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ABSTRACT: 

In this paper, first we prove that, let R be a prime *- ring .If R admits a generalized *- higher derivation f 

with an associated non zero reverse *- higher derivation d then either     0, zdxd (or)  f is a left 

*multiplier. And next we prove that, let R be a prime ring, if R admits a generalized * left higher derivation 

associated with * left higher derivation d, then either       0, zdyd  (or) f is a right * multiplier. 
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Introduction: 

Let R be an associative ring not necessarily  with an identity element .A derivation (resp.Jordan derivation) 

‘d’ of R is an additive mapping        Such that                     for every  Ryx ,   (resp.

     ,2 xxdxxdxd   for every  Ryx ,  ).As its is well known, every derivation is a Jordan derivation and 

the converse is, in general not true .If R is a 2-torsion free semi prime  ring, then by the results of I.N 

.Herstein and M. Bresar  ,every Jordan derivation of R is a derivation ((1),(2),(3). 

Following  B.Hvala page  (4) an additive mapping RRF :  is called a generalized derivation if there 

exists  a derivation RRd :  such that       yxdyxFxyF   holds for all Ryx , .we call an additive 

mapping RRF :  a Jordan generalized derivation  if there exists a derivation RRd :  such that 

     xxdxxFxF 2  holds for all Rx
  1

. 

On the other hand, higher derivations have been studied in many papers mainly in commutative rings, but 

also in non- commutative rings. M. Ferrero  and C.Haetinger extended some of the above results to the 

higher derivations, in particular ,they pointed out that every Jordan higher derivation in a 2-torsion –free 

semi prime ring is a higher derivation   
  ,6

.Thus, it is natural to ask whether every Jordan generalized 

higher derivation on a ring R is a generalized higher derivation. 

Now we give the Corresponding definitions. 

As usual,  yx,  will denote the commutator yxxy   and N is the set of natural numbers including 0. 

 

 

 

1. Definitions  

 

Definition 1.1 Let  
NiidD


 is a family of additive mappings of R such that Ridd 0 .D is said to be a 

higher derivation if every Nn   we have      



nji

jin ydxdxyd   for all Ryx , .  

A Jordan higher derivation If for every Nn  we have      



nji

jin xdxdxd 2  for all Rx . 
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 Definition 1.2: Let  
NiifF


 be a family of additive mappings of R such that .0 Ridf  F is said to be a 

generalized higher derivation if there exists a higher derivation   
NiidD


 of R such that for every Nn  

we have      



nji

jin ydxfxyf  for all  Ryx ,    . 

 Definition 1.3: Let  
NiidD


  be a family of additive mappings of R such that Ridd 0  D is said to be 

higher *-derivation, if for every Nn  we have      i
nji

ji ydxdxyd 


 *  Ryx , . 

A Jordan higher *- derivation of R, if for each Nn ,      i
nji

jin xdxdxd *2 


   for all Rx . 

A Generalized higher * derivation of R, if for each Nn        i
nji

jin ydxfxyf 


 *  for all Ryx , . 

A mapping RRd :  is called centralizer if      RZXXd ,      for all Rx . 

 

Main Results: 

 

Theorem 1.4: Let R be a prime *- ring .if R admits a generalized *- higher derivation f with an associated 

non-zero reverse *- higher derivation then either     0, zdxd (or) f is a left * multiplier. 

Proof.  We are given that f is a generalized reverse * - higher derivation with an associated non – zero 

reverse * - higher derivation, we have  

     ij

nji

in xdyfxyf *


          (1) 

Replace x by xz in equation (1) we have  

      ij

nji

in xzdyfxzyf
*




  

 =    ij

nji

i xzdyf **


 

 =       ji

l

i

j

nlji

i zdxdyf




 *

        (2) 

On the other hand  

     ij

nji

in xdzyfxzyf *




 

       ij

jl

l

nlji

in xdzdyfxzyf ** 



         (3) 

Replacing *x  by  x and  
*z   by  z ,reordering the indices and comparing equations (2) and (3), we have   

 

       0, 
 nlji

lji zdxdyf   

  Then either      0, zdxd   (or) f is a left * multiplier. 

 

Theorem 1.5:  Let R be a prime ring, If R admits a generalized * left higher derivation f associated with * 

left higher derivation d then either R is      0, zdyd  (or) f is a right *- multiplier. 

Proof. By the definition of generalized * - higher left derivation 

     



nji

i

i

jn xfydxyf *  

Replacing y by yz  we have  

     



nji

i

i

jn xfyzdxyzf *   
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nlji

i

i

j xfyzd **  

       





nlji

i

jl

l

i

jn xfzdydxyzf **         (4) 

On the other hand  

     



nji

i

i

jn xyfzdxyzf *  

       





nlji

i

jl

l

i

jn xfydzdxyzf **         (5) 

Reordering the indices of equation (4) and (5) ,replacing *y  by  y and  
*z  by  z and comparing the equations  

(4) and (5) ,we have  

       0, 


xfzdyd i

nlji

 

Then either      0, zdyd  (or) f is a right * -multiplier. 

