A Ternary BCH Code by Example

Partha Pratim Dey
Department of Electrical Engineering and Computer Science, North South University, Dhaka, Bangladesh
Email: ppd@ northsouth.edu

Abstract

Almost all undergraduate text books on error-correcting codes are found to focus on binary er-ror-correcting codes hardly ever mentioning their ternary counterparts, though ternary codes are as interesting as binary ones and are in use from long time ago. In this context one might recall that Morse code is just a simple instance of a very useful ternary codes. In this document we discuss ternary BCH codes and use a simple example to illustrate how a ternary 2-error correcting BCH code could be created and how it can be used to correct the bit-errors that are likely to appear during the transmission of a message through a channel.

Keywords Ternary code, BCH code, generator matrix, decoding, elp.

1. INTRODUCTION

Many communication channels are subject to channel noise, and thus errors may be introduced during transmission from the source to a receiver. Error detection techniques allow detecting such errors, while error correction enables reconstruction of the original data. The Bose, Chaudhuri, and Hocquenghem (BCH) codes form a large class of powerful random error-correcting codes. This class of codes is a remarkable generalization of the Hamming codes for multiple error correction. Binary BCH codes were invented by Hocquenghem in 1959 and independently by Bose and Chaudhury in 1960. Since then these codes are being used in applications such as satellite communications, compact disc players, DVDs, disk drives, two-dimensional bar codes etc. In this paper we show how a 2 -error correcting ternary BCH could be constructed. We also discuss the theory of elp (error locator polynomial) and illustrate with an easy example how it can be used for error location and ultimate correction of errors.

2. CONSTRUCTION of a TERNARY BCH CODE

Throughout this paper F_{3} will denote the Galois field of order 3 and $F_{3}[x]$ will denote the ring of polynomials in
x with coefficients in F_{3}. Recall that
$F_{3}[a] /\left(a^{2}+a+2\right)$ is the $G F\left(3^{2}\right)$, a Galois field of or-
der 9 and $a^{2}+a+1$ is a primitive polynomial as
$a=a, a^{2}=2 a+1, a^{3}=2 a+2, a^{4}=2, a^{5}=2 a$,
$a^{6}=a+2, a^{7}=a+1$ and $a^{8}=1$. We factor the poly
$f(x)=x^{8}-1$ in $F_{3}[x]$ to get
$f(x)=\left(x^{2}+2 x+2\right)\left(x^{2}+1\right)\left(x^{2}+x+2\right)(x+1)(x+2)$

Since each nonzero member of $G F\left(3^{2}\right)$ satisfies $f(x)$,
each factor of $f(x)$ is a minimal polynomial of some
power of a in $F_{3}[a] /\left(a^{2}+a+2\right)$. Thus $x^{2}+x+2$ is the minimal polynomial of a and a^{3}, and $x^{2}+1$ and $x+1$ are the minimal polynomials of a^{2} and a^{4} respectively. The interested reader is welcome to find the re-
maining minimal polynomials, but for our exercise which is to find a 2 - error correcting BCH code C, it is enough to find the 4 minimal polynomials of 4 powers of a, namely a, a^{2}, a^{3} and a^{4} as the generator polynomial
$g(x)$ of a 2 - error correcting BCH code is given by the product of these 4 minimal polynomials. Hence $g(x)=\left(x^{2}+x+2\right)\left(x^{2}+1\right)(x+1)=$
$x^{5}+2 x^{4}+x^{3}+x^{2}+2$ and the BCH code C is the set of the multiples of $g(x)$ in $F_{3}[x]$ of degree less than 8
(the degree of $f(x)$). Thus C is a subspace over F_{3} of dimension $=8-$ degree of $g(x)=8-5=3$ with basis $g(x), x g(x)$ and $x^{2} g(x)$ in $V=F_{3}[x] /\left(x^{8}-1\right)$, the vector space of polynomials of degree less than 8 with coefficients in F_{3}. A generator matrix G of C is then given by:
$G=\left[\begin{array}{llllllll}2 & 0 & 1 & 1 & 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 & 1 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 & 1 & 1 & 2 & 1\end{array}\right]$.
For a background in coding theory, please see [1],[2] and [3].

