On 3-Prime Γ - Near Rings with Generalized Derivations

L.Madhuchelvi

Abstract

Let N be a 3-prime Γ - near ring. The purpose of this paper is to extend the results of Ashraf[1] and Ashraf and Rehman[2] in the setting of a semigroup ideal of N admitting a generalized derivation.

Keywords: 3-Prime Γ – near ring, Semigroup ideal, Generalized derivation.

2000 Mathematics subject classification : 16Y30, 16Y99.

1 Introduction

The notion of a Γ - ring, a concept more general than a ring was defined by Nobusawa[9].As a generalization of near-rings, Γ -near rings were introduced by Satyanarayana[11].Recently Booth and Groenewald [4,5],Satyanarayana[12,13],Selvaraj and George[14,16],Selvaraj and Madhuchelvi[15,17] studied several aspects in Γ - near rings.In the case of rings, generalized derivations have received significant attention in recent years.The derivations in Γ - near rings have been introduced by Bell and Mason[3].They studied basic properties of derivations in Γ - near rings.In [1], Ashraf et.al. investigates the commutativity of a prime ring admitting a generalized derivation with associated derivation satisfying certain properties. Daif and Bell[6] proved that a semiprime ring R must be commutative if it admits a derivation d such that d([x,y]) = [x,y] or d([x,y]) + [x,y] = 0. Further Ashraf and Rehman[2] extended the mention result for Lie ideals of R.

Motivated by the above, in this paper, we extend M.Ashraf's[1] results to a semigroup ideal of a 3-prime Γ - near ring and generalize the results of Ashraf and Rehman[2] for generalized derivation and semigroup ideals of a 3-prime Γ - near ring.

2 Preliminaries

Throughout this paper N stands for a zero symmetric right Γ - near ring. In this section we collect all basic concepts and results in Γ - near rings mostly from Booth[4] and Satyanarayana[11] which are required for our study.

Definition 2.1 A Γ - *near ring* is a triple $(N, +, \Gamma)$, where

(i) (N, +) is a (not necessarily abelian) group;

- (ii) Γ is a non-empty set of binary operations on N such that for each $\gamma \in \Gamma$, (N,+, γ) is a right near -ring and;
- (iii) $(x\gamma y) \mu z = x\gamma (y\mu z)$ for all $x, y, z \in N$ and $\gamma, \mu \in \Gamma$.

 Γ -near rings generalize near-rings in the sense that every near-ring N is a Γ -near ring with $\Gamma = \{\cdot\}$ where \cdot is the multiplication defined on N.

Example 2.2 Let $N = \mathbb{Z}_6$ with $\Gamma = \{\gamma_1, \gamma_2\}$ where γ_1, γ_2 are given by the Schemes 1: (0, 1, 0, 0, 0, 0) and 2: (0, 0, 1, 0, 0, 0) (see p.409, Pilz[10])

γ_1	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	0	0	0	0
2	0	2	0	0	0	0
3	0	3	0	0	0	0
4	0	4	0	0	0	0
5	0	5	0	0	0	0
γ_2	0	1	2	3	4	5
$\frac{\gamma_2}{0}$	0	1	2	3 0	4	5 0
$\frac{\gamma_2}{0}$	0 0 0	1 0 0	2 0 1	3 0 0	4 0 0	5 0 0
$\begin{array}{c} \gamma_2 \\ \hline 0 \\ 1 \\ 2 \end{array}$	0 0 0 0	1 0 0 0	$ \begin{array}{c} 2 \\ 0 \\ 1 \\ 2 \end{array} $	3 0 0 0	4 0 0 0	5 0 0 0
$\begin{array}{c} \gamma_2 \\ \hline 0 \\ 1 \\ 2 \\ 3 \end{array}$	0 0 0 0 0	1 0 0 0 0	2 0 1 2 3	3 0 0 0 0	4 0 0 0 0	5 0 0 0 0
$\begin{array}{c} \gamma_2 \\ \hline 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{array}$	0 0 0 0 0 0	1 0 0 0 0 0	$ \begin{array}{c} 2 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{array} $	3 0 0 0 0 0	4 0 0 0 0 0	5 0 0 0 0 0

Then N is a Γ -near ring.

