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ABSTRACT

In this paper, we introduce the neighborhood Kepler Banhatti index, modified neighborhood
Kepler Banhatti index and their corresponding exponentials of a graph. Also we compute
Corresponding Author: these neighborhood Kepler Banhatti indices of certain dendrimers. Furthermore, we establish
V.R. Kulli some properties of newly defined the neighborhood Kepler Banhatti index.

KEYWORDS: neighborhood Kepler Banhatti index, modified neighborhood Kepler Banhatti index, dendrimer.

1. INTRODUCTION
Let G be a finite, simple, connected graph with vertex set
V(G) and edge set E(G). The degree dg(u) of a vertex u is

the number of vertices adjacent to u. Let Sg (u) denote the

sum of the degrees of all vertices adjacent to a vertex u. We
refer [1] for undefined notations and terminologies.

A graph index is a numerical parameter mathematically
derived from the graph structure. Many graph indices have
been considered in Theoretical Chemistry and several graph
indices were defined by using vertex degree concept [2].
The Zagreb, Gourava, Nirmala, Sombor, Revan, E-Banhatti
indices are the most degree based graph indices in Chemical
Graph Theory, see [3-39]. Graph indices have their
applications in various disciplines in Science and
Technology [40-41].

The Kepler Banhatti index [42] of a graph G is defined as

KB(G)= 3 [(dg(u)+dg(v)++/dg(U)? +dg (V)]

uveE(G)

Recently, some Kepler Banhatti indices were studied in [43-
46].

The neighborhood Kepler Banhatti index of a graph G
is defined as

NKB(G)
= > ((SG (u)+Sg (v))+\/8G (u)* +5S4 (v)° )

uveE(G)

Considering the neighborhood Kepler Banhatti
index, we introduce the neighborhood Kepler Banhatti
exponential of a graph G and defined it as

NKB(G,x) = (86 S (VS (W) 456 (v)°

uveE(G)

We define the modified neighborhood Kepler Banhatti
index of a graph G as

" NKB(G)
_ 1
weE(G) (Sg (u) +Sg (V) + \/SG ()’ + Ss (v)°

Considering the modified neighborhood Kepler
Banhatti index, we introduce the modified neighborhood

Kepler Banhatti exponential of a graph G and defined it as
1

"NKB(G,x)= > X(SG(u)+sG(v))+JsG(u)z+SG(V)2
uveE(G)

Recently, some neighborhood indices were studied in
[47-53].

In 2011 [54], Graovac et al. introduced the fifth M-Zagreb
indices (now we call the first and second neighborhood
indices) defined as

NM; (G)= > [Se (W) +Ss (V)]

uveE(G)
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NMZ(G): Z SG (U)SG (V)

uveE(G)
The neighborhood Sombor index [55] of a molecular
graph G is defined as

NSO(G) =

> \/SG (U)* +Sg (V).

ueE(G)

In this paper, we compute the neighborhood Kepler
Banhatti index, modified neighborhood Kepler Banhatti
index and their corresponding exponentials of certain
families of dendrimers.

2. RESULYS FOR PAMAM DENDRIMER PD;[n]

We consider the PAMAM dendrimers with n
growth stages, denoted by PDi[n] for every n (1010, see
Figure 1.

Figure 1. PAMAM dendrimer PDi[n]

Let G be the graph of PAMAM dendrimer PD4[n].
By calculation, we see that G has 12x2™2 — 23 vertices and
12x2™2 — 24 edges. Also the edge partition of the form
(2,3), (3,4), (3,5), (4,5), (5,5), (5,6) for PAMAM dendrimer
PD;[n] based on the degree sum of neighbors of end vertices
of each edge is obtained, as given in Table 1.

