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The spread of infectious diseases is a very complex phenomenon and requires mathematical 

modeling to understand the dynamics of the spread. One of the common approaches used to 

model the spread of diseases is the SIR (Susceptible-Infected-Recovered) model. This study 

aims to implement numerical methods, especially the Euler method, to simulate the spread of 

infectious diseases using the SIR model. This study focuses on the application of Euler's 

Method to solve differential equations that describe the changes in infected, susceptible, and 

recovered populations in a finite system. The Euler method is used to calculate the numerical 

solution of the system with a small time step. The simulation results show how the spread of 

the disease can be predicted in various scenarios, with sensitivity analysis to model parameters 

such as transmission rate and recovery rate. These simulations provide insight into the 

dynamics of the disease and help in designing more effective public health policies. In 

conclusion, the Euler’s method has proven to be a useful tool for modeling and predicting the 

spread of diseases, although the accuracy of the results is highly dependent on the choice of 

time step. Further research can examine the application of other numerical methods and their 

comparison with analytical models to improve prediction and accuracy in real applications. 
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I. INTRODUCTION 

The spread of infectious diseases, especially in the form of 

epidemics or pandemics, has become a global issue that has 

attracted attention from various disciplines, including 

epidemiology and mathematics (Takács et al., 2020). The 

Susceptible-Infected-Recovered (SIR) model is one of the 

important mathematical models in predicting the dynamics of 

the spread of infectious diseases (Mungkasi, 2021). The SIR 

model divides the population into three main groups—

susceptible, infected, and recovered—to understand the 

development of the disease over time. According to Kermack 

and McKendrick, who first introduced this model, the SIR 

approach can provide important insights into the rate of 

infection and the chances of recovery in a population (Aziean 

Mohd Idris et al., 2022; Barro et al., 2018; Khoa et al., 2023). 

Through numerical simulations, the SIR model serves as an 

important reference for health authorities in planning 

effective interventions to control the spread of diseases. 

In practice, analytical solutions to the SIR model are 

often difficult to obtain, especially when faced with complex 

scenarios that require a dynamic variable approach. 

Therefore, numerical methods such as the Euler’s Method 

are needed to solve the differential equations that describe 

population changes in each category of the SIR model. The 

Euler’s method offers a simple and computationally efficient 

approach in generating approximate solutions to the 

differential equations that form this model (Pratiwi & 

Mungkasi, 2021; Triatmodjo, 2002; Yau & Abdullahi Yau, 

2011). Based on previous studies, the Euler’s method has 

been applied in several epidemiological simulations to 

produce predictions of disease progression. This study 

focuses on the effectiveness of the Euler’s method in 

modeling the spread of infectious diseases based on the SIR 

model, especially in obtaining accurate and efficient 

simulation results. 

A number of previous studies have explored various 

numerical methods for simulating epidemiological models. 

For example, the Runge-Kutta method is widely used 

because of its high level of accuracy, but this method 

requires more computation than the Euler’s method (Ian 

Setiawan et al., 2021; Iskandar & Chee Tiong, 2022; 

Kosasih, 2006; Pudjaprasetya, 2018; Side et al., 2018a). 

Although the Euler’s method is known to be simple and 

more computationally efficient, studies on the effectiveness 
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of this method in the context of the SIR model are still 

limited. Several studies have used the Euler’s method for 

epidemiological simulations, but without an in-depth 

evaluation of performance or direct comparison with more 

complex methods such as Runge-Kutta (Ghoreishi et al., 

2023; Side et al., 2018b; Suryaningrat et al., 2020). 

Therefore, this study focuses on the evaluation of the Euler’s 

method in modeling the dynamics of the spread of infectious 

diseases, especially in the context of SIR. 