Definition 2.3 Let N be a zero symmetric right Γ -near ring. An additive mapping $d: N \to N$ is said to be a **derivation** on N if $d(x\alpha y) = x\alpha d(y) + d(x)\alpha y$ for all $x, y \in N, \alpha \in \Gamma$.

Definition 2.4 For all $x, y \in N$ and $\alpha \in \Gamma$ $[x, y]_{\alpha} = x\alpha y - y\alpha x$ $(x \circ y)_{\alpha} = x\alpha y + y\alpha x$ (x, y) = x + y - x - y

Definition 2.5 Let N be a zero symmetric right Γ -near ring. An additive mapping $f: N \to N$ is said to be a **right generalized derivation (resp.left generalized derivation)** on N if there exists a derivation d of N such that $f(x\alpha y) = f(x)\alpha y + x\alpha d(y)(f(x\alpha y) = x\alpha f(y) + d(x)\alpha y)$ for all $x, y \in N, \alpha \in \Gamma$. An additive mapping $f: N \to N$ is said to be a **generalized derivation** if it is both right and left generalized derivation.

Definition 2.6 A nonempty subset U of N is called a semigroup right ideal(resp.semigroup left ideal) if $U\Gamma N \subset U(N\Gamma U \subset U)$. U is called semigroup ideal if it is both right and left semigroup ideal.

Definition 2.7 A Γ - near ring N is called **3-prime** if $a\Gamma N\Gamma b = 0 \Rightarrow a = 0$ or b = 0 for all $a, b \in N$.

Definition 2.8 $A \Gamma$ – near ring N is called **2-torsion-free** if (N, +) has no elements of order 2.

Definition 2.9 An element x of a Γ - near ring N is called **distributive** if $x\alpha (a+b) = x\alpha a + x\alpha b$ for all $a, b \in N$ and $\alpha \in \Gamma$. If all the elements of a Γ -near ring N are distributive, then N is said to be a **distributive** Γ - near ring.

Definition 2.10 For all $x, y, z \in N$ and $\alpha, \beta \in \Gamma$, $[x\beta y, z]_{\alpha} = x\beta [y, z]_{\alpha} + [x, z]_{\alpha} \beta y + x\beta z\alpha y - x\alpha z\beta y$, $[x, y\beta z]_{\alpha} = y\beta [x, z]_{\alpha} + [x, y]_{\alpha} \beta z + y\alpha x\beta z - y\beta x\alpha z$, $(x\beta y \circ z)_{\alpha} = x\beta (y \circ z)_{\alpha} - [x, z]_{\alpha} \beta y + x\beta z\alpha y - x\alpha z\beta y = (x \circ z)_{\alpha} \beta y + x\beta [y, z]_{\alpha} + x\alpha z\beta y - x\beta z\alpha y$ and $(x \circ y\beta z)_{\alpha} = (x \circ y)_{\alpha} \beta z - y\beta [x, z]_{\alpha} + y\alpha x\beta z - y\beta x\alpha z = y\beta (x \circ z)_{\alpha} + [x, y]_{\alpha} \beta z + y\beta x\alpha z - y\alpha x\beta z$.

3 Generalized Derivations of 3-Prime Γ - Near Rings

Throughout this section, a Γ - near ring N is satisfying the assumption (*): $a\alpha b\beta c = a\beta b\alpha c$ for all $a, b, c \in N, \alpha, \beta \in \Gamma$.

Lemma 3.1 If $d \neq 0$ is a derivation on a 2-torsion free Γ - near ring N and U a semigroup ideal of N such that $U + U \subset U$ and d(U) = 0, then $U \subset Z$.

Proof. Let $u \in U, x \in N$. By the hypothesis and by[7,Theorem], $d([u,x]_{\alpha}) = 0 \Rightarrow u \in Z$. Thus $U \subset Z$.

