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Abstract

The notion of maximisor of a subset of an Almost Distributive
Lattice (ADL) is introduced and certain properties of these are dis-
cussed analogous to those of annihilators. Mainly, Almost Boolean
algebras (ABA’s) are characterized interms of their annihilators and
maximisors.
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1 Introduction

It is well-known that a complemented distributive lattice is called a Boolean
algebra and that a ring with unity, in which every element is an idempotent,
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is called a Boolean ring. Swamy, and Rao [5] have introduced the notion of an
Almost Distributive Lattice (ADL) as a common abstraction of several lattice
theoretic and ring theoretic generalizations of Boolean algebras (Boolean
rings). In this paper, we introduce the concept of maximisor of a subset of an
ADL and prove certain properties of these analogous to those of annihilator
ideals.

An Almost Boolean algebra [5, 6] is an ADL (A, A, V,0) with a maximal

element satisfying the condition that for any a,b € A, there exists z € A such
that a Ax =0 and a V x = a V b and this is equivalent to the condition that
to each a € A, there exists b € A such that a Ab =0 and a V b is maximal,
here b is called a complement of a and note that b is not unique.
We characterize ABA’s interms of their annihilators and maximisors. Also,
we define the set c(a) of all complements of an element a in an ABA A and it
is proved that the set {c(a) : a« € A} is a Boolean algebra under the induced
operations.

2  Preliminaries
Definition 2.1. An algebra A = (A, A,V,0) of type (2,2,0) is called an

Almost Distributive Lattice (abbreviated as ADL) if it satisfies the following
identities

(1). 0Aa=0

(2). aV0=a

(3). an(bVe)=(aAb)V (aNc)
4). (aVb)Ac=(anc)V (bAc)
(5). aV(bAc)=(aVb) A(aVc)
(6). (aVb)Ab=0b.

Any distributive lattice bounded below is an ADL, where 0 is the smallest
element. Also, a commutative regular ring (R, +,.,0,1) with unity can be
made into an ADL by defining the operations A and V on R by

aNb=apband aVb=a+b— apb,

where, for any a € R, ag is the unique idempotent in R such that aR = agR
and 0 is the additive identity in R. Further any nonempty set X can be made



into an ADL by fixing an arbitrarily choosen element 0 in X and by defining
the operations A and V on X by

0, ifa=0 b, ifa=0
aNb= ) and aVb= )
b, ifa#0 a, ifa#0.

This ADL (X, A, V,0) is called the discrete ADL. An ADL A is said to be
an associative ADL if the operation V on A is associative. Throughout this
paper, by an ADL we always mean an associative ADL only.

Definition 2.2. Let A = (A, A,V,0) be an ADL. For any a and b € A, define
a<b ifandonlyif a=aAb(&aVb=0).

Then < is a partial order on A.

Theorem 2.3. The following hold for any a,b and ¢ in an ADL A.

(1) 0 is the zero element for the operation A (that is, aN0=0=0Aa)
(2) 0 is the identity for the operation V (that is, aV0=a=0Va)

(3) aNa=a=aVa

(4) aNb<b<bVa

(5) aNb=a<aVb=bandaNb=b<saVb=a

(6) (aNb)ANc=aAN (bAc) (i.e., N is associative)

(7) aVv (bVa)=aVb

(8) a<b=aANb=a=bANaandaVb=b=bVa

(9) (anb)ANc=(bANa)Ncand (aVb)Nc=(bVa)Ac

(10) aNb=bAa and aVb=0bV a whenever a Nb =0

(11) aNb=bANa<aVb=bVa< aAb=inf{a,b} < aVb=sup{a,b}.
An element m € A is said to be maximal if m < x implies m = x.

Theorem 2.4. Let A be an ADL and < be the induced partial order. Then
the following are equivalent

(1) m is a mazximal element in (A, <)



(2) mAa=a foralla€ A

(3) mVa=m foralac A

(4) a NV m is mazimal for all a € A.
Definition 2.5. Let A be an ADL.

(1) A non empty subset I of A is called an ideal of A if
aandbel=aVbelandaANx el forall z € A

(2) A non empty subset F' of A is called a filter of A if
aand be F=aAbe FandxVackF foral z € A.

