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Abstract 

The unsteady MHD free convective two immiscible fluids flowing in a horizontal channel 

with heat and mass transfer, with the assumptions that the upper channel and lower channel 

are porous and non-porous respectively have been studied. The governing equations of the 

flow were transformed to ordinary differential equations by a regular perturbation method, 

and the expression for the velocity, temperature and concentration for each fluid flow were 

obtained. The effects of various governing parameters like Grashof numbers for heat and 

mass transfer, Prandtl number, Viscosity ratio, conductivity ratio, Radiative parameter, 

Schmidt number etc. on the velocity, temperature and concentration fields have been 

presented graphically and discussed quantitatively. Also, the coefficient of skin friction, 

Nusselt number and Sherwood number have been calculated and tabulated. 
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List of Symbols 

U, V     Velocity components 

t          Time 

P          Pressure 

B0        Coefficient of electromagnetic field 

F          Thermal Radiation parameter 

θ          Dimensionless temperature 

K          Permeability of porous medium 

ϑ          Kinematic viscosity 

μ          Fluid viscosity 

A         Real positive constant 

g          Acceleration due to gravity 

Cp        Specific heat at constant pressure 

Tw1        Fluid temperature at upper wall 

Tw2        Fluid temperature at lower wall 

Cw1       Fluid concentration at upper wall 

Cw2     Fluid concentration at lower wall 

Gr        Grashof number 

Re        Reynolds number 

M2       Hartmann number 

Pr        Prandtl number 

Sc        Schmidt number 

α          Ratio of viscosity 

β          Ratio of thermal conductivity 

γ          Ratio of  thermal diffusivity 

ω         Frequency parameter 

ε          Coefficient of periodic parameter 

ωt       Periodic frequency parameter 

Subscripts 1, 2: Region I & II 

Respectively.  
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INTRODUCTION 

Magneto hydrodynamic (MHD) is the science of motion of electrically conducting fluid in 

presence of magnetic field. Some of these fluids include liquid metals (such as mercury, 

molten iron) and ionized gases known by Physicist as Plasma, an example being the solar 

atmosphere. The dynamo and motor is a classical example of MHD principle. The unsteady 

Magnetohy drodynamics (MHD) free convective flows in a horizontal channel have over the 

years been subjected to numerous studies. These scientific investigations are based on the 

fact that the studies of such flows have numerous applications in different fields that are 

scientifically motivated. These applications include MHD power generators, MHD pumps, 

liquid metal cooling of reactors, Magnetic drug targeting etc. Several Scholars and Authors 

have contributed their quota since the study of MHD was first initiated by the Swedish 

electrical engineer Hannes Alfven (1942). Shercliff (1956), Sparrow and Cess (1961), Singh 

and Ram (1978), Abdulla (1986), Singh (1993) among others have studied several motions 

of these electrically conducting fluids. 

Such flows with heat and mass transfer have a wide variety of applications in engineering 

and geophysical processes such as geothermal reservoirs, underground energy transport, 

enhanced oil recovery, packet-bed reactors, etc. Among several studies, Chamkha (2003) 

studied the Unsteady MHD convective heat and mass transfer past a semi-infinite vertical 

permeable moving plate with heat absorption. Seethamahalakshmi et al (2011) studied the 

unsteady MHD free convection flow and mass transfer near a moving vertical plate in the 

presence of thermal radiation. Kumar and Jain (2013) investigated the influence of mass 

transfer and thermal radiation on unsteady free convective flow through porous media 

sandwiched between viscous fluids. Joseph et al (2014) then studied the slip effect on MHD 

oscillatory flow of fluid in a porous medium with heat and mass transfer and chemical 

reaction. 

In the petroleum industry, plasma physics, magneto-fluid dynamics, most of the flows that 

occur are multi fluid flows. When these fluids are immiscible, the significance of their study 

becomes exceptional in petroleum extraction and transport. Hence among other scholars and 

Authors, Chamkha (2000) considered the flow of two-immiscible fluids in porous and non-

porous channels. Chamkha et al (2004) investigated the oscillatory flow and heat transfer of 

two immiscible fluids. Umavathi et al (2008) investigated the unsteady 

magnetohydrodynamic two fluid flows and heat transfer in a horizontal channel. Umavathi et 

al (2010) also considered the unsteady flow and heat transfer of porous media sandwiched 

between viscous fluids. Sivaraj (2012) analyzed the MHD mixed convective flow of 

viscoelastic and viscous fluids in a vertical porous channel. Simon and Shagaiya (2013) 

studied the convective flow of two immiscible fluids and heat transfer with porous along an 

inclined channel with pressure gradient.  

The aim of this present study is to investigate the effect of unsteady MHD free convective 

flow of two immiscible fluids, where these two immiscible fluids flow in a horizontal 

channel with heat and mass transfer. 

 

FORMULATION OF THE PROBLEM 

The geometry considered here consists of two immiscible fluids having specific heat at 

constant pressure Cp with porous upper channel and non-porous lower channel bounded by 
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two infinite horizontal parallel plates extending in the X- and Z- directions, with the Y-

direction normal to the plates. The regions 0 ≤ y ≤ h and –h ≤ y ≤ 0 are denoted as Region-I 

and Region-II respectively. The fluid flowing through Region-I is having density ρ1, dynamic 

viscosity μ1, thermal conductivity k1, thermal diffusivity D1, while that flowing through 

Region-II is having density ρ2, dynamic viscosity μ2, thermal conductivity k2, thermal 

diffusivity D2. 