The lack of systematic review of the performance of 

the Euler’s Method in applications to SIR models creates a 

significant research gap. The Euler’s Method may be 

considered simple compared to sophisticated methods such 

as Runge-Kutta, but this study aims to fill this gap. A 

comprehensive evaluation of the Euler’s Method in SIR 

simulations is needed to obtain an overview of its accuracy 

and effectiveness in disease spread scenarios (Rudhito & 

Putra, 2021). Thus, this study attempts to present a 

systematic evaluation of the effectiveness of the Euler’s 

Method, which will provide important insights into the 

usefulness of this method in simple yet reliable 

epidemiological simulations. 

 

Based on this background, the main objective of this study is 

to conduct a numerical simulation of the spread of infectious 

diseases based on the SIR model using the Euler’s Method. 

This study also aims to evaluate the effectiveness of this 

method in describing the development of infectious diseases 

and understand its limitations when compared to more 

complex numerical methods. It is hoped that this simulation 

can provide an alternative, more efficient method for the 

development of epidemiological prediction models, 

especially in applications that require fast simulations with 

limited computing resources. 

This study contributes by presenting a simple 

simulation approach that is easy to apply in various 

epidemiological scenarios. By using the Euler’s Method, this 

study attempts to offer a choice of methods that are 

computationally efficient and fairly accurate in describing 

the spread of disease. It is expected that the results of this 

study can provide benefits for both researchers and 

practitioners in the field of public health who need fast, 

simple, and informative solutions to understand and 

anticipate the spread of disease in a short time (Dayan et al., 

2022). 

To provide an overview of the discussion flow, this 

article is divided into several parts. The first part is the 

Introduction, which includes the background, problem 

identification, and objectives and contributions of the study. 

The second part discusses the research method, including the 

SIR model and the application of the Euler’s Method in 

numerical simulations. The third part presents the simulation 

results along with an analysis of the effectiveness of the 

Euler’s Method in modeling the disease spread. The last 

section is a conclusion that summarizes the research results 

and recommendations for further research that may be 

needed. With this structure, this article is expected to provide 

a comprehensive overview of the role of the Euler’s Method 

in numerical simulation of disease spread based on the SIR 

model. 

 

II. MATERIALS AND METHODS 

A. The SIR Model 

The SIR model is a compartment-based epidemiological 

model that describes the dynamics of the spread of an 

infectious disease in a population. In this model, the 

population is divided into three main compartments: 

Susceptible (S), which represents susceptible or uninfected 

individuals; Infected (I), which represents individuals who 

are currently infected and can transmit the disease; and 

Recovered (R), which represents individuals who have 

recovered and are considered immune. This model helps 

analyze and predict the course of an epidemic by simulating 

the transition between these compartments over time. 

The SIR model represents the change in the 

number of individuals in each compartment over time 

through the following system of differential equations: 

                    

                                         

                                         

                                        
 

Where β is the transmission rate, which describes how often 

susceptible individuals become infected when in contact 

with infected individuals and γ is the recovery rate, which 

indicates how quickly infected individuals move to the 

recovery compartment. 

The parameters β and γ can be adjusted according 

to the type of disease or based on historical data to obtain 

more accurate distribution characteristics. This model also 

assumes that the total population size N is constant, so that 

S(t)+I(t)+R(t)=N. This assumption helps simplify the model 

and maintain balance in the dynamics of the population 

being studied. 

B. Euler’s Method 

Euler's method is one of the basic numerical methods used 

to solve differential equations, including the SIR 

(Susceptible-Infected-Recovered) model in epidemiology. 

This method is a simple approach based on Taylor series to 

calculate the solution of differential equations iteratively. 

 

Suppose we have a first-order differential equation: 

                                   
with initial condition y(t0 )=y0. To calculate the value of y at 

the next point, y(t+Δt), we can use the Taylor series 

approximation around point t: 
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However, since calculating higher derivatives in this series 

is complex, Euler's method simplifies it by retaining only 

the first term after the initial value, which is the linear term 

of the Taylor series. This yields a first-order Taylor 

approximation: 

                              
Recursively, for a discrete point , the value of y at the next 

step, namely , can be calculated from the previous value 

 with the equation: 

                             
This is the basic formula of Euler's method, which provides 

a numerical approach to the solution of differential 

equations by calculating the value of y at each discrete point 

in time t based on its previous values. 

