Keywords:-

Keywords: Analytic function, λ-q-spirallike functions, Upper bound, Second Hankel determinant.

Article Content:-

Abstract

The object of the present paper is to obtain an upper bounded to the second Hankel
determinant |a_2a_4-a_3^ 2| for λ-q- spirallike function of f-1 belonging to certain subclasses of analytic
functions.

References:-

References

A. Abubaker and M. Darus. Hankel Determinant for a class of analytic functios involving a

generalized linear differential operator, Int. J. Pure Appl. Math., 69(4)(2011), 429-435.

O. Al-Refai and M. Darus. Second Hankel determinant for a class of analytic functions defined

by a fractional operator, Euro. J. Sci. Res., 28(2)(2009), 234-241.

D. Bansal. Upper bound of second Hankel determinant for a new class of analytic functions,

Appl. Math. Lett., 26(1)(2013), 103-107.

P.L. Duren. Univalent Functions.Grundlehren der Mathematischen Wissenschaften, Springer,

New York, 259(1983).

R. Ehrenborg. The Hankel determinant of exponential polynomials, Amer. Math. Monthly,

(6)(2000), 557-560.

M. Fekete and G. Szeg¨ o. Eine Bermerkung U¨ber ungerade schlichte Funktionen, J. London

Math. Soc., 1(2)(1933), 85-89.

S. Gagandeep and S. Gurcharanjit. Second Hankel determinant for a Subclass of alpha Convex

functions, J. Appl. Math., 3(2014), 1-3.

U. Grenander, G. Szeg¨ o.Toeplitz Forms and Their Applications, California Monographs in

Math. Sci. Univ. of California Press, Berkeley, (1958).

A.W. Goodman.Univalent Functions, Vol I, II. Washington, New Jersey: Polygonal Publishing

House, (1983).

W.K. Hayman.On the second Hankel determinant of mean univalent functions, Proc. Lond.

Math. Soc., 3(18)(1968), 77-94.

F.H. Jackson. On q-functions and a certain difference operator, Trans. Royal Soc. Edinb.,

(1909), 253-281.

A. Janteng, S. Halim and M. Darus. Hankel determinant forstarlike and convex functions, Int.

J. Math. Anal. Rus., 1(2007), 619-625.

S. Kanas, W. Wisniowska. Conic regions and k-uniform convexity, J. Comp. Appl. Math.,

(1999), 327-336.

S. Kanas, W. Wisniowska.Conic domains and starlike functions, Rev. Roumaine Math. Pures

Appl., 45(2000), 647-657.

Y. Ke and Lek-Heng Lim. Every matrix is a product of Toeplitz matrices, Foundations of Comp.

Math., 16(30) (2016), 577-598.

L.S. Keong, V. Ravichandran and S. Supramaniam.Bounds for the second Hankel determinant

of certain univalent functions, arXiv preprint arXiv:1303.0134 (2013).

D.V. Krishna and T.R. Reddy. Coefficient inequality for certain subclasses of analytic functions

associated with Hankel determinant. Ind. J.of Pure and Appl. Math., 46(1)(2015). 91-106

M.S. Liu, J.F. Xu and M. Yang. Upper bound of second Hankel determinant for certain subclasses of analytic functions, Abstr. Appl. Anal., 2014.

W. Ma, D. Minda. A unified treatment of some special classes of univalent functions, In:

Proceedings of the Conference on Complex Analysis, Tianjin, Conf. Proc. Lecture Notes Anal.

Int. Press, Cambridge, I(1922), 157-169.

G. Murugusundaramoorth and N. Magesh. Coefficient inequality for certain classes of analytic

functions associated with Hankel determinant.,Bull. Math. Anal. Appl., 1(3)(2009), 85-89

J.W. Noonan and D.K. Thomas

K.I. Noor and S.A. Al-Bany.On Bazilevic functions, Internat. J. Math. Math. Sci., 1(10)(1987),

-88.

C. Pommerenke.On the coefficients and Hankel determinants of univalent functions, J. London

Math. Soc., 41(1966), 111-122.

C. Pommerenke.On the Hankel determinants of univalent functions, Math., 14(1967), 108-112.

C. Pommerenke. G.Jensen,Univalent functions,Vandenhoeck und Ruprecht, 25 (1975).

F. Rønning. Uniformly convex functions and a corresponding class of starlike functions. Proc.

Am. Math. Soc., 118(1)(1993), 189-196.

Downloads

Citation Tools

How to Cite
qahtan, R., Shamsan, H., & Latha, S. (2020). Bounds for the Second Hankel Determinant of λ-q-Spirallike Functions. International Journal Of Mathematics And Computer Research, 8(05), 2053-2059. https://doi.org/10.33826/ijmcr/v8i5.02