All the variables are functions of y’ and t’ only, due to the bounding surface being infinitely 

long along the x’-axis. The flow is assumed to be fully developed and that all fluid properties 

are constants. The magnetic field Reynolds number is assumed very small. Hence the 

governing equations of the fluid flow for the two different regions are: 

                 
 

 

 

REGION-I: 

 Porous Region 
𝜕𝑉1

′

𝜕𝑦′
= 0                                                                                                   (1) 

𝜌1 ( 
𝜕𝑈1

′

𝜕𝑡 ′ 
+ 𝑉1

′ 𝜕𝑈1
′

𝜕𝑦′
) =  𝜇1

𝜕2𝑈1
′

𝜕𝑦′
2 − 

𝜕𝑃′

𝜕𝑥′
−  𝜎𝐵0

2𝑈1
′ + 𝜌1𝑔𝛽𝑓1(𝑇1

′ − 𝑇𝑤1
′ ) + 𝜌1𝑔𝛽𝑐1

∗ (𝐶1
′ − 𝐶𝑤1

′ )            



                                                                                                         (2)             

𝜌1𝐶𝑝 (
𝜕𝑇1

′

𝜕𝑡 ′
+ 𝑉1

′ 𝜕𝑇1
′

𝜕𝑦′
) = 𝑘1

𝜕2𝑇1
′

𝜕𝑦′
2 − 

𝜕𝑞𝑟

𝜕𝑦
                                                      (3) 

𝜕𝐶1
′

𝜕𝑡 ′
+ 𝑉1

′ 𝜕𝐶1
′

𝜕𝑦′
= 𝐷1

𝜕2𝐶1
′

𝜕𝑦′
2                                                                             (4) 

 

 

 

 

h 

Y 

X 
0 

-h 

𝐁𝟎 

𝐓𝐰𝟏  

𝐓𝐰𝟐  

Region II 

Region I 

𝐂𝐰𝟏  

𝐂𝐰𝟐  

Geometry Configuration. 
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REGION-II:  

Clear Region 
𝜕𝑉2

′

𝜕𝑦′
= 0                                                                                                         (5) 

 

𝜌2 ( 
𝜕𝑈2

′

𝜕𝑡 ′ 
+ 𝑉2

′ 𝜕𝑈2
′

𝜕𝑦′
) =  𝜇2

𝜕2𝑈2
′

𝜕𝑦 ′
2 − 

𝜕𝑃′

𝜕𝑥′
−  𝜎𝐵0

2𝑈2
′ − 

𝜇2

𝐾′
𝑈2

′ + 𝜌2𝑔𝛽𝑓2(𝑇2
′ − 𝑇𝑤2

′ ) +

 𝜌2𝑔𝛽𝑐2
∗ (𝐶2

′ − 𝐶𝑤2
′ )                                                                                      (6)           

                                                                                                                                     

𝜌2𝐶𝑝 (
𝜕𝑇2

′

𝜕𝑡 ′
+ 𝑉2

′ 𝜕𝑇2
′

𝜕𝑦′
) = 𝑘2

𝜕2𝑇2
′

𝜕𝑦′
2 − 

𝜕𝑞𝑟

𝜕𝑦
                                                           (7) 

𝜕𝐶2
′

𝜕𝑡 ′
+ 𝑉2

′ 𝜕𝐶2
′

𝜕𝑦′
= 𝐷2

𝜕2𝐶2
′

𝜕𝑦′
2                                                                                  (8)                                                                                                                                  

                                                                                                                               

Assuming that the boundary and interface conditions on velocity are no slip, given that at the 

boundary and interface, the fluid particles are at rest, prompting the x’- component of the 

velocity to varnish at the wall. 

Therefore, the boundary and interface conditions on the velocity for both fluids are: 

 

𝑈1
′ (ℎ) = 0

𝑈2
′ (−ℎ) = 0

𝑈1
′ (0) = 𝑈2

′ (0)

𝜇1
𝜕𝑈1

′

𝜕𝑦′
= 𝜇2

𝜕𝑈2
′

𝜕𝑦′
 𝑎𝑡 𝑦 ′ = 0}

 
 

 
 

                                                    (9) 

 

The boundary and interface conditions on the temperature field for both fluids are: 

 

𝑇1
′(ℎ) = 𝑇𝑤1

′

𝑇2
′ (−ℎ) = 𝑇𝑤2

′

𝑇1
′(0) = 𝑇2

′ (0)

𝑘1
𝜕𝑇1

′

𝜕𝑦′
= 𝑘2

𝜕𝑇2
′

𝜕𝑦′
 𝑎𝑡 𝑦 ′ = 0}

 
 

 
 

                                                   (10) 

 

The boundary and interface conditions on the concentration field for both fluids are: 

 

𝐶1
′ (ℎ) = 𝐶𝑤1

′

𝐶2
′ (−ℎ) = 𝐶𝑤2

′

𝐶1
′ (0) = 𝐶2

′ (0)

𝐷1
𝜕𝐶1

′

𝜕𝑦′
= 𝐷2

𝜕𝐶2
′

𝜕𝑦′
 𝑎𝑡 𝑦 ′ = 0}

 
 

 
 

                                                     (11) 

The continuity equations (1) and (5) implies that 𝑉1
′  and 𝑉2

′  are independent of 𝑦 ′, they can be 

at most a function of time alone. Hence we can write 

𝑉 ′ = 𝑉0(1 + 𝜀𝐴𝑒
𝑖𝜔𝑡)                                                                         (12) 
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Assuming that 𝑉1
′  = 𝑉2

′  = 𝑉 ′. 

ε is a very small positive quantity such that 𝜀𝐴≪1. Here, it is assumed that the transpiration 

velocity 𝑉 ′ varies periodically with time about a non-zero constant mean velocity, 𝑉0.  