 

The iterative equation of Euler's method for the SIR model 

can be written as follows: 

                             

                         

                               
The iteration process begins with the initial conditions S0

, I0 

and R0, which are the initial number of susceptible, infected, 

and recovered individuals. Based on these conditions, 

iteration is carried out from time t = 0 to t = T, where T is 

the desired end time for the simulation. 

 

III. RESULTS AND DISCUSSION 

The case simulated in this study is the spread of influenza in 

a community with a population of 10,000 people, starting 

from an initial condition with 9,990 susceptible individuals, 

10 infected individuals, and no individuals have recovered. 

The epidemic parameters used in this simulation include a 

baseline transmission rate (β) of 0.3, a recovery rate (γ) of 

0.1, a simulation period of 60 days, and a time step (Δt) of 1 

day. These parameters reflect the general situation often 

encountered in infectious disease outbreaks with moderate 

spread without specific interventions. 

To understand the effect of parameter changes on 

the dynamics of disease spread, four simulation scenarios 

were conducted. Scenario 1 uses basic parameters as the 

baseline condition to describe the pattern of disease spread 

without environmental changes or interventions. Scenario 2 

simulates an increased transmission rate (β = 0.5), which 

represents a situation with higher social interaction, such as 

in large crowds or environments with relaxed health 

protocol policies. Scenario 3 explores the effect of 

accelerating treatment through increasing the recovery rate 

(γ = 0.2), so that the disease can be controlled more quickly. 

Finally, Scenario 4 combines high β (β = 0.5) and high γ (γ 

= 0.2) to understand how the combination of increased 

transmission and recovery affects disease dynamics. 

The simulation results of each scenario are visualized in 

a graph showing the changes in the number of susceptible 

(S), infected (I), and recovered (R) individuals during the 

simulation period. Comparisons between scenarios provide 

insight into the impact of changes in epidemic parameters on 

disease spread. With the simple yet effective Euler method, 

this analysis can provide an initial overview for public 

health policy making in controlling infectious diseases. 

A. Scenario 1: Baseline 

In scenario 1, the simulation was conducted with basic 

parameters to model the spread of influenza in a community 

with a population of 10,000 people for 60 days. The 

parameters used were the transmission rate (β=0.3), the 

recovery rate (γ=0.1), and the time step (Δt=1 day). The 

initial population condition consisted of 9,990 susceptible 

individuals (S(0)), 10 infected individuals (I(0)), and no 

recovered individuals (R(0)=0). The results of this 

simulation are shown in Figure 1, which illustrates the 

dynamics of changes in the number of susceptible 

individuals (S), infected individuals (I), and recovered 

individuals (R) over time. 

The simulation results in Figure 1 show that the 

number of susceptible individuals decreases exponentially 

over the simulation period, reflecting the widespread spread 

of the disease. The curve of infected individuals (I) 

increases sharply at the beginning, reaching a peak around 

day 20, when more than half of the population is 

simultaneously infected. After reaching the peak, the 

number of infected individuals begins to decline as many 

recover, as seen from the sharp increase in the curve of 

recovered individuals (R). By the end of the simulation, 

almost the entire population has recovered or been exposed, 

indicating that the outbreak is over. 

 

 
Figure 1 Scenario 1: Baseline 

 

B. Scenario 2: High Transmission 

In Scenario 2, the simulation explores the impact of 

increasing the transmission rate (β=0.5) while holding the 

recovery rate (γ=0.1) constant. This scenario reflects a 

situation where the disease spreads more aggressively due to 

high levels of interaction or lack of preventive measures. 

The simulation runs for 60 days, with an initial population 

of 10,000 individuals consisting of 9,990 susceptible 
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individuals (S(0)), 10 infected individuals (I(0)), and no 

individuals who have recovered (R(0)=0). 