Table 1
Se(U), Se(V)\VIIE(G)

Number of edges

2 3) 3x2"

(3, 4) 3x2

3, 5) 6x27—3
(4, 5) 9x21_ 6
(5,5) 18x2"—9
(5,6) 9x2"— 6

Theorem 1. The neighborhood Kepler Banhatti index of a
PAMAM dendrimer PD4[n] is

NKB(G) =

— (459 + 3413 + 64/34 + 941+ 904/2 + 6:/61) 2"
—235-3/34 —6/41 - 452 - 6:/61.

Proof: Let G = PD1[n]. We have
NKB(G)
= > ((SG (W+Ss(v)+ \/SG (u)* +54 (v)° )

ueE(G)

:3x2"((2+3)+\/m)+3><2”((3+4)+m)
+(6x2"—3)((3+5)+ /32 +52)
+(ox2" - ((4+5)+\/m)

+(18x2" ~9)((5+5) + /5% +52)

+(9x2" —6)((5+6)++/52 +62)
— (459 + 313 + 6+/34 + 941 +90+/2 + 6/61)2"
—235-3/34 — 641 - 452 - 6/61.

Theorem 2. The neighborhood Kepler Banhatti exponential
of a PAMAM dendrimer PD1[n] is

NKB(G, ) =3x2"x583 35 2" x12
+(6x2" —3) x84 1 (9% 2" — ) x4
+(18X 2n _9) X10+5\/§ +(9>< 2!’1 _6)X11+\/ﬁ.

Proof: Let G = PD4[n]. We have

z X (S (U)+S5 (V))+4/Se W)+85(v)

uveE(G)
—3x2" X(2+3)+\/22+32 +3x2" X(3+4)+\/32+42

NKB(G, x)

+(6 X 2n - 3) X(3+5)+ ‘32+52 + (9 X 2n _ 6) X(4+5)+\/m
+(18x 2" —9) xE I | (gy 2 _g)x(5+61E 6

By simplifying the above equation, we obtain the desired
result.

Theorem 3. The modified neighborhood Kepler Banhatti
index of a PAMAM dendrimer PD4[n] is

™ NKB(G)

—(L+i+ 6, 9% , 18 jZ”
5+/13 12 84434 9++/41 10+5V2

J{ 9 ]2”— 3. 6 9
11++/61 8+34 9+41 10452
6

114061
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Proof: Let G = PD4[n]. We have
"NKB(G)
1

2.
weE(G) (Sg (u) +Sg (v)) + \/SG (W) +Sg (v)?

3x 2" 3x2"
= +
(2+3)+\/22+32 (3+4)+\/32+42
N 6x2" -3 N 9x2" -6
(3+5)+32 +5% (4+5)++/42 +52

18x2" -9 9x2" -6

+ + .
(545)++52+52  (5+6)++/52 +62

By simplifying the above equation, we obtain the desired
result.

Theorem 4. The modified neighborhood Kepler Banhatti
exponential of a PAMAM dendrimer PD4[n] is
"NKB(G)
1 1 1
=3x 2" X518 1 3% 2Mx12 4 (6x 2" —3) xE+34
1 1
+(9x2" —6) X941 1 (18x 2" —9) x10+5¥2

1
H(9x2" )X

Proof: Let G = PD4[n]. We have
1

"NKB(G,x)= > S (So W85 (V)5 ()48, (v)*
UVeE(G)
—l— I
= 3x 2" (242248 | 3y oy (B+A)+ /3447
1 1
+(6x2" —3) xB+5FS | (9% 2" — ) x(4+HH 5"
1 1

1 (18x 2" —9) x5+515 5 4 (g 21 ) x (546156 |

By simplifying the above equation, we obtain the desired
result.

3. RESULYS FOR POPAM DENDRIMERS PODz[n]

In this section, we focus on the molecular graph of
POPAM dendrimers. This family of dendrimers is denoted
by POD;[n], where n is the steps of growth in this type of
dendrimers. The molecular graph of POD,[2] is shown in
Figure 2.