By using the following dimensionless quantities: 

𝑈𝑖 =
𝑈𝑖
′

𝑢
  ,         𝑦 =

𝑦′

ℎ
  ,      𝑡 =

𝑡′𝜗1

ℎ2
  ,     𝑉 =

ℎ

𝜗1
𝑉1
′ =

𝑉

𝑉0
  ,     𝑃 =

−ℎ2

𝜇1𝑢
(
𝜕𝑃′

𝜕𝑥′
)  ,     𝜃𝑖 =

𝑇𝑖
′−𝑇𝑤1

′

𝑇𝑤2
′ −𝑇𝑤1

′   ,     

𝑃𝑟 =
𝜇1𝐶𝑝

𝑘1
  ,     𝛼1 =

𝜇2

𝜇1
  ,    𝛽1 =

𝑘2

𝑘1
  ,     𝜏1 =

𝜌2

𝜌1
   ,     𝛾1 =

𝐷2

𝐷1
  ,      𝑚1 =

𝛽𝑓2

𝛽𝑓1
  ,      𝜂1 =

𝛽𝑐2
∗

𝛽𝑐1
∗   ,    

𝐾2 =
ℎ2

𝐾′
    ,       𝑆𝑐 =

𝜗1

𝐷1
  ,      𝐶𝑖 =

𝐶𝑖
′−𝐶𝑤1

′

𝐶𝑤2
′ −𝐶𝑤1

′    ,  𝑀2 =
𝜎ℎ2𝐵0

2

𝜇1
,      𝐹 =

4𝐼′ℎ1
2

𝑘1
   ,   

𝜕𝑞𝑟

𝜕𝑦
=

4(𝑇𝑖
′ − 𝑇𝑤1

′ )𝐼′   ,       𝐺𝑟 =
𝜌1𝑔ℎ

2𝛽𝑓1(𝑇𝑤2
′ −𝑇𝑤1

′ )

𝜇1𝑢
   ,       𝜉1 = 

1

𝜏1
=

𝜌1

𝜌2
, 

                 𝐺𝑐 =
𝜌1𝑔ℎ

2𝛽𝑐1
∗ (𝐶𝑤2

′ −𝐶𝑤1
′ )

𝜇1𝑢
. 

Equations (2), (3), (4), (6), (7), and (8) becomes 

 

REGION-I 
𝜕𝑈1

𝜕𝑡
+ (1 + 𝜀𝑒𝑖𝜔𝑡)

𝜕𝑈1

𝜕𝑦
= 

𝜕2𝑈1

𝜕𝑦2
+ 𝑃 −𝑀2𝑈1 + 𝐺𝑟𝜃1 + 𝐺𝑐𝐶1                                                          

(13) 
𝜕𝜃1
𝜕𝑡

+ (1 + 𝜀𝑒𝑖𝜔𝑡)
𝜕𝜃1
𝜕𝑦

=
1

𝑃𝑟

𝜕2𝜃1
𝜕𝑦2

− 
𝐹𝜃1
𝑃𝑟

                                                                                       (14) 

 
𝜕𝐶1
𝜕𝑡

+ (1 + 𝜀𝑒𝑖𝜔𝑡)
𝜕𝐶1
𝜕𝑦

=
1

𝑆𝑐

𝜕2𝐶1
𝜕𝑦2

                                                                                                      (15) 

 

REGION-II 
𝜕𝑈2

𝜕𝑡
+ (1 + 𝜀𝑒𝑖𝜔𝑡)

𝜕𝑈2

𝜕𝑦
= 𝛼1𝜉1

𝜕2𝑈2

𝜕𝑦2
+ 𝜉1𝑃 − 𝜉1𝑀

2𝑈2 − 𝛼1𝜉1𝐾
2𝑈2 + 𝐺𝑟𝑚1𝜃2 + 𝐺𝑐𝜂1𝐶2    

                                                                                                                       (16) 

 
𝜕𝜃2
𝜕𝑡

+ (1 + 𝜀𝑒𝑖𝜔𝑡)
𝜕𝜃2
𝜕𝑦

=
𝛽1𝜉1
𝑃𝑟

𝜕2𝜃2
𝜕𝑦2

− 
𝐹𝜉1𝜃2
𝑃𝑟

                                                                              (17) 

 
𝜕𝐶2

𝜕𝑡
+ (1 + 𝜀𝑒𝑖𝜔𝑡)

𝜕𝐶2

𝜕𝑦
=

𝛾1

𝑆𝑐

𝜕2𝐶2

𝜕𝑦2
                                                                             (18) 

 

The boundary and interface conditions in dimensionless form are given as follows: 
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𝑈1(1) = 0

𝑈2(−1) = 0

𝑈1(0) = 𝑈2(0)
𝜕𝑈1

𝜕𝑦
= 𝛼1

𝜕𝑈2

𝜕𝑦
 𝑎𝑡 𝑦 = 0}

 
 

 
 

                                                               (19) 

 
𝜃1(1) = 1

𝜃2(−1) = 0

𝜃1(0) = 𝜃2(0)
𝜕𝜃1

𝜕𝑦
= 𝛽1

𝜕𝜃2

𝜕𝑦
 𝑎𝑡 𝑦 = 0}

 
 

 
 

                                                                (20) 

 
𝐶1(1) = 1

𝐶2(−1) = 0

𝐶1(0) = 𝐶2(0)
𝜕𝐶1

𝜕𝑦
= 𝛾1

𝜕𝐶2

𝜕𝑦
 𝑎𝑡 𝑦 = 0}

 
 

 
 

                                                                 (21) 

 

METHOD OF SOLUTION/SOLUTION OF THE PROBLEM 

In order to solve the governing equations (13) to (18) under the boundary and interface 

conditions (19) to (21), we expand 𝑈1(𝑦, 𝑡), 𝜃1(𝑦, 𝑡), 𝐶1(𝑦, 𝑡), 𝑈2(𝑦, 𝑡), 𝜃2(𝑦, 𝑡), 𝐶2(𝑦, 𝑡) as a 

power series in the perturbative parameter 𝜀. Here, we assumed small amplitude of 

oscillation (𝜀 ≪ 1), thus,  

𝑈1(𝑦, 𝑡) =  𝑈10(𝑦) + 𝜀𝑒
𝑖𝜔𝑡𝑈11(𝑦) 

𝜃1(𝑦, 𝑡) =  𝜃10(𝑦) + 𝜀𝑒
𝑖𝜔𝑡𝜃11(𝑦) 

𝐶1(𝑦, 𝑡) =  𝐶10(𝑦) + 𝜀𝑒
𝑖𝜔𝑡𝐶11(𝑦) 

𝑈2(𝑦, 𝑡) =  𝑈20(𝑦) + 𝜀𝑒
𝑖𝜔𝑡𝑈21(𝑦) 

𝜃2(𝑦, 𝑡) =  𝜃20(𝑦) + 𝜀𝑒
𝑖𝜔𝑡𝜃21(𝑦) 