 

 
Figure 2 Scenario 2: High Transmission 

 

The resulting dynamics, as seen in Figure 2, show a 

significant increase in the speed and intensity of the 

outbreak. The number of susceptible individuals (S) 

decreases much more rapidly compared to Scenario 1, with 

a sharp decline occurring during the first 10–15 days. This 

rapid decline indicates accelerated disease spread 

throughout the community. 

The population of infected individuals (I) grows 

explosively, peaking around day 15, much earlier than in 

Scenario 1. At this peak, more than two-thirds of the 

population is simultaneously infected, reflecting the very 

high rate of disease transmission under these conditions. 

This earlier and higher peak suggests that the health system 

will face extreme stress in the short term. Meanwhile, the 

recovery curve (R) rises sharply after the peak of infections, 

as individuals begin to recover in large numbers. By the end 

of the simulation, most of the population has moved into the 

recovered category, leaving only a few individuals still 

susceptible. 

C. Scenario 3: High Recovery 

In Scenario 3, the simulation is conducted by increasing the 

recovery rate (γ=0.2) while the transmission rate (β=0.3) 

remains at its baseline value. This simulation aims to 

illustrate the impact of accelerating recovery, for example 

through more effective treatment or rapid medical 

intervention, in a population of 10,000 individuals. The 

initial conditions consist of 9,990 susceptible individuals 

(S(0)), 10 infected individuals (I(0)), and no recovered 

individuals (R(0)=0). The simulation lasts for 60 days with a 

time step (Δt=1). 

 

 

Figure 3 Scenario 3: High Recovery 

 

The simulation results, visualized in Figure 3, show that 

increasing the recovery rate significantly changes the 

dynamics of disease spread. The number of susceptible 

individuals (S) still decreases, but this decrease occurs more 

slowly compared to the previous scenario. This suggests that 

accelerating recovery helps reduce the number of infected 

individuals before they can transmit the disease further. 

D. Scenario 4 

In Scenario 4, the simulation is performed by combining a 

high transmission rate (β=0.5) and a high recovery rate 

(γ=0.2). This combination of parameters represents a 

situation where the disease spreads faster in the community, 

but infected individuals also recover at a higher rate. The 

initial population consists of 9,990 susceptible individuals 

(S(0)), 10 infected individuals (I(0)), and no recovered 

individuals (R(0)=0). The simulation is performed for 60 

days with a time step (Δt=1). 

 
Figure 4 

 

The simulation results graph in Figure 4 shows that the high 

transmission rate causes the number of susceptible 

individuals (S) to decrease significantly in a relatively short 
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time. However, the increase in the recovery rate (γ=0.2) 

mitigates the impact of high transmission. The number of 

infected individuals (I) increases rapidly at the beginning, 

reaching a peak around day 12. The peak of infection occurs 

earlier compared to the previous scenario, but with a lower 

number of infected individuals compared to Scenario 2 

(high transmission only). 

 

IV. CONCLUSSION 

Based on numerical simulations of disease spread using the 

SIR model with the Euler method, the results show that 

variations in transmission rate (β) and recovery rate (γ) have 

a significant effect on the dynamics of the outbreak. In the 

baseline scenario (β=0.3,γ=0.1), the disease spreads 

moderately with the peak of infection occurring on day 20. 

Increasing the transmission rate (β=0.5) accelerates the 

spread of the outbreak, with a higher peak of infection 

occurring earlier (day 12), reflecting the impact of increased 

social interaction or lack of preventive measures. In 

contrast, increasing the recovery rate (γ=0.2) controls the 

outbreak by reducing the peak of infection and shortening 

the duration of the epidemic. The combination of high 

transmission and recovery rates (β=0.5,γ=0.2) results in a 

faster but less severe outbreak compared to the high 

transmission scenario alone, indicating the mitigating effect 

of effective treatment or rapid recovery. This simulation 

emphasizes the importance of controlling the transmission 

rate and increasing the recovery rate to effectively manage 

infectious disease outbreaks. 
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