3. DECODING with elp

Since $g(x)$ is the product of the minimal polynomials of a, a^{2}, a^{3} and a^{4} and a codeword $c(x)$ of C is a multiple of $g(x)$, we have $c(a)=c\left(a^{2}\right)=c\left(a^{3}\right)=c\left(a^{4}\right)=0$. Suppose now a codeword $c(x)$ is sent through a communication channel and a $r(x) \in V$ with at most 2-errors is received. Below we will explain how the transmitted codeword $c(x)$ can be recovered from $r(x)$.

Let $r(x)=c(x)+e(x)$. Then $r\left(a^{i}\right)=e\left(a^{i}\right)$ for, as
$c\left(a^{i}\right)=0$ as above. Let $e(x)=\alpha x^{m_{1}}+\beta x^{m_{2}}$ where
$\alpha, \beta \in F_{3}$. Then
$r_{1}=r(a)=\alpha a^{m_{1}}+\beta a^{m_{2}}$
$r_{2}=r\left(a^{2}\right)=\alpha\left(a^{m_{1}}\right)^{2}+\beta\left(a^{m_{2}}\right)^{2}$
$r_{3}=r\left(a^{3}\right)=\alpha\left(a^{m_{1}}\right)^{3}+\beta\left(a^{m_{2}}\right)^{3}$
$r_{4}=r\left(a^{4}\right)=\alpha\left(a^{m_{1}}\right)^{4}+\beta\left(a^{m_{2}}\right)^{4}$

Let $\operatorname{elp}(z)=\left(z-a^{m_{1}}\right)\left(z-a^{m_{2}}\right)=z^{2}+\sigma_{1} z+\sigma_{2}$ for
some $\sigma_{1}, \sigma_{2} \in F_{3}[a] /\left(a^{2}+a+2\right)$. Hence
$\left\{\begin{array}{l}\left(a^{m_{1}}\right)^{2}+\sigma_{1} a^{m_{1}}+\sigma_{2}=0 \\ \left(a^{m_{2}}\right)^{2}+\sigma_{1} a^{m_{2}}+\sigma_{2}=0\end{array}\right.$

Multiplying equation (1) and equation (2) above by $\alpha a^{m_{1}}$ and $\beta a^{m_{2}}$ respectively, we obtain:
$\left\{\begin{array}{l}\alpha\left(a^{m_{1}}\right)^{3}+\alpha \sigma_{1}\left(a^{m_{1}}\right)^{2}+\alpha \sigma_{2} a^{m_{1}}=0 \\ \beta\left(a^{m_{2}}\right)^{3}+\beta \sigma_{1}\left(a^{m_{2}}\right)^{2}+\beta \sigma_{2} a^{m_{2}}=0\end{array}\right.$
We now add (3) and (4) to get:
$\left[\alpha\left(a^{m_{1}}\right)^{3}+\beta\left(a^{m_{2}}\right)^{3}\right]+\sigma_{1}\left[\alpha\left(a^{m_{1}}\right)^{2}+\beta\left(a^{m_{2}}\right)^{2}\right]+$
$\sigma_{2}\left[\alpha a^{m_{1}}+\beta a^{m_{2}}\right]=0$
or equivalently,
$r_{3}+\sigma_{1} r_{2}+\sigma_{2} r_{1}=0$
Now multiplying equation (1) and equation (2) above by $\alpha\left(a^{m_{1}}\right)^{2}$ and $\beta\left(a^{m_{2}}\right)^{2}$ respectively, and then adding them as above we obtain:
$r_{4}+\sigma_{1} r_{3}+\sigma_{2} r_{2}=0$