H

MH\/\/N%
HN R

4\ Ve
§

b <
z
\/\" -

NH.

Figure 2. The molecular graph of POD2[n]

Let G be the molecular graph of POPAM dendrimers
POD;[n]. By algebraic method, we obtain that
[V(POD2[n])|= 25 — 10 and |[E(POD2[n])|= 2"*° — 11. The
edge partition of POD[n] based on the degree sum of
neighbors of end vertices of each edge is obtained as given
in Table 2.

Table 2. Edge partition of POD2[n] based on Sc(u) and
Sa(v)
Se(u), Se(V)\uvi1E(G)

Number of edges

2, 3) 212

3, 4) on+2
(4,4) 1

(4, 5) 3x2" 6
(5,6) 3x2"- 6

Theorem 5. The neighborhood Kepler Banhatti index of a
POPAM dendrimer POD2[n] is

NKB(G)

—(12+13)x2™2 1+ 60x 2" +8+ 4/2 — 6:/41 — 6:/61.

Proof: Let G = POD3[n]. We have
NKB(G)

= ((SG (u)+ S, (V))+\/SG (u)"+S, (V)z)

ueE(G)

= 2”+2((2+3)+\/22 +32 )+2”+2((3+4)+\/32 +42)
+1((4+4)+\/m)
+(3x2"—6)((4+5)+ 42 +52)

4985 |

V.R. Kulli, IJIMCR Volume 13 Issue 03 March 2025



“Neighborhood Kepler Banhatti and Modified Neighborhood Kepler Banhatti Indices of Certain Dendrimers”

+(3x2"—6)((5+6)++/5% +62)
—(124113)2™2 1+ 60x 2" + 8+ 4/2 — 6/41 — 6:/61.

Theorem 6. The neighborhood Kepler Banhatti exponential
of a POPAM dendrimer POD.[n] is

NKB (G, x) = 22 513 4. n+212
FDEZ (3% 2" —6) x4 4 (3% 2" —6) X1+ VEL,

Proof: Let G = POD;[n]. We have

NKB (G X) = z X(SG(U)+SG(V))+ S (W) 48, (v)
uveE(G)
—on+2 X(2+3)+\/22+32 4 on+2 X(3+4)+W

+1X(4+4)+\/42+42 n (3 2N _ 6) X(4+5)+\/42-¢—52
+(3>< on _ 6) X(5+6)+\/52+6Z _

By simplifying the above equation, we obtain the desired
result.

Theorem 7. The modified neighborhood Kepler Banhatti
index of a POPAM dendrimer PODy[n] is

™ NKB(G)

—(;+i)2”+2+( 3,3 jZ”
5+13 12 9+4/41 11++/61
1 6 6

+ - - .
8+4J2 9++/41 11+4/61

Proof: Let G = PD4[n]. We have
T"NKB(G)

Z 1
weE(G) (Sg (u) +Sg (v)) + \/SG () +Sg (v)?

2n+2 2n+2

= +
(2+43)++/22+3% (3+4)++/32+42

1 3x2" -6

+ +
(4+4)+42 +4%2  (4+5)++/4% +52
3x2" -6

+ .
(5+6)++/5% +62

By simplifying the above equation, we obtain the desired
result.

Theorem 8. The modified neighborhood Kepler Banhatti
exponential of a POPAM dendrimer POD;[n] is

" NKB(G)

1 1 1
= QM2x53 4 M2 y12 4 1842

1 1
+(3>< 2" —6)x9+\/H +(3>< on —6)x11+Ja_

Proof: Let G = PD1[n]. We have
1

"NKB(G,x)= > (5o W85 (V)5 ()45, (v)*

uveE(G)
1 1
= OMH2y (243)4422 43 | PNH2 4 (3+4)4+3+4°
1 1

11 x@+a)e a2 a2 (3 2N _ 6) x (4+5)+/4%+57

1
+(3x 2" —6) x(5+6)+\5'+6"

By simplifying the above equation, we obtain the desired
result.