𝐶2(𝑦, 𝑡) =  𝐶20(𝑦) + 𝜀𝑒
𝑖𝜔𝑡𝐶21(𝑦) 

By substituting the above set of equations into equations (13) to (18), equating the periodic 

and non-periodic terms, and neglecting the terms containing𝜺𝟐, we obtain the following set 

of ordinary differential equations: 

 

REGION-I 

Non-Periodic Terms: 

𝜕2𝑈10
𝜕𝑦2

− 
𝜕𝑈10
𝜕𝑦

− 𝑀2𝑈10 = −𝑃 − 𝐺𝑟𝜃10 − 𝐺𝑐𝐶10                                            (22) 

𝜕2𝜃10
𝜕𝑦2

−  𝑃𝑟
𝜕𝜃10
𝜕𝑦

− 𝐹𝜃10 = 0                                                                                (23) 

𝜕2𝐶10
𝜕𝑦2

− 𝑆𝑐
𝜕𝐶10
𝜕𝑦

= 0                                                                                                (24) 
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Periodic terms: 

𝜕2𝑈11
𝜕𝑦2

− 
𝜕𝑈11
𝜕𝑦

− (𝑀2 + 𝑖𝜔)𝑈11

=
𝜕𝑈10
𝜕𝑦

 − 𝐺𝑟𝜃11 − 𝐺𝑐𝐶11                                                              (25) 

𝜕2𝜃11

𝜕𝑦2
−  𝑃𝑟

𝜕𝜃11

𝜕𝑦
− (𝐹 + 𝑖𝜔𝑃𝑟 )𝜃11 =  𝑃𝑟

𝜕𝜃10

𝜕𝑦
                                             (26) 

𝜕2𝐶11
𝜕𝑦2

− 𝑆𝑐
𝜕𝐶11
𝜕𝑦

− 𝑖𝜔𝑆𝑐𝐶11

= 𝑆𝑐
𝜕𝐶10
𝜕𝑦

                                                                                           (27) 

  

REGION-II 

Non-Periodic terms: 

𝜕2𝑈20
𝜕𝑦2

− 
1

𝛼1𝜉1

𝜕𝑈20
𝜕𝑦

− (
𝜉1𝑀

2 + 𝛼1𝜉1𝐾
2

𝛼1𝜉1
)𝑈20

= −
𝑃

𝛼1
−
𝐺𝑟𝑚1

𝛼1𝜉1
𝜃20 −

𝐺𝑐𝜂1
𝛼1𝜉1

𝐶20                                                   (28)  

𝜕2𝜃20
𝜕𝑦2

− 
𝑃𝑟

𝛽1𝜉1

𝜕𝜃20
𝜕𝑦

−
𝐹

𝛽1
𝜃20

= 0                                                                                                        (29) 

 
𝜕2𝐶20
𝜕𝑦2

−
𝑆𝑐

𝛾1

𝜕𝐶20
𝜕𝑦

= 0                                                                                              (30) 

 

Periodic Terms:  

𝜕2𝑈21
𝜕𝑦2

− 
1

𝛼1𝜉1

𝜕𝑈21
𝜕𝑦

− (
𝜉1𝑀

2 + 𝛼1𝜉1𝐾
2 + 𝑖𝜔

𝛼1𝜉1
)𝑈21

= 
1

𝛼1𝜉1

𝜕𝑈20
𝜕𝑦

−
𝐺𝑟𝑚1

𝛼1𝜉1
𝜃21 −

𝐺𝑐𝜂1
𝛼1𝜉1

𝐶21                                          (31) 

𝜕2𝜃21
𝜕𝑦2

− 
𝑃𝑟

𝛽1𝜉1

𝜕𝜃21
𝜕𝑦

− (
𝐹𝜉1 + 𝑖𝜔𝑃𝑟

𝛽1𝜉1
)𝜃21

=
𝑃𝑟

𝛽1𝜉1

𝜕𝜃20
𝜕𝑦

                                                                                        (32) 

𝜕2𝐶21
𝜕𝑦2

−
𝑆𝑐

𝛾1

𝜕𝐶21
𝜕𝑦

−
𝑖𝜔𝑆𝑐

𝛾1
𝐶21

=
𝑆𝑐

𝛾1

𝜕𝐶20
𝜕𝑦

                                                                                              (33) 

 

The equations (22) to (33) are ordinary linear coupled differential equations with constant 

coefficients. The corresponding boundary and interface conditions then become: 

Non-Periodic terms: 
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𝑈10(1) = 0

𝑈20(−1) = 0

𝑈10(0) = 𝑈20(0)
𝜕𝑈10

𝜕𝑦
= 𝛼1

𝜕𝑈20

𝜕𝑦
 𝑎𝑡 𝑦 = 0}

 
 

 
 

                                                            (34) 

 

𝜃10(1) = 1

𝜃20(−1) = 0

𝜃10(0) = 𝜃20(0)
𝜕𝜃10

𝜕𝑦
= 𝛽1

𝜕𝜃20

𝜕𝑦
 𝑎𝑡 𝑦 = 0}

 
 

 
 

                                                              (35) 

𝐶10(1) = 1

𝐶20(−1) = 0

𝐶10(0) = 𝐶20(0)
𝜕𝐶10

𝜕𝑦
= 𝛾1

𝜕𝐶20

𝜕𝑦
 𝑎𝑡 𝑦 = 0}

 
 

 
 

                                                           (36) 

 

Periodic Terms:  
𝑈11(1) = 0

𝑈21(−1) = 0

𝑈11(0) = 𝑈21(0)
𝜕𝑈11

𝜕𝑦
= 𝛼1

𝜕𝑈21

𝜕𝑦
 𝑎𝑡 𝑦 = 0}

 
 

 
 

                                                             (37) 

 
𝜃11(1) = 1

𝜃21(−1) = 0

𝜃11(0) = 𝜃21(0)
𝜕𝜃11

𝜕𝑦
= 𝛽1

𝜕𝜃21

𝜕𝑦
 𝑎𝑡 𝑦 = 0}

 
 