We now solve the system formed from equations (5) and
(6) and obtain σ_{1} and σ_{2}, which are the coefficients of the
error locator polynomial elp (z). Solving $\operatorname{elp}(z)=0$, we
now obtain $a^{m_{1}}$ and $a^{m_{2}}$. Previously 4 of the parameters
of $e(x)=\alpha x^{m_{1}}+\beta x^{m_{2}}$ were unknown. Now we know at least two, namely m_{1} and m_{2}. The other two i.e. α and β can be obtained by solving the following simultaneous equation:
$\left\{\begin{array}{l}\alpha a^{m_{1}}+\beta a^{m_{2}}=r_{1} \\ \alpha\left(a^{m_{1}}\right)^{2}+\beta\left(a^{m_{2}}\right)^{2}=r_{2}\end{array}\right.$
To recover $c(x)$, we subtract $e(x)$ from $r(x)$.

4. An EXAMPLE

Suppose a codeword $c(x)$ has been sent and we have received
$r(x)=x^{2}+x^{3}+2 x^{4}+2 x^{6}+x^{7}$

Let $\operatorname{elp}(z)=z^{2}+\sigma_{1} z+\sigma_{2}$.
Evaluate
$r_{1}=r(a)=a$
$r_{2}=r\left(a^{2}\right)=2 a$
$r_{3}=r\left(a^{3}\right)=a^{3}$ and
$r_{4}=r\left(a^{4}\right)=0$
Let us now solve the system:
$\left\{\begin{array}{l}r_{3}+\sigma_{1} r_{2}+\sigma_{2} r_{1}=0 \\ r_{4}+\sigma_{1} r_{3}+\sigma_{2} r_{2}=0\end{array}\right.$
In matrix form,
$\left[\begin{array}{ll}r_{1} & r_{2} \\ r_{2} & r_{3}\end{array}\right]\left[\begin{array}{l}\sigma_{2} \\ \sigma_{1}\end{array}\right]=\left[\begin{array}{l}2 r_{3} \\ 2 r_{4}\end{array}\right]$
$\left[\begin{array}{ll}a & a^{5} \\ a^{5} & a^{3}\end{array}\right]\left[\begin{array}{l}\sigma_{2} \\ \sigma_{1}\end{array}\right]=\left[\begin{array}{l}2 a^{3} \\ 0\end{array}\right]$

Hence $\sigma_{2}=a^{3}$ and $\sigma_{1}=a$.

Thus elp $(z)=z^{2}+a z+a^{3}$.

Notice that elp $(1)=0$ and $\operatorname{elp}\left(a^{3}\right)=0$. Hence the error function $e(x)$ is given by:
$e(x)=\alpha+\beta x^{3}$ with $\alpha, \beta \in F_{3}$.

As $r(x)=c(x)+e(x)$, we have:
$r(a)=c(a)+e(a)$ i.e. $r_{1}=0+\alpha+\beta a^{3}=\alpha+\beta a^{3}$
$r\left(a^{2}\right)=c\left(a^{2}\right)+e\left(a^{2}\right)$ i.e. $r_{2}=0+\alpha+\beta a^{6}=$
$\alpha+\beta a^{6}$.

Since $r_{1}=a$ and $r_{2}=a^{5}$, we obtain from above:
$\left\{\begin{array}{l}a=\alpha+\beta a^{3} \\ a^{5}=\alpha+\beta a^{6}\end{array}\right.$
We solve the system to get $\alpha=2$ and $\beta=2$. Hence
$e(x)=2+2 x^{3}$ and
$c(x)$
$=r(x)-e(x)$
$=x^{2}+x^{3}+2 x^{4}+2 x^{6}+x^{7}-2-2 x^{3}$
$=1+x^{2}+2 x^{3}+2 x^{4}+2 x^{6}+x^{7}$

REFERENCES

[1] Introduction to the Theory of Error Correcting Codes, Wiley Student Edition, John Wiley \& Sons (Asia) Pte. Ltd., Singapore, 2003.
[2] Hill, R. (1986) A First Course in Coding Theory, The Oxford University Press, Oxford, UK,1986.
[3] van Lint, J. H. Introduction to Coding Theory, Graduate Texts in Mathematics, Springer-Verlag, New York, 1982