4. RESULTS FOR TETRATHIAFULVALENE
DENDRIMERS TDz[n]

In this section, we focus on the molecular graph of a
tetrathiafulvalene dendrimer. This family of
tetrathiafulvalene dendrimers is denoted by TD-[n], where n
is the steps of growth in this type of dendrimers for n(10.
The molecular graph of TD,[2] is shown in Figure 3.

Figure 3. The molecular graph of TD2[2]

Let G be the molecular graph of tetrathiafulvalene
dendrimers TD2[n]. By algebraic method, we obtain that
[V(G)|=31x2™2 — 74 and |E(G)|=35x2"*2 — 85. Also the edge
partition of TD2[n] based on the degree sum of neighbors of
end vertices of each edge is obtained as given in Table 3

Table 3. Edge partition of TD2z[n] based on Sc(u) and
Sac(V)

Se(u), Number of edges
Se(V)\uvlE(G)
(2, 4) 2n+2
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(3, 6) 224

(4, 6) 22

(5,5) 7x2"2_ 16
(5, 6) 11x2™2 - 24
G,7) 3x2"2_ 8
(6, 6) 224
6,7) 822 24
) 2x2M2 5

Theorem 9. The neighborhood Kepler Banhatti index of a
dendrimer TD2[n] is

NKB(G)

= (132 + 55 +55¢2 + 213 + 1161 + 3./74 + 8+/85 ) 2"*2

—986 —12+/5 —139+/2 — 24./61 - 8/74 — 24+/85.
Proof: Let G = TD;[n]. We have

NKB(G)
= > ((SG (W+Ss(v)+ \/SG (u)* +54 (v)° )

ueE(G)

—2"2((244) 1422+ 42)

+(2n+2 —4)((3+6)+\/m)
+2"+2 ((4+ 6)+ \/m)

+(7x27% _16)((5+5) + /5% +52)
+(11x2"2 - 24)((5+6) + /52 + 6
+(3x2"2 8)((5+7)++/52 +72)
+(om2 —4)((6+6)+\/m)
(
(

+(8x2"2 —24)((6+7) + /67 + 72)
+(2x2"2 _5)((747)+ 72+ 72)

By simplifying the above equation, we obtain the desired
result.

Theorem 10. The neighborhood Kepler Banhatti
exponential of a dendrimer TD2[n] is

NKB(G, x) = 2™2x82V5 1 (272 _ 4) x93V
on+2 X10+2J1—3 + (7 % PN+2 —16) X10+5J§

+(11x 2M2 — 24) XL | (35 22 _g) y12+/74
+(22 _4) x12+6¥2 | (8 2M2 _ 4) 1385
+(2x2m2 _5) 14 TV2

Proof: Let G = TD;[n]. We have
NKB(G,x)= Y X(SG(u)+SG(v))+\/W
uveE(G)
_ on+2, (2+8)2 4 (272 _g) y(3+6)+37+67
Lon+2 y (4461416 (7%x2™2 _16) y(5+5)+/5%457
+(11x 2™2 _24) X(5+6)+\/W
+(3x 22 _S)X(s+7)+J52+_72 L(om2 4)X(6+6)+W
+(8x2™2 _24) y (B+7)+67 7"
+(2x2™2 _5) (T[T 72
By simplifying the above equation, we obtain the desired

result.

