Keywords:-
Article Content:-
Abstract
The object of the present paper is to obtain an upper bounded to the second Hankel
determinant |a_2a_4-a_3^ 2| for λ-q- spirallike function of f-1 belonging to certain subclasses of analytic
functions.
References:-
References
A. Abubaker and M. Darus. Hankel Determinant for a class of analytic functios involving a
generalized linear differential operator, Int. J. Pure Appl. Math., 69(4)(2011), 429-435.
O. Al-Refai and M. Darus. Second Hankel determinant for a class of analytic functions defined
by a fractional operator, Euro. J. Sci. Res., 28(2)(2009), 234-241.
D. Bansal. Upper bound of second Hankel determinant for a new class of analytic functions,
Appl. Math. Lett., 26(1)(2013), 103-107.
P.L. Duren. Univalent Functions.Grundlehren der Mathematischen Wissenschaften, Springer,
New York, 259(1983).
R. Ehrenborg. The Hankel determinant of exponential polynomials, Amer. Math. Monthly,
(6)(2000), 557-560.
M. Fekete and G. Szeg¨ o. Eine Bermerkung U¨ber ungerade schlichte Funktionen, J. London
Math. Soc., 1(2)(1933), 85-89.
S. Gagandeep and S. Gurcharanjit. Second Hankel determinant for a Subclass of alpha Convex
functions, J. Appl. Math., 3(2014), 1-3.
U. Grenander, G. Szeg¨ o.Toeplitz Forms and Their Applications, California Monographs in
Math. Sci. Univ. of California Press, Berkeley, (1958).
A.W. Goodman.Univalent Functions, Vol I, II. Washington, New Jersey: Polygonal Publishing
House, (1983).
W.K. Hayman.On the second Hankel determinant of mean univalent functions, Proc. Lond.
Math. Soc., 3(18)(1968), 77-94.
F.H. Jackson. On q-functions and a certain difference operator, Trans. Royal Soc. Edinb.,
(1909), 253-281.
A. Janteng, S. Halim and M. Darus. Hankel determinant forstarlike and convex functions, Int.
J. Math. Anal. Rus., 1(2007), 619-625.
S. Kanas, W. Wisniowska. Conic regions and k-uniform convexity, J. Comp. Appl. Math.,
(1999), 327-336.
S. Kanas, W. Wisniowska.Conic domains and starlike functions, Rev. Roumaine Math. Pures
Appl., 45(2000), 647-657.
Y. Ke and Lek-Heng Lim. Every matrix is a product of Toeplitz matrices, Foundations of Comp.
Math., 16(30) (2016), 577-598.
L.S. Keong, V. Ravichandran and S. Supramaniam.Bounds for the second Hankel determinant
of certain univalent functions, arXiv preprint arXiv:1303.0134 (2013).
D.V. Krishna and T.R. Reddy. Coefficient inequality for certain subclasses of analytic functions
associated with Hankel determinant. Ind. J.of Pure and Appl. Math., 46(1)(2015). 91-106
M.S. Liu, J.F. Xu and M. Yang. Upper bound of second Hankel determinant for certain subclasses of analytic functions, Abstr. Appl. Anal., 2014.
W. Ma, D. Minda. A unified treatment of some special classes of univalent functions, In:
Proceedings of the Conference on Complex Analysis, Tianjin, Conf. Proc. Lecture Notes Anal.
Int. Press, Cambridge, I(1922), 157-169.
G. Murugusundaramoorth and N. Magesh. Coefficient inequality for certain classes of analytic
functions associated with Hankel determinant.,Bull. Math. Anal. Appl., 1(3)(2009), 85-89
J.W. Noonan and D.K. Thomas
K.I. Noor and S.A. Al-Bany.On Bazilevic functions, Internat. J. Math. Math. Sci., 1(10)(1987),
-88.
C. Pommerenke.On the coefficients and Hankel determinants of univalent functions, J. London
Math. Soc., 41(1966), 111-122.
C. Pommerenke.On the Hankel determinants of univalent functions, Math., 14(1967), 108-112.
C. Pommerenke. G.Jensen,Univalent functions,Vandenhoeck und Ruprecht, 25 (1975).
F. Rønning. Uniformly convex functions and a corresponding class of starlike functions. Proc.
Am. Math. Soc., 118(1)(1993), 189-196.