 
 

                                                                (38) 

 
𝐶11(1) = 1

𝐶21(−1) = 0

𝐶11(0) = 𝐶21(0)
𝜕𝐶11

𝜕𝑦
= 𝛾1

𝜕𝐶21

𝜕𝑦
 𝑎𝑡 𝑦 = 0}

 
 

 
 

                                                                  (39) 

 

The analytical solutions of the differential equations (22) to (33) are readily obtainable under 

the boundary conditions (34) to (39). They are: 

𝑈10(𝑦) = C5e
m5y + C6e

m6y + K1 + K2e
m1y + K3e

m2y + K4e
m3y + K5e

m4y             (40) 

 

𝑈20(𝑦)
= C17e

m17y + C18e
m18y + K20 + K21e

m13y + K22e
m14y + K23e

m15y

+ K24e
m16y                                                                                                                                      (41) 
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𝜃10(𝑦) = C1e
m1y

+ C2e
m2y                                                                                                                       (42) 

𝜃20(𝑦) = C13e
m13y

+ C14e
m14y                                                                                                               (43) 

𝐶10(𝑦) = C3e
m3y

+ C4e
m4y                                                                                                                      (44) 

𝐶20(𝑦) = C15e
m15y

+ C16e
m16y                                                                                                               (45) 

 

𝑈11(𝑦) = C11e
m11y + C12e

m12y + K10e
m1y + K11e

m2y + K12e
m3y + K13e

m4y+ K14e
m5y

+ K15e
m6y + K16e

m7y + K17e
m8y + K18e

m9y

+ K19e
m10y                                                                                                               (46) 

𝑈21(𝑦)
= C23e

m23y + C24e
m24y + K29e

m13y + K30e
m14y + K31e

m15y + K32e
m16y+ K33e

m17y

+ K34e
m18y + K35e

m19y + K36e
m20y + K37e

m21y

+ K38e
m22y                                                                                                                                      (47) 

 

𝜃11(𝑦) = C7e
m7y + C8e

m8y + K6e
m1y

+ K7e
m2y                                                                                                                  (48) 

 

𝜃21(𝑦) = C19e
m19y + C20e

m20y + K25e
m13y

+ K26e
m14y                                                                                                                (49) 

 

𝐶11(𝑦) = C9e
m9y + C10e

m10y + K8e
m3y

+ K9e
m4y                                                                                                                    (50) 

 

𝐶21(𝑦) = C21e
m21y + C22e

m22y + K27e
m15y

+ K28e
m16y                                                                                                                 (51) 

 

Where 

V1 = F + iωPr ,      V2 = iωSc ,     V3 = M
2 + iω ,    V4 =

Pr

β1ξ1
 ,     V5 =

F

β1
 ,    V6 =

Sc

γ1
 ,   V7 =

1

α1ξ1
 ,  V8 =

ξ1M
2+α1ξ1K

2

α1ξ1
 , V9 =

Fξ1+ iωPr

β1ξ1
 ,  V10 =

iωSc

γ1
 ,  V11 =

ξ1M
2+α1ξ1K

2+iω

α1ξ1
 , 

m1 =
Pr+√Pr2+4F

2
 ,   m2 =

Pr−√Pr2+4F

2
 ,   m3 = 0 ,  m4 = Sc ,   m5 =

1+√1+4M2

2
 , 

m6 =
1−√1+4M2

2
 ,  m7 =

Pr+√Pr2+4V1

2
,  m8 =

Pr−√Pr2+4V1

2
,   m9 =

Sc+√Sc2+4V2

2
, 

m10 =
Sc−√Sc2+4V2

2
, m11 =

1+√1+4V3

2
,  m12 =

1−√1+4V3

2
 ,   m13 =

V4+√V4
2+4V5

2
 , 

m14 =
V4−√V4

2+4V5

2
 ,   m15 = 0 ,   m16 = V6 ,   m17 =

V7+√V7
2+4V8

2
 ,   m18 =

V7−√V7
2+4V8

2
, 

m19 =
V4+√V4

2+4V9

2
 ,   m20 =

V4−√V4
2+4V9

2
 ,  m21 =

V6+√V6
2+4V10

2
 ,    m22 =

V6−√V6
2+4V10

2
, 
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,  m23 =
V7+√V7

2+4V11

2
 ,   m24 =

V7−√V7
2+4V11

2
 ,  r1 =  e

−m2 ,  r2 = 1 −  e
(m1−m2) 