 

Results .1.6: Let R be a 2-torsion free non-commutative prime * -ring and let RRf : be a generalized 

Jordan higher *- derivation which satisfies      ,* RZhdhd
nji

i

ji 


 then  

          



nji

i

ji

nji

i

jin yhdgfygdhfyghhgf ),(),(, **

                            

 

Proof.  For any  Rr  

      ,*2 



nji

i

jin hdhfhf  for all  RHh        

Now        i
nji

jin ghdghfghf 



*2

. .                                 (6) 

 

RHS of equation (6) is  

                   
 


nji

i

nji

ji

i

ji

i

j

nji

i

nji

i

ji

nji

i

ji gdgfhdgfgdhfhdhfghdghf *****
..)(  

                =            ij

nji

i

nji

i

jinn hdgfgdhfgfhf **22 


 .
 

 

Commuting with  y on both sides

 

                 
 
















nji nji

i

ji

nji

i

ji

nji

nn

i

j

nji

i yhdgfygdhfygfyhfyghdghf ),(),(),(),,)( **22*

                                                                                                                                                                         

(7) 

LHS of equation (6) is  

     ghhgghfghf nn  222
 

                                          ghhgfgfhf nnn  22

 
Commute with y  on both sides we have  

 

          yghhgfygfyhfyghf nnnn ),(,,, 222
  .                               (8) 

 

Comparing equations (7) and (8)  
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nji

i

ji

nji

i

jin yhdgfygdhfygyhgf ),(),(),( **

.

    (9)  

Result 1.7: Let R be a 2-torsion free non commutative prime * -ring and RRd :  be a Jordan * higher 

derivation which satisfies      ,* RZhdhd
i

nji

ji 


 for all  RHh ,then  

           yhdgdgdhdyghhgd
i

ji

nji

i

ji

nji

n ,, **  


 

Proof: By Jordan higher * -derivation, we have  

     



nji

i

jin hdhdhd *2  for all )(RHh .           (10) 

Replacing ‘h’ by (h+g) in equation (10) we get 

     



nji

i

jin ghdghdghd )(
*2

.                  (11) 

RHS of equation (11) is 

 

                    



nji

i

ji

nji

i

ji

nji

i

ji

nji

i

ji

i

ji

nji

gdgdhdgdgdhdhdhdghdghd *****

                



nji

n

i

ji

nji

i

jin

nji

i

ji gdhdgdgdhdhdghdghd 2**2*

                        (12) 

 

Commute with y on both sides, we have  

                 ),(,),((),( 2**2*
ygdyhdgdgdhdyhdyghdghd n

nji

i

ji

nji

i

jin

i

ji

nji














 



   LHS 

of equation (11) is   

 

   ghhgghdghd nn  222

 

         =      ghhgdgdhd nnn  22

. 

 

Commute with ‘ y ‘ on both sides  we have  

 

           yghhgdygdyhdyghd nnnn ,,,, 222
    .                    (13)   

         

Comparing equations (12) and (13), we have  

 

            ,,, **














 

 nji

i

ji

i

jin yhdgdgdhdyghhgd

     (14) 

 

Result: 1.8 Let R be 2-torsion free non-Commutative prime *- ring, and  RRd :  be a Jordan             *- 

higher derivation which satisfies for all  RHh  if      RZhdhf
nji

i

ji 


*

 then 

 

               


























   

 



 



nji nlj

ji

l

i

ji

nji nlj

ji

l

i

jin yhdgdhfyhdgdhfyhghf ,,,2 ****

 

 

Proof.      



nji

i

jin xdxdxd *2  is a Jordan higher *-derivation 
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Replacing   g   by (hg+gh) in equation  (9) we  have  

 

              



nji

i

ji

nji

i

jin yhdghhgfyghhgdhfyhghhgghhghf ,,)(, **

         (15) 

 

            
 


nji nji

i

ji

i

jin yhdghhgfyghhgdhfyghhghhghghf ),(,)(, **22  

     



nji

i

ji

i

nji

jin yhdghhgfyghhgdhfyghhghghf ),),))(()((),2( **22

               (16) 

The RHS of equation (16) is  
 

           
  
















nji njl njl

j

lj

j

lji yhdgdgdhdhf ,**
+

            












   

   


),)(),( ****

nji njl nji nji

ji

l

i

ji

ji

l

i

ji yhdhdgfyhdgdhf  

               
   




nji nlj nji njl

ji

lji

ji

lji yhdgdhfygdhdhf ,),( **  

+                 
   




nji njl nji njl

ji

l

i

ji

ji

l

i

ji yhdhdgfyhdgdhf ,, ****

 

=                    
  












nji nji ni

ji

l

i

ji

ni

ji

lji

nji

ji

jn yhdgdhfyhdgdhfygdhf ,,),( ****2  

   
i

nji

ni hdgf


)(
*2

                              (17) 

Now  LHS  of  equation (16)  is   

 

              ),(2,),2,(
*2*222 yhghfyhdgfgdhfyhghfyghghf n

nji nji

i

ji

i

jinn 












  

    (18) 

 

By comparing equations (17) and (18) and by reordering indices, we have   

               


























   

 



 



nji nlj

ji

l

i

ji

nji nlj

ji

l

i

jin yhdgdhfyhdgdhfyhghf ,,,2 ****

. 
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