Theorem 3.2 Let N be a 2-torsion free 3-prime distributive Γ - near ring satisfying (*), U a semigroup ideal such that $U+U \subset U$ and f a generalized derivation associated with $d \neq 0$. If $(f(y) \circ d(x))_{\alpha} = 0$ for all $x, y \in U$ and $\alpha \in \Gamma$, then $U \subseteq Z$.

Proof. Given that $(f(y) \circ d(x))_{\alpha} = 0$ for all $x, y \in U$ and $\alpha \in \Gamma$ Replace y by $y\beta z$ and using (*), we get

$$-\left[y,d\left(x\right)\right]_{\alpha}\beta f\left(z\right)+d\left(y\right)\beta\left(z\circ d\left(x\right)\right)_{\alpha}-\left[d\left(y\right),d\left(x\right)\right]_{\alpha}\beta z=0\text{ for }x,y\in U,z\in N,\alpha,\beta\in\Gamma$$

Replace y by d(x) for any $x \in V$ where $V = \{u \in U | d(u) \in U\}$, we get

$$d^{2}(x) \beta (z \circ d(x))_{\alpha} - \left[d^{2}(x), d(x)\right]_{\alpha} \beta z = 0$$

$$\tag{1}$$

Replace z by $z\gamma y$ in (1) and using (1), we get

$$d^{2}(x) \beta z \gamma [y, d(x)]_{\alpha} = 0 \text{ for } x, y \in U, z \in N, \alpha, \beta, \gamma \in \Gamma$$

Hence $d^2(x) \beta N\gamma [y, d(x)]_{\alpha} = 0$. This implies that either $[y, d(x)]_{\alpha} = 0$ or $d^2(x) = 0$. If $[y, d(x)]_{\alpha} = 0$ then $d(x) \alpha y = y \alpha d(x)$ for $x, y \in U$. This implies that $U \subseteq Z$. If $d^2(x) = 0$ then $d(d(U)) = 0 \Rightarrow d(U) = 0$ since $d \neq 0$. By Lemma 3.1, $U \subseteq Z$.

Theorem 3.3 Let N be a 2-torsion free 3-prime distributive Γ - near ring satisfying (*), U a semigroup ideal such that $U+U \subset U$ and f a generalized derivation associated with $d \neq 0$. If $[d(x), f(y)]_{\alpha} = 0$ for all $x, y \in U$ and $\alpha \in \Gamma$, then $U \subseteq Z$.

Proof. By hypothesis we have $[d(x), f(y)]_{\alpha} = 0$ for all $x, y \in U$ and $\alpha \in \Gamma$. Replace y by $y\beta z$ and using (*), we get

$$f(y) \beta [d(x), z]_{\alpha} + y\beta [d(x), d(z)]_{\alpha} + [d(x), y]_{\alpha} \beta d(z) = 0$$
(2)

for all $x, y \in U, z \in N, \alpha, \beta \in \Gamma$. Replace z by $z\gamma d(x)$ in (2) and using (2) we get

$$y\beta z\gamma \left[d\left(x\right), d^{2}\left(x\right)\right]_{\alpha} + y\beta \left[d\left(x\right), z\right]_{\alpha}\gamma d^{2}\left(x\right) + \left[d\left(x\right), y\right]_{\alpha}\beta z\gamma d^{2}\left(x\right) = 0$$
(3)

Replace y by $t\delta y$ in (3) and using (3) we get

$$\left[d\left(x\right),t\right]_{\alpha}\delta y\beta z\gamma d^{2}\left(x\right)=0 \ \text{ for all } \ x,y\in U,z,t\in N,\alpha,\beta,\gamma,\delta\in\Gamma.$$

This implies that

$$\left[d\left(x\right),t\right]_{\alpha}\delta U\gamma d^{2}\left(x\right)=0$$

Thus either $[d(x), t]_{\alpha} = 0$ or $d^{2}(x) = 0$

By using the same technique as in the above theorem, we get the required result. \blacksquare

Theorem 3.4 Let N be a 2-torsion free 3-prime distributive Γ - near ring satisfying (*), U a semigroup ideal such that $U+U \subset U$ and f a generalized derivation associated with $d \neq 0$. If $(d(x) \circ f(y))_{\alpha} = (x \circ y)_{\alpha}$ for all $x, y \in U$ and $\alpha \in \Gamma$, then $U \subseteq Z$.