r3 =  e
(m14−m13) − 1 ,   r4 = m2e

−m2,   r5 = m1 − m2e
(m1−m2) , 

r6 = β
1
(m14e

(m14−m13) −m13) ,     r7 =  e
−m4  ,  r8 = 1 −  e

(m3−m4) ,    r9 =  e
(m16−m15) −

1 , 

r10 = m4e
−m4 ,   r11 = m3 − m4e

(m3−m4) ,  r12 = γ
1
(m16e

(m16−m15) −m15) , 

r13 = 1 −  e
(m5−m6) ,    r14 =  e

(m18−m17) − 1 ,   r15 = m5 − m6e
(m5−m6) , 

r16 = α1(m18e
(m18−m17) −m17) ,    r17 = 1 −  e

(m7−m8) ,    r18 =  e
(m20−m19) − 1 , 

r19 = m7 − m8e
(m7−m8) ,   r20 = β

1
(m20e

(m20−m19) −m19) ,  r21 = 1 −  e
(m9−m10) , 

r22 =  e
(m22−m21) − 1 ,   r23 = m9 − m10e

(m9−m10) ,  r24 = γ
1
(m22e

(m22−m21) −m21) , 

r25 = 1 −  e
(m11−m12) ,   r26 =  e

(m24−m23) − 1 ,   r27 = m11 − m12e
(m11−m12) , 

r28 = α1(m24e
(m24−m23) −m23) ,    C1 =

r1r6−r3r4

r3r5−r2r6
 ,   C2 =  e

−m2 − C1e
(m1−m2) , 

C3 =
r7r12−r10r11

r9r11−r8r12
 ,   C4 =  e

−m4 − C3e
(m3−m4) ,   C13 =

r1−C1r2

r3
 ,  C14 = − C13e

(m14−m13) , 

C15 =
−r7−C3r8

r9
 ,   C16 = − C15e

(m16−m15) ,  K1 = 
P

M2
 ,    K2 = −

GrC1

m1
2−m1−M

2
 ,                               

K3 = −
GrC2

m2
2−m2−M

2
 , 

K4 = −
GcC3

m3
2−m3−M

2
  ,    K5 = −

GcC4

m4
2−m4−M

2
  ,   K6 = 

PrC1m1

m1
2−Prm1−V1

   ,    K7 = 
PrC2m2

m2
2−Prm2−V1

   ,    

K8 = 
ScC3m3

m3
2−Scm3−V2

   ,    K9 = 
ScC4m4

m4
2−Scm4−V2

   ,  K10 = 
K2m1−GrK6

m1
2−m1−V3

,    K11 = 
K3m2−GrK7

m2
2−m2−V3

   ,   

K12 = 
K4m3−GcK8

m3
2−m3−V3

   , 

K22 = −
V7Grm1C14

m14
2 −V7m14−V8

, K23 = −
V7Gcη1C15

m15
2 −V7m15−V8

  ,    K24 = −
V7Gcη1C16

m16
2 −V7m16−V8

   ,  

 K25 = 
V4C13m13

m13
2 −V4m13−V9

   ,    K26 = 
V4C14m14

m14
2 −V4m14−V9

   ,    K27 = 
V6C15m15

m15
2 −V6m15−V10

   ,   

               K28 = 
V6C16m16

m16
2 −V6m16−V10

   ,    K29 = 
V7(K21m13−GrK25m1)

m13
2 −V7m13−V11

   , 

K30 =
V7(K22m14−GrK26m1)

m14
2 −V7m14−V11

, K31 = 
V7(K23m15−GcK27η1)

m15
2 −V7m15−V11

   ,    K32 =
V7(K24m16−GcK28η1)

m16
2 −V7m16−V11

 , 

A1 = K1 + K2e
m1 + K3e

m2 + K4e
m3 + K5e

m4 , 

A2 = K20 + K21e
−m13 + K22e

−m14 + K23e
−m15 + K24e

−m16    , 
A3 = K20 + K21 + K22 + K23 + K24 − (K1 + K2 + K3 + K4 + K5)  , 

A4 = α1(K21m13 + K22m14 + K23m15 + K24m16) − (K2m1 + K3m2 + K4m3 + K5m4)  , 
A5 = 1 − (K6e

m1 + K7e
m2)  ,   A6 = K25e

−m13 + K26e
−m14  ,  A7 = K25 + K26 − (K6 +

K7) , 
A8 = β

1
(K25m13 + K26m14) − (K6m1 + K7m2) ,    A9 = 1 − (K8e

m3 + K9e
m4)  , 

A10 = K27e
−m15 + K28e

−m16 ,     A11 = K27 + K28 − (K8 + K9)  , 
A12 = γ

1
(K27m15 + K28m16) − (K8m3 + K9m4) ,    Q1 = A3 + A1e

−m6 − A2e
m18  , 

Q2 = A4r14 + A1r14m6e
−m6 − α1A2r14m18e

m18  ,     Q3 = A7 − A5e
−m8 − A6e

m20  ,     

Q4 = A8r18 − A5r18m8e
−m8 − β

1
A6r18m20e

m20  ,     Q5 = A11 − A9e
−m10 − A10e

m22  ,     

Q6 = A12r22 − A9r22m10e
−m10 − γ

1
A10r22m22e

m22  ,     C5 =
Q2−Q1r16

r14r15−r13r16
 , 
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C6 = −A1 e
−m6 − C5e

(m5−m6) ,     C7 =
Q4−Q3r20

r18r19−r17r20
 , 

C8 = A5 e
−m8 − C7e(m7−m8) ,                  C9 =

Q6−Q5r24

r22r23−r21r24

 , 

C10 = A9 e
−m10 − C9e(m9−m10) ,             C17 =

Q1−C5r13

r14
 , 

C18 = −A2em18 − C17e(m18−m17) ,              C19 =
Q3−C7r17

r18
 , 

C20 = −A6em20 − C19e(m20−m19) ,          C21 =
Q5−C9r21

r22
 , 

C22 = −A10em22 − C21e(m22−m21),     K14 = 
C5m5

m5
2−m5−V3

   ,  K15 = 
C6m6

m6
2−m6−V3

   , 

K16 = −
𝐺𝐺C7

m7
2−m7−V3

   ,   K17 = −
𝐺𝐺C8

m8
2−m8−V3

   ,    K18 = −
𝐺𝐺C9

m9
2−m9−V3

   ,   K19 = −
𝐺𝐺C10

m10
2 −m10−V3

   ,   

K33 = 
V7C17m17

m17
2 −V7m17−V11

   ,   K34 = 
V7C18m18

m18
2 −V7m18−V11

   ,  K35 = −
V7Grm1C19

m19
2 −V7m19−V11

   ,    

                   K36 = −
V7Grm1C20

m20
2 −V7m20−V11

   ,    K37 = −
V7Gcη

1
C

21

m21
2 −V7m21−V11

 ,    K38 = −
V7Gcη

1
C

22

m22
2 −V7m22−V11

 , 

A13 = K
10

em1 + K11em2 + K12em3 + K13em4 + K14em5 + K15em6 + K16em7 + K17em8 +

K18em9 + K19em10    , 
A14 = K

29
e−m13 + K30e−m14 + K31e−m15 + K32e−m16 + K33e−m17 + K34e−m18 + K35e−m19 +

K36e−m20 + K37e−m21 + K38e−m22    , 
A15 = K

29
+ K30 + K31 + K32 + K33 + K34 + K35 + K36 + K37 + K38 − (K10 + K11 +

K12 + K13 + K14 + K15 + K16 + K17 + K18 + K19)  , 
A16 = α1(K29

m13 + K30m14 + K31m15 + K32m16 + K33m17 + K34m18 + K35m19 +

K36m20 + K37m21 + K38m22) − (K10m1 + K11m2 + K12m3 + K13m4 + K14m5 + K15m6 +
𝐺16m7 +𝐺17m8 + K18m9 + K19m10 )  , Q7

= A15 + A
13

e−m12 − A14em24   , 

Q
8
= A16r26 + A

13
r26m12e−m12 − α1A14r26m24em24  ,   C11 =

Q8−Q7r28

r26r27−r25r28

 , 

C12 = −A13e−m12 − C11e(m11−m12) ,  C23 =
Q7−C11r25

r26
 , C24 = −A14em24 − C23e(m24−m23). 