Theorem 11. The modified neighborhood Kepler Banhatti
index of a dendrimer TDz[n] is

™ NKB(G)

_(1+1+ 1 +7j2n+2
6+2J5 9+3/5 10+2/13 10452

+(11+ 3 . 1 +8j2n+2
11++/61 124474 12+642 13++/85

+[;j2n+2_ 4 18 24
14+ 72 9+3J/5 10+5V2 11+/61
8 4 24 5

12474 124642 13485 14472

Proof: Let G = TD[n]. We have
"NKB(G)

Z 1
weE(G) (Sg (u) +Sg (V))+\/SG (W) +Sg (v)?
2n+2 2n+2 _4

= +
(2+4)++/22 +4% (3+6)++/32+62
2n+2 7><2n+2 _16
+ +
(4+6)+y42 +6% (5+5)+/5% +52
s 11x2"2 —24 . 3x2M? _§g
(5+6)+4/5°+6% (5+7)++/5%+7?

2M2 _4g 8x 22 _24

+ +
(6+6)+6°+6% (6+7)++6%+7°2

2x2"2 _5

J’_
(T+7)+N7*+ 72

By simplifying the above equation, we obtain the desired
result.
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Theorem 12. The modified neighborhood Kepler Banhatti
exponential of a dendrimer TD2[n] is
"NKB(G)
1 1 1
_ 2n+2 X6+2J§ " (2n+2 _ 4)2n+2 X9+3J§ 4 2n+2 X10+2J1—3

1 1

+(7 % 2n+2 —16) Xm +(11>< 2n+2 . 24) X11+Ja
1 1
+(3x 2M2 _g)x12+78 | (2 _ 4) x12+642
1 1

+(8x2M2 —24) x13+85 | (2% 2"2 _5) 144742

Proof: Let G = TD[n]. We have
1

mNKB(G X): Z X(SG(U)"'SG(V))+\/SG(U)Z+SG(V)2

uveE(G)
1 1
— PNH2 3 (244)+y22 447 | (2n+2 _ 4) ON+2 4 (3+6)+3°+6°
1 1

422y (44+6)+4/471+6° | (7 x QN+2 —16) x (5+5)++/5% 457
1 1

1 (11% 272 — 24) x(EOREE | (35212 _g)x(5+ET

1 1
+(2”+2 _ 4) x (6+6)+167+6” (8 x N+2 _ 24) X(6+7)+\/62+_72

1
+(2x2™2 _5) X T+

By simplifying the above equation, we obtain the desired
result.

5. RESULTS FOR NSz[nN]DENDRIMERS
In this section, we focus on the class of NSz[n] dendrimers
with n(J1. The graph of NS;[2] is shown in Figure 4.

L w1

.
-

;:igure 4. The graph of NS2[2] )

Let G be the graph of NS;[n] dendrimers. By
algebraic method, we obtain that |V(G)|=16x2" — 4 and
|[E(G)|=18x2" — 5. Also the edge partition of NS;[n] based on
the degree sum of neighbors of end vertices of each edge is
obtained as given in Table 4.

Table 4. Edge partition of NSz[n] based on Sc(u) and
Sa(V)
Sc(u), Se(v)\uv1E(G)  Number of edges

4, 4) 2% 2"
(5, 4) 2x2n

(5, 5) 2x20+2
(5, 6) 6x2n
7.7) 1

5.7) 4

(6, 6) 6x20— 12

Theorem 13. The neighborhood Kepler Banhatti index of a
dendrimer NSz[n] is

NKB(G) =

— (192 + 5442 + 2441 + 6/61)2" — 69 —55+/2 + 4/74.

Proof: Let G = NSz[n]. We have
NKB(G)

=y ((SG (u)+S, (v))+\/SG (U)° +85 (v)’ )

ueE(G)

=252 ((4+2) 127 +22) 12527 ((5+ 4) + /52 + 42)
+(2x2" +2)((545)+ /52 +52)
16x2"((5+6)++/52 +67)

A7+ 72 +72) +al(5+7)+ 52+ 72)
+(ex2n —12)((6+6)+\/m)

By simplifying the above equation, we obtain the desired
result

Theorem 14. The neighborhood Kepler Banhatti
exponential of a dendrimer NSy[n] is