Proof. Given that

$$(d(x) \circ f(y))_{\alpha} = (x \circ y)_{\alpha} \quad \text{for all} \quad x, y \in U \quad \text{and} \quad \alpha \in \Gamma.$$
(4)

If f = 0, then $(x \circ y)_{\alpha} = 0$ for all $x, y \in U, \alpha \in \Gamma$. Replace y by $y\beta z$, we get $y\beta [x, z]_{\alpha} = 0$ for all $x, y \in U, z \in N, \alpha, \beta \in \Gamma$. In particular $[x, z]_{\alpha} \gamma y\beta [x, z]_{\alpha} = 0 \Rightarrow [x, z]_{\alpha} \gamma U\beta [x, z]_{\alpha} = 0$. This implies that $[x, z]_{\alpha} = 0$ for all $x \in U, z \in N, \alpha \in \Gamma$. Thus $U \subseteq Z$.

Now we assume that $f \neq 0$. Replace y by $y\beta z$ in (4) and using (4), we get

$$(d(x) \circ y)_{\alpha} \beta d(z) - f(y) \beta [d(x), z]_{\alpha} - y\beta [d(x), d(z)]_{\alpha} + y\beta [x, z]_{\alpha} = 0$$
(5)

for all $x, y \in U, z \in N, \alpha, \beta \in \Gamma$. Replace z by d(x) in (5), we get

$$(d(x) \circ y)_{\alpha} \beta d^{2}(x) - y\beta \left[d(x), d^{2}(x)\right]_{\alpha} + y\beta \left[x, d(x)\right]_{\alpha} = 0$$
(6)

Replace y by $z\gamma y$ for all $y, z \in U$ in (6) and using (6) we get

$$\left[d\left(x\right),z\right]_{\alpha}\gamma y\beta d^{2}\left(x\right)=0\Rightarrow\left[d\left(x\right),z\right]_{\alpha}\gamma U\beta d^{2}\left(x\right)=0$$

This implies that either $[d(x), z]_{\alpha} = 0$ or $d^2(x) = 0$. By using similar argument as in the Theorem 3.2, $U \subseteq Z$.

By using similar techniques, we also prove the following theorem.

Theorem 3.5 Let N be a 2-torsion free 3-prime distributive Γ - near ring satisfying (*), U a semigroup ideal such that $U+U \subset U$ and f a generalized derivation associated with $d \neq 0$. If $(d(x) \circ f(y))_{\alpha} + (x \circ y)_{\alpha} = 0$ for all $x, y \in U$ and $\alpha \in \Gamma$, then $U \subseteq Z$.

Theorem 3.6 Let N be a 2-torsion free 3-prime distributive Γ - near ring satisfying (*), U a semigroup ideal such that $U+U \subset U$ and f a non zero generalized derivation associated with $d \neq 0$. If $[d(x), f(y)]_{\alpha} = [x, y]_{\alpha}$ for all $x, y \in U$ and $\alpha \in \Gamma$, then $U \subseteq Z$.

Proof. Given that

$$[d(x), f(y)]_{\alpha} = [x, y]_{\alpha} \quad \text{for all} \quad x, y \in U \quad \text{and} \quad \alpha \in \Gamma.$$
(7)

Replace y by $y\beta z$ in (7) and using (7), we get

$$f(y) \beta [d(x), z]_{\alpha} + y\beta [d(x), d(z)]_{\alpha} + [d(x), y]_{\alpha} \beta d(z) - y\beta [x, z]_{\alpha} = 0$$
(8)

for all $x, y, z \in U, \alpha, \beta \in \Gamma$. Replace z by $z\gamma d(x)$ in (8) and using (8), we get

$$y\beta z\gamma \left[d\left(x\right), d^{2}\left(x\right)\right]_{\alpha} + y\beta \left[d\left(x\right), z\right]_{\alpha}\gamma d^{2}\left(x\right) + \left[d\left(x\right), y\right]_{\alpha}\beta z\gamma d^{2}\left(x\right) - y\beta z\gamma \left[x, d\left(x\right)\right]_{\alpha} = 0$$
(9)