 

The coefficient of skin friction, Nusselt number and Sherwood number are given as: 

 

Cf(U) = [
𝐺𝐺10

𝐺𝐺
]
𝐺=1

 +  𝐺𝐺𝐺𝐺𝐺 [
𝐺𝐺11

𝐺𝐺
]
𝐺=1

 

Cf(L) = [
𝐺𝐺20

𝐺𝐺
]𝐺=−1 +𝐺𝐺𝐺𝐺𝐺[

𝐺𝐺21

𝐺𝐺
]𝐺=−1 

Nu(U) =   [
𝐺𝐺10

𝐺𝐺
]
𝐺=1

+  𝐺𝐺𝐺𝐺𝐺 [
𝐺𝐺11

𝐺𝐺
]
𝐺=1

  

Nu(L) =   [
𝐺𝐺20

𝐺𝐺
]
𝐺=−1

+  𝐺𝐺𝐺𝐺𝐺 [
𝐺𝐺21

𝐺𝐺
]
𝐺=−1

 

Sh(U) =   [
𝐺𝐺10

𝐺𝐺
]
𝐺=1

+  𝐺𝐺𝐺𝐺𝐺 [
𝐺𝐺11

𝐺𝐺
]
𝐺=1
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Sh(L) =   [
𝐺𝐺20

𝐺𝐺
]
𝐺=−1

+  𝐺𝐺𝐺𝐺𝐺 [
𝐺𝐺21

𝐺𝐺
]
𝐺=−1

 

 

RESULTS AND DISCUSSION 

The degree of diversity of the velocity, temperature and concentration of the unsteady 

movement of two electrically conducting free convective immiscible fluids flowing in a 

horizontal channel with heat and mass transfer by assigning different numerical values to the 

varying parameter when Gr = 5,Gc = 5,Pr = 1,Sc = 0.78,F = 3,K = 5,M = 1, α1 =
1, β

1
= 1, γ

1
= 1,ω = 10, ξ

1
= 1,φ

1
= 1, η

1
= 1,P = 1,ωt = 30 were conducted using 

MATLAB and the following are the results obtained. 

Figure 1 and 2 depicts the effect of Grashof numbers (𝐺𝐺 𝐺𝐺𝐺 𝐺𝐺) for heat and mass 

transfer respectively on the velocity field. In both figures, it can be seen that the velocity 

increases as the domination of buoyancy force over viscous force increases. Also, it can be 

clearly seen that, this increase occurs in the porous region and upper part of the clear region. 

However, it would be worthy to note that the Grashof number for mass transfer 

(𝐺𝐺) increases the velocity of the fluid more than the Grashof number for heat transfer 

(𝐺𝐺). 
Figure 3 and 4 which describes the effect of Prandtl number (𝐺𝐺) and Permeability 

parameter (𝐺) respectively on the velocity field shows that as the momentum diffusivity 

(kinematic viscosity) gradually dominates the thermal diffusivity, the velocity of the flow 

decreases with slight alteration in the porous region while the variation in the velocity is not 

significant even if the Prandtl number (𝐺𝐺) increases for region II. In the case of Figure 4, 

the velocity is low for a less than unity Permeability parameter while further increase above 

unity causes a rapid increase in the velocity. 

Figure 5 and 6 shows the effect of Viscosity ratio and Radiation parameter on the velocity of 

the flow. It is observed that as the viscosity ratio increases, the velocity decreases with lager 

velocity boundary layer in region II as compared to region I. this observation concurs with 

the fact that increase in the thickness of a fluid reduces the velocity of that fluid. For Figure 

6, the Radiation parameter has no significant effect on the velocity field as it can be seen, 

although an increase in the Radiation parameter decreases the velocity in the porous region. 

Figure 7, 8 and 9 highlights the effect of the Hartmann number, Schmidt number and 

diffusivity ratio respectively on the velocity field. Figure 7 shows that as the electromagnetic 

force increasingly dominates over the viscous force, the velocity decreases in the upper 

region while near the interface, the velocity profiles cut across each other in order to cause 

an increase in the velocity in the lower region, hence the reverse of what happens in the 

upper region is seen in the lower region. The decrease in the velocity in the upper region can 

be attributed to the presence of magnetic field applied transverse to the flow which would 

suppress turbulence thereby causing decrease in the velocity. Figure 8 depicts that gradual 

domination of the viscous diffusion rate over the molecular (mass) diffusion rate contributes 

to a decrease in the velocity field in region I and upper part of region II while increase in the 

Schmidt number has no significance on the velocity in the lower part of region II. In figure 9, 

it can be seen that as the diffusivity ratio increases, the velocity of the flow barely decreases 

in the porous region and upper part of the clear region while no contribution is made to the 

velocity at the lower part of the clear region. 
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    Fig 1: Effect of Gr on velocity profile. 
        Fig 2: Effect of Gc on Velocity profile. 

 

 

 

    Fig 3: Effect of Pr on Velocity profile.           Fig 4: Effect of K on Velocity profile. 
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Figure 10, 11 and 12 demonstrates the effect of Prandtl number, Radiation parameter and 

Thermal conductivity ratio respectively on the temperature field. It is generally observed that 

the temperature decreases with increase in the aforementioned parameters. Increase in the 

Prandtl number causes a decrease in the temperature which is more evident in the upper 

region where this increase causes the profile to assume a parabolic shape. The effect is also 

seen in region II but not as evident as in region I. increase in the radiation parameter causes a 

decrease in the temperature but this decrease is less when compared to that for Prandtl 

number as the distance between profiles is less in figure 11 considering the values used to 

obtain that for the radiation parameter. Increase in the thermal conductivity ratio causes a 
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slight decrease in the temperature near the lower part of region I and upper part of region II, 

while it has no much significance on the upper part of region I and lower part of region II 

and near the walls. 