It follows as a consequence that, for any ideal I of A, x A a € I for all
a € I and x € A and, for any filter F of A, aVx € F for all a € F and
x € A. For any X C A, we denote the ideal generated by X (the smallest
ideal of A containing X) by (X] and the filter generated by X by [X). We
have
(X]:{(\/:L'@-)/\a]nZO, xieXandaeA}

i=1

and [X):{a\/(/n\xi) |n >0, xiEXandaEA}.
i=1

In particular, when X = {x}, we have
(X]=(z]={zANala€e A} and [X)=[z)={aVzx]|aec A}

and these are called the principal ideal (filter respectively) generated by x in
A.

3 Maximisors

In this section, we define the concept of maximisor (in other words, dual
annihilator) of a subset of an ADL and prove certain properties analogous to
those of annihilator ideals [3].

Definition 3.1. Let A be an ADL with a maximal element. For any X C A,
define
Xt ={a€ A:aVxis maximal for all x € X}

X7 is called the maximisor of X in A. If X is a singleton set {z}, we
simply write z™ for {z}T.



Note that, for any elements a and b of an ADL A, a V b is maximal if
and only if bV a is maximal (since (a Vb) Az = (bV a) Az for all z € A).
Therefore, X+ = {a € A: zV ais maximal for all z € X}.

Theorem 3.2. An ADL A has mazimal elements if and only if ST is a filter
of A forall S C A.

Corollary 3.3. Let A be an ADL with maximal elements. Then the following
hold good.

(1) AT = The set of all maximal elements in A

(2) For any S C A, ST contains all the maximal elements of A
(3) o7 =A

(4) If M is any set of maximal elements, then M™ = A

(5) The set of all mazimal elements is the smallest filter of A.

Theorem 3.4. Let A be an ADL with mazimal elements. Then the following
hold good for any subsets S and T of A.

(1) SN ST C M, the set of mazimal elements of A.
(2) (SUT)r=STNT*

(3) S C S+

(4) SCT=TrcCSs*

(5) S+t =8+

(6) 5* = [S)*.

Proof. (1): me SNST = m € S and sV m is maximal for all s € S
= m V m(=m) is maximal since m € S.
Thus SN ST C M.
(2) is trivial
(3): s € S = sV xis maximal for all x € ST = s € ST,
Therefore S C ST+,
(4): follows from (2).
(5): follows from (3) and (4).
(6): By (4), [S)" € ST. On the other hand, let € S*. Then, sV x

is maximal for all s € S. Let y € [S). Then by 2.5, y = a V (A si),
i=1



n>0,s;,€Sanda € A. Forany z€ A, (yVz)Az=(aV (A s;)Va)A\z=

7

>

N(aVs;Vx)Az=zsince each a V s; V z is maximal. Therefore y V x is
i=1
maximal for all y € [S) and hence x € [S >T. This implies that ST C [S >T.

Thus St =[S >T. O
Definition 3.5. A filter F' of an ADL A is called a maximizing filter if

F = 5% for some S C A. We denote the set of all maximizing filters of A by
M(A).

The following is an important elementary property of maximisors.

Theorem 3.6. For any filters F' and G of an ADL A in which M is the
smallest filter,
FNG=M&GCF" & FCG.

Proof. Suppose that F NG = M. Then for any x € G and a € F, aV x €
F NG = M and hence a V x is maximal. Therefore G C F*. Similarly,
F C G*. Conversely, suppose that F¥ C G*. Then

€ FNG= 2 =2Vxis maximal = x € M.
Therefore F NG C M and hence FNG = M. O

Recall that F' € M(A) if and only if FF = ST for some S C A. In the
following we prove that the set M(A) is a complete Boolean algebra that is,
it is a complete lattice which is distributive and complemented.

Theorem 3.7. Let A be an ADL with maximal elements. Then the set M(A)
of all maximizing filters of A forms a complete Boolean algebra in which the
lattice operations are as follows: If {Fy}aen € M(A), then

inf{Fotaea = ﬂ F, and sup{Fy}aen = (U F )t
a€A a€A
Proof. First we observe that M and A are the smallest and the greatest
elements respectively in M(A) since M = A" and A = M*. Therefore
(M(A), Q) is a bounded poset. Let {F,},ea € M(A) where F,, = ST for
some S, C A. Then

() Fo= (S5 =(1J Sa)" € M(A)

aEA acA acA

and hence M(A) is closed under arbitrary intersections. Therefore inf{F,}aen =
() Fo. Now, sup{F,}aenr = N{F € M(A) : F, C Fforalla € A} =

aEA



MFeMA): J F,CF}=( Fo)*". Thus (M(A), Q) is a complete
aEA aEA
lattice. The distributivity of maximisors can be easily proved by using the lat-

tice operations on M(A). Further, for any F' € M(A), we have F™ € M(A)
such that FNF* =M and FV 't = (FUF*T)™ = M = A. Therefore
F* is the complement of F' in M(A). Thus M(A) is a complete Boolean
algebra. O]

4 Annihilators and Maximisors

Let us recall from [5, 6] that a non- trivial ADL A is said to be an Almost
Boolean algebra (ABA) if it has a maximal element and satisfies the condition
that, for any a,b € A, there exist x € A such that

aNz=0andaVzx=aVb.