for all $x, y, z \in U, \alpha, \beta, \gamma \in \Gamma$

Replace y by $t\delta y$ for all $y, t \in U, \delta \in \Gamma$ in (9) and using (9) we get

$$\left[d\left(x\right),t\right]_{\alpha}\delta y\beta z\gamma d^{2}\left(x\right)=0 \Rightarrow \left[d\left(x\right),t\right]_{\alpha}\delta U\gamma d^{2}\left(x\right)=0$$

for all $x, y, z, t \in U, \alpha, \beta, \gamma, \delta \in \Gamma$ This implies that either $[d(x), z]_{\alpha} = 0$ or $d^2(x) = 0$. By using similar argument as in the proof of the above Theorems , $U \subseteq Z$.

We also prove the following theorem as in Theorem 3.6 with necessary variations.

Theorem 3.7 Let N be a 2-torsion free 3-prime distributive Γ - near ring satisfying (*), U a semigroup ideal such that $U+U \subset U$ and f a non zero generalized derivation associated with $d \neq 0$. If $[d(x), f(y)]_{\alpha} = -[x, y]_{\alpha}$ for all $x, y \in U$ and $\alpha \in \Gamma$, then $U \subseteq Z$.

Theorem 3.8 Let N be a 2-torsion free 3-prime distributive Γ - near ring satisfying (*), U a semigroup ideal such that $U + U \subset U$ and f a non zero generalized derivation associated with $d \neq 0$. If $f([u, v]_{\alpha}) = (u \circ v)_{\alpha}$ for all $u, v \in U$ and $\alpha \in \Gamma$, then $U \subseteq Z$.

Proof. For all $u, v \in U, \alpha \in \Gamma$, we have

$$f([u,v]_{\alpha}) = [x,y]_{\alpha} \Rightarrow f(u) \alpha v + u\alpha d(v) - f(v) \alpha u - v\alpha \alpha d(u) = u\alpha v + v\alpha u \quad (10)$$

Replace v by $v\beta u$ in (10) and using (10), we get

$$[u,v]_{\alpha}\,\beta d\,(u) = 0\tag{11}$$

for all $u, v \in U, \alpha, \beta \in \Gamma$. Replace v by $w\gamma v$ in (11) and using (11), we get

 $[u,w]_{\alpha} \gamma v \beta d(u) = 0 \Rightarrow [u,w]_{\alpha} \gamma U \beta d(u) = 0$

for all $u, v \in U, w \in N, \alpha, \beta, \gamma \in \Gamma$

By [8,Lemma 3.3], $[u, w]_{\alpha} = 0$ or d(u) = 0 for all $u \in U, w \in N, \alpha \in \Gamma$ If $[u, w]_{\alpha} = 0$ then $U \subseteq Z$. On the other hand, if d(u) = 0 for all $u \in U$, by Lemma 3.1, $U \subseteq Z$.

Using the same technique with necessary variation we get the following

Theorem 3.9 Let N be a 2-torsion free 3-prime distributive Γ - near ring satisfying (*), U a semigroup ideal such that $U+U \subset U$ and f a non zero generalized derivation associated with $d \neq 0$. If $f([u, v]_{\alpha}) + (u \circ v)_{\alpha} = 0$ for all $u, v \in U$ and $\alpha \in \Gamma$, then $U \subseteq Z$.

Theorem 3.10 Let N be a 2-torsion free 3-prime distributive Γ - near ring satisfying (*), U a semigroup ideal such that $U + U \subset U$ and f a non zero generalized derivation associated with $d \neq 0$. If $f((u \circ v)_{\alpha}) = [u, v]_{\alpha}$ for all $u, v \in U$ and $\alpha \in \Gamma$, then $U \subseteq Z$.