NKB(G, x) = 2x 2" x8V2 1 25 2 x4

(22" +2) X107V 1 6 2" yi161
ATV 4 12T (B 2" —12) 1240V2

Proof: Let G = NSz[n]. We have

NKB(G,x)= | X(SG(U)+SG(V))+W
uveE(G)

=2 2N o g (B lE
+(2 x 2N 4 2) X(5+5)+\/52? +6x on X(5+6)+\/52?
X TDRNTT | g (557477

+(6 x 2n _12) X(6+6)+\/62+62

+4x
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By simplifying the above equation, we obtain the desired
result

Theorem 15. The modified neighborhood Kepler Banhatti
index of a POPAM dendrimer POD2[n] is

" NKB(G)

1 2 2 6
= + + + 2"
(4+2J§ 9++/41 10452 11+\/ﬁj

+£1)2n+ 1 4 2
2++/2 7+732 12+74 2442
Proof: Let G = NSz[n]. We have
™ NKB(G)
Z 1

2 2
weE(G) (Sg (u) +Sg (v))+\/SG(u) +Sg (V)

2x 2" 2x 2"

= +
(4+4)+~4% +4%  (5+4)++5% + 42

2x2" 42 6x2"

+ +
(545)++52+52  (5+6)++/52 +62

1 4
+
T+ )42 +7%  (5+7)++/52+7°
6x2" ~12

+ .
(6+6)++/6%+62

By simplifying the above equation, we obtain the desired
result.

+

Theorem 16. The modified neighborhood Kepler Banhatti
exponential of a POPAM dendrimer POD3[n] is
"NKB(G)
_1 _1 _1
= 2x 2" XBHZ 4 2 2N xIHVAL 4 (2x 2" 4 2) x10+5V2
1 1 1
+(2% 2" 4 2) x10+52 4 6 2N x+BL 4 114472

1 1
+4x12TE 4 (5 2" —12) x12+6¥2

Proof: Let G = NSz[n]. We have
1

"NKB(G,X)= Y. (5o WS (V)5 ()48, (v)*
uveE(G)
B T
=2x2" X(4+4)+\/42+42 4+ 2% 2Ny (5+4)+ [52 142
SE. S— B S
(2% 2" 4 2)xBBIEE 4 gy 2N y(5+6)/57+67
1 1
FIXTHDTHT? | 4y (57)4/5247

1
+(6x 2" —12) x(6+6)+16°+6°

By simplifying the above equation, we obtain the desired
result.

6. PROPERTIES OF THE TEMPERATURE
ELLIPTIC SOMBOR INDEX
Theorem 17. Let G be a connected graph. Then

V2NM, (G) < TNKB(G) < 2NM, (G)..
Proof: For any two positive numbers a and b,

%(a+b)s\/a2+b2<a+b.

J2(@+b)<(a+b)++a?+b? <2(a+b)

For a=Sg(u) and b=Sg(v), the above inequality
becomes

J2(Sg (u) +55 (V)

<(Sg (u)+Sg (v))+\/(SG (W) +85(v)?)

<2(Sg (u)+S5 (V)
By the definitions, we have

V2 > (Sg(u)+Sg (V)

uveE(G)

< > ((SG (u)+Sg (v))+\/SG (u)* +Sg (v)z)

uveE(G)

<2 > (SgW)+5s5(v)

ueE(G)
Thus we get the desired result.
Theorem 18. Let G be a connected graph. Then

NKB(G)=NM;, (G) + NSO(G).
Proof: We have

5 ((Se (u)+ 56 (1) + /5 (W2 + 55 (V)

uveE(G)

= Y (SeW+Ss M)+ Y 56 W) +56 (W),

uveE(G) uveE(G)
=NM,(G)+ NSO(G)

7.CONCLUSION

In this study, we have introduced the neighborhood
Kepler Banhatti index, modified neighborhood Kepler
Banhatti index of a graph. We have computed these indices
and their corresponding exponentials of certain families of
dendrimers.
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