+j=n
A Generalized higher * derivation of R, if foreach ne N f,(xy)= 3 f,(x)d,(y") forall x,ye R
i+j=n

A mapping d:R— R is called centralizer if [d(X)X]ez(R) forall xeR.
Main Results:

Theorem 1.4: Let R be a prime *- ring .if R admits a generalized *- higher derivation f with an associated
non-zero reverse *- higher derivation then either (d(x),d(z)=0)(or) f is a left * multiplier.
Proof. We are given that f is a generalized reverse * - higher derivation with an associated non — zero
reverse * - higher derivation, we have
= > filyH, (<) 1)
i+j=n
Replace X by xz in equation (1) we have

(xzy)= > f (v, {( (xz*)I

i+j=n

2 (y)dj(Z*X*)i

i+j=n

> £y, () d, (2) )

i+j+l=n

On the other hand

Oay)= ¥ (@), ()

i+j=n

(xy)= Y (v (7)) (x) 3)

i+j+l=n

Replacing x” by xand z° by z reordering the indices and comparing equations (2) and (3), we have

> f,(y)Nd;(x).d,(2))=

i+]j+l=n

Then either (d(x),d(z))=0 (or) fis a left * multiplier.

Theorem 1.5: Let R be a prime ring, If R admits a generalized * left higher derivation f associated with *
left higher derivation d then either R is (d(y),d(z))= 0 (or) f is a right *- multiplier.
Proof. By the definition of generalized * - higher left derivation
= >4, (v) 1)
i++j=n
Replacing y by yz we have

(xyz)= Dd, (yz )i f.(

i++j=n
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= 3d,Zy ) 1K)

bo2)= Yy, ) () @
On the other hand

)= 30,27 4

(xyz)= Zd( “)d ( )”j f.(x) (5)

Reordering the indices of equation (4) and (5) ,replacing y“ by yand z" by z and comparing the equations
(4) and (5) ,we have

> [d(y)d(2)]f,(x)=0

i+j+l=n

Then either (d(y) d(z))=0 (or) f is a right * -multiplier.

Results .1.6: Let R be a 2-torsion free non-commutative prime * -ring and let f : R — R be a generalized
Jordan  higher  *-  derivation  which  satisfies > d,(h)d,(h") €Z(R),  then

[f,(hg+ gh).yl= 3 (hi (08 (g7 9)+ X (Filo)d; (). y)

Proof. Forany reR

fn(h2)=_Zfi(h)dj(h*)‘, forall he H(R)

Nowf(h+g ) > fi(h+g)d (h+g)) (6)

i+j=n

RHS of equation (6) is

S tih+a)d,(h+a)) = X fie, () + S fmd, o) + 3 fi(o), () + X fila)d, (o7

i+j=n i+j=n i+j=n i+j=n i+j=n

=f,(h?)+ £,(0%)+ 3 fi(n)d;(o7) + S fi(ak; ()

i+j=n i+j=n

Commuting with y on both sides

(Zfi(h+g)d,-(<h+g)*)‘,yj=( 3 .02y + S(f (a2 )y + S(hhd, (g7), )+ S (f.(a), (7). v)

i+j=n i+j=n i+j=n i+j=n i+j=n
@)
LHS of equation (6) is
f(h+g) = fn(h2 +g%+hg +gh)

= f,(h?)+ f,(g?)+ f,(hg + gh)
Commute with y on both sides we have

(f.(h+a).y)=(f, (02 y)+ (1. (g2) y)+ (f.(hg +gh).y) - ®)

Comparing equations (7) and (8)
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f.((hg+ay) )= S (f(d,(g7), v+ S (f(a)d; (), y) ©)

i+j=n i+j=n .
Result 1.7: Let R be a 2-torsion free non commutative prime * -ring and d : R — R be a Jordan * higher
derivation which satisfies Zdi(h)dj(h*)' e Z(R), forall h e H(R),then

i+j=n
Yd,(hg+ghy)=[ >d(d,(g") +d,(0)d,(h"),y ]

;;:)nof: By Jordan highg;:’: -derivation, we have

d,(h?)= 3d,(h)d,(h") forall he H(R) (10)
ReplacingH‘J}:ln’ by (h+g) in equation (10) we get

d,(h+g)° = >.d;(h+g)d;(h+g))" (12)

i+j=n

RHS of equation (11) is

3 dihr)a, (o)) = Fayd, (07) + Fa(n, (o7) + Fa()d, (0] + (o), (o)

>+ o) () f =, () Sdh)d(o") + Yd (), (07} +d,(o?) .
i+j=n i+j=n i+j=n 12

Commute with y on both sides, we have

> (d,(h+g)d,(h+9) ),y =@, (h?) y)+[2di(h)dj(g*)‘ + Zdi(g)d,-(h*)‘,y}(dn(gZ), Y)  LHS

i+]j=n i+]j=n i+]j=n

of equation (11) is

d,(h+g) =d,(h? +g®+hg+gh)
=d, (h?)+d,(g?)+d,(hg+gh)

Commute with ‘ y * on both sides we have

d,((h+g).y)=d,(h?) y)+d,(0?) y)+d,(hg+an).y) . (13)

Comparing equations (12) and (13), we have

[, (hg + gh) y]{z(dxh)dj(g*)‘)+di<g>d,-(h*)‘,yj,

i+j=n (14)
Result: 1.8 Let R be 2-torsion free non-Commutative prime *- ring, and d:R— R pe a Jordan *-
higher derivation which satisfies for all 1< HR) it > fi(h)d;(h") € Z(R) then
i+j=n
et tany)= 2 3000Vl 3 500w Ve b))
i+j=n j+l=n i+j=n j+l=n

Proof. d,(x?)= 3"d,(x)d,(x") isaJordan higher *-derivation

i+j=n
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Replacing g by (hg+gh) in equation (9) we have

£, (h(hg + gh)+ (hg + g)h, y) = (. (h)d, (hg + ah)' )", y)+ " f,((hg + ah)d, (") y)

i+j=n i+j=n (15)

f.((h?g +hgh+hgh+gh? ) y)= Z( f,(h)d, ((hg + gh)),y)+ 3 (f(hg +gh)d, ("), y)

i+j=n i+j=n

f,((h?g +2hgh+gh?),y)= 3 (f,()d, ((hg +gh)) . y)+ 3 f,(hg+gh)d, (h"),y)

i=j=n i+j=n (16)

The RHS of equation (16) is

= fi(h){z d;(h)d,(g") + Zd,—(g)d.(h*)",y}

i+]j=n

I+j=n I+j=n

DPACCA IR z<fi<g>dj<h*>i>d.<h*>”f,y>]

i+j=nl+j=n i+j=ni+j=n

=3 3 e () o+ X S0, e (7))

i+j=n j+l=n

i+j=nl+j=n

g
+ZﬂWMMMWWEZWmWMWM

i+j=nl+j=n i+j=nl+j=n

=(X 07,0+ 2 (600, @ 0] y)e 3 310 (o ol b) )

i+j=n

Z fi(g)d

i+j=n

i+j=ni++=n i+j=ni+=

(h?)) (17)

Now LHS of equation (16) is

f,(h%g+gh?,y)+2f,(hgh)y) = 3 (fi(hz)d,-(g*)i + fi(g)dj(hz* )i , yJ+ 2(f,(hgh).y)

i+j=n i+j=n

(18)

By comparing equations (17) and (18) and by reordering indices, we have

o1 (s (Z S 101 (g7 0, () J (Z > f,(h)d; (g7 d (h*)iﬂ',Y)

i+j=n j+l=n i+j=n j+l=n
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