Figure 13 and 14 depicts the effect of Schmidt number and diffusivity ratio respectively on 

the concentration field. It is observed that for the same value of viscous diffusion rate and 

molecular (mass) diffusion rate, the profile assumes a linear shape in both regions, but as the 

viscous diffusion rate dominates, the profile assumes a parabolic shape and in general causes 

the concentration to decrease. Also, increase in the diffusivity ratio causes a decrease in the 

concentration with the profiles assuming a linear shape all through in both regions while 

distances between the profiles continue to decrease towards the walls in both situations. 

 

 

  
 

 

The table for the skin friction shows that the coefficient of skin friction at the upper plate in 

case of unsteady flow is greater than that of the mean flow while opposite behavior is noticed 

at the lower plate. Also, it is observed that increase in the Hartmann number increases the 

coefficient of skin friction at both plates while increase in the Prandtl number, radiation 

parameter, Schmidt number, viscosity ratio, thermal conductivity ratio and diffusivity ratio 

all cause an increase in the coefficient of skin friction at the upper plate while opposite 

behavior is noticed at the lower plate except for the Prandtl number which has little effect at 

the lower plate. However, increase in the thermal and mass Grashof numbers and the 

permeability parameter all cause a decrease in the skin friction coefficient at the upper plate 

with opposite behaviors at the lower plate where the permeability parameter has the highest 

effect on the coefficient of skin friction. 

In table 2, it can be observed that the Nusselt number at the upper and lower plate in case of 

unsteady flow is greater than that of the mean flow. The Nusselt number at the upper plate 
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increases due to increase in the Prandtl number, radiation parameter and thermal 

conductivity ratio with opposite behavior noticed at the lower plate except for the thermal 

conductivity ratio which increases the Nusselt number at the lower plate. 

Table 3 shows that the Sherwood number at the upper plate and lower plat in case of 

unsteady flow is greater than that of the mean flow. The Sherwood number at the upper plate 

increases due to increase in the Schmidt number and diffusivity ratio with opposite behavior 

noticed at the lower plate. 
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Fig 14: Effect of γ1 on Concentration profile.      Fig 13: Effect of Sc on Concentration profile. 
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Table 1: Values of the coefficient of skin-friction at the upper plate and lower plate for 

various values of physical parameters, where ω = 10, ξ
1
= 1,φ

1
= 1, η

1
= 1,P = 1,ωt = 30 

 

Ε Gr Gc Pr F K M Sc α1 β
1 γ

1
 Cf(U) Cf(L) 

0 5 5 1 3 5 1 0.78 1 1 1 -33.6810 120.1005 

0.025 5 5 1 3 5 1 0.78 1 1 1 -33.5524 120.0800 

0.025 10 5 1 3 5 1 0.78 1 1 1 -35.0286 120.0900 

0.025 5 10 1 3 5 1 0.78 1 1 1 -35.3561 120.1000 

0.025 5 5 2 3 5 1 0.78 1 1 1 -33.3219 120.0800 

0.025 5 5 1 5 5 1 0.78 1 1 1 -33.3832 120.0800 

0.025 5 5 1 3 10 1 0.78 1 1 1 -129.0300 965.6400 

0.025 5 5 1 3 5 3 0.78 1 1 1 -14.0563 181.7600 

0.025 5 5 1 3 5 1 2.62 1 1 1 -32.9818 120.0700 

0.025 5 5 1 3 5 1 0.78 2 1 1 -19.3303 61.2309 

0.025 5 5 1 3 5 1 0.78 1 2 1 -33.5269 120.0800 

0.025 5 5 1 3 5 1 0.78 1 1 2 -33.4237 120.0700 

 

Table 2: Values of Nusselt number at the upper plate and lower plate for various values of 

physical parameters, where  ω = 10, ξ
1
= 1, ωt = 30 

 

Ε Pr F β
1
 Nu(U) Nu(L) 

0 1 3 1 2.3054 0.0361 

0.025 1 3 1 2.3616 0.0364 

0.025 2 3 1 3.0816 0.0100 

0.025 1 5 1 2.8456 0.0174 

0.025 1 3 2 2.3826 0.0465 

 

Table 3: Values of Sherwood number at the upper plate and lower plate for various values of 

physical parameters, where ω = 10, ωt = 30 

 

ε Sc γ
1
 Sh(U) Sh(L) 

0 0.78 1 1.3069 0.0611 

0.025 0.78 1 1.3605 0.0615 

0.025 2.62 1 2.9072 0.0008 

0.025 0.78 2 1.4775 0.0089 

 

SUMMARY, CONCLUSION AND RECOMMENDATION 

The unsteady MHD free convective two immiscible fluid flows in a horizontal channel with 

heat and mass transfer been studied. The governing equations, that is, the momentum, energy 

and species concentration equations are written in a dimensionless form using the 

dimensionless parameters.  A perturbation method has been employed to evaluate and solved 

for the velocity, temperature and concentration distribution, the skin frictions, Nusselt 

numbers and Sherwood numbers. 
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It can be concluded that increase in the Hartmann number decreased the velocity, while 

increase in the heat and mass Grashof numbers both support the increase of the flow velocity 

whereas increase in the viscosity ratio as expected supports the decrease in velocity. The 

temperature decreases with increase in the Prandtl number, Thermal conductivity ratio and 

radiation parameter while the concentration decreases with increase in Schmidt number and 

diffusivity ratio. 

This study is expected to be useful in understanding the concept of double phase flow and 

the effect of heat and mass transfer on MHD free convective two immiscible fluid flows in a 

horizontal channel. 

Finally, the study has potential applications in MHD power generators, MHD pumps, liquid 

metal cooling of reactors and magnetic drug targeting etc. 
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