Proof. For all $u, v \in U, \alpha \in \Gamma$, we have

$$f\left(\left(u\circ v\right)_{\alpha}\right) = \left[u,v\right]_{\alpha} \tag{12}$$

Replace v by $v\beta u$ in (12) and using (12), we get

$$f\left(\left(u\circ v\beta u\right)_{\alpha}\right) = \left[u, v\beta u\right]_{\alpha} \Rightarrow \left(u\circ v\right)_{\alpha}\beta d\left(u\right) = 0 \tag{13}$$

for all $u, v \in U, \alpha, \beta \in \Gamma$.

Replace v by $w\gamma v$ in (13) and using (13), we get

$$[u,w]_{\alpha} \gamma v \beta d(u) = 0 \Rightarrow [u,w]_{\alpha} \gamma U \beta d(u) = 0$$

for all $u, v \in U, w \in N, \alpha, \beta, \gamma \in \Gamma$.

By using the same argument as in Theorem 3.8, we get the required result. \blacksquare

We also prove the following theorem by using the same technique with necessary variations.

Theorem 3.11 Let N be a 2-torsion free 3-prime distributive Γ - near ring satisfying (*), U a semigroup ideal such that $U + U \subset U$ and f a non zero generalized derivation associated with $d \neq 0$. If $f((u \circ v)_{\alpha}) + [u, v]_{\alpha} = 0$ for all $u, v \in U$ and $\alpha \in \Gamma$, then $U \subseteq Z$.

References

- [1] M.Ashraf, A. Ali, and R.Rani, On generalized derivations of prime rings, *Southeast Asian Bulletin of Mathematics* vol.29, no.4, (2005),669-675.
- [2] Ashraf M, Rehaman N, On commutativity of rings with derivations[J]. Results in Math 42 (2002), 3-8.
- [3] H.E.Bell and G.Mason, On derivations in near-rings, Near-rings and Near-fields[Tiibingen, 1985] of North-Holland Mathematics Studies, North-Holland, Amsterdam, The Netherlands 137 (1987), 31-35.
- [4] G.L.Booth, A note on Gamma near-rings, Stud Sci. Math. Hungarica 23 (1988), 471-475.
- [5] G.L.Booth and N.J.Groenewald, Equiprime Γ-near rings, Quaestiones Mathematicae 14 (1991), 411 - 417.
- [6] Daif M N.,Bell H.E.,Remarks on derivations on semiprime rings [J].*Internat.J.Math.Sci.* 15(1) (1992), 205-206.
- [7] I.N.Herstein, A note on derivations II, Canad. Math. Bull. Vol.22 (4),(1979).
- [8] L.Madhuchelvi, On generalized derivations in 3-prime Γ near rings, *Int. J. of Mathematical Sciences and Applications* Vol.6, No.2, (December 2016), 901-908.
- [9] N.Nobusawa, On a generalization of the ring theory, Osaka Journal Math.1(1964), 81-89.
- [10] G.Pilz, *Near-Rings*, North-Holland, Amsterdam, 1983.
- [11] Satyanarayana Bhavanari, A note on Γ-rings, Proc.Japan Acad.Ser.A Math. Sci 59(8) (1983), 382-383.
- [12] Satyanarayana Bhavanari, Contributions to near-rings, Doctoral Thesis, Nagarjuna University, 1984.
- [13] Satyanarayana Bhavanari, A note on Γ-near rings, Indian J. Math. 41(3) (1999), 427-433.
- [14] C.Selvaraj and R.George, Strongly prime Γ-near rings, Tamkang Journal of Mathematics 39(1) (2008), 33-43.
- [15] C.Selvaraj and L.Madhuchelvi, On Uniformly Strongly prime Γ-near rings, Far East Journal of Mathematical Sciences 31(2) (2008), 237-255.
- [16] C.Selvaraj, R.George and G.L.Booth, On strongly equiprime Γ-near rings, Bull. Institute of Math. Academia Sinica 4 (1)(2009), 35-46.
- [17] C.Selvaraj and L.Madhuchelvi, On Semiuniformly Strongly prime Γ-near rings, Southeast Asian Bulletin of Mathematics 35 (2011), 5-17.

Department of Mathematics, Sri Sarada College for Women, Salem-636016, Tamilnadu, India.

The author has obtained support from University Grants Commission No.F MRP-5577/15(SERO/UGC)

0