In this section, we characterize Almost Boolean algebras interms of its anni-
hilators (ideals) and maximisors (filters).
As defined in [3], for any element a in an ADL A, the annihilator a* is defined
as

a"={reA:aNz=0}

and recall that the maximisor a™ is defined as
at ={r € A:xVais maximal in A}

The following is a characterization of Almost Boolean algebra interms of their
complemented ideals.

Theorem 4.1. Let A be an ADL with a mazimal element. Then A is an Al-
most Boolean algebra if and only if every principal ideal of A is complemented
in the lattice of ideals of A.

Proof. Suppose that A is an ABA. Let [ be a principal ideal of A. Then I =<
z] for some z € A. Now we prove that < 2] Na* = {0} and < 2] V z* = A.
For,ae<z] N 2*=a=aNaandzAa=0=a=0.

Therefore < z] Naz* = {0}. Let y € A. Then there exists a € A such that
xANa=0and xVa=2zVyand hencey = (zVy Ay = (xVa)A\y =
(xAy)V(aAy). Now, z Ay €< x| and aAy € x* (since tAaAy = 0Ay = 0).
Therefore y €< x| vV x*. This implies < z| V 2* = A. Therefore z* is a
complement of < z] and hence < z] is complemented.

Conversely suppose that every principal ideal is complemented. a,b € A.
Then there exist an ideal J of A such that < a]NJ = {0} and < a]V J = A.
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Now aVb € A and hence aVb = (aAz)Vy for some x € A and y € J. Then
aAy € (a)NJ = {0} and therefore aNy=0and aVy=aV (aAz)Vy=
aVaVvVb=aVb Thus A is an ABA. O

In the above, every principal ideal is complemented in any ABA. Infact,
the converse holds good in any ADL with a maximal element.

Theorem 4.2. Let A be an ADL with a maximal element m. Then every
complemented ideal of A is a principal ideal.

Proof. Let I be a complemented ideal of A. Then INJ = {0} and IVJ = A
for some ideal J of A. Now m € A =1V J and hence m = a V b for some
a € I and b € J. Now we prove that [ =< a]. Clearly < a] C I. On the
other hand, x € I = x = m A x (since m is maximal )
=z=(@VbANr=(aANz)V(bAX)
=zr=aAzxsincebANzx =0
=z e<al.
Thus I =< a] and hence [ is a principal ideal. O

Corollary 4.3. Let A be an ABA and I € Z(A). Then I is complemented
if and only if I is a principal ideal.

The following is a characterization of Almost Boolean algebra in terms of
it’s maximisors (filters).

Theorem 4.4. Let A be an ADL with a maximal element. Then the following
are equivalent.

(1) A is an Almost Boolean algebra.
(2) Foranya€ A, [a>V at =A
(3) Every principal filter in A is complemented.

Proof. (1) = (2) : Let a € A and m be a maximal element in A.
Then by (1), there exists x € A such that aAz =0 and aVx = aVm. Since
m is maximal, so is @ V' m and hence a V x is maximal. Therefore x € a™ and
a Az = 0. This implies that 0 € [a > Va™t and hence [a > Va* = A.
(2) = (3) : is trivial since [a > N a®™ = M, the smallest filter of A.
(3) = (1) : Let a,b € A. Then, by (3), there exists a filter ' of A such that
[a>NF=Mand[a>V F=A. Since0 € A, weget 0= (yVa)A z for
somey € Aand z € F. Putx =2 A (aVb). ThenaV z € [a>NF = M.
Now, aNx=aAzA(aVDb)

=(yVa)ANaAzA(aVDb)



=(yVa)AzANaA(aVDb)
=0ANa=0
and aVz=aV(zA(aVD))
=(aVz)A(aVaVd)
=(aVz)A(aVD)
=aVb.
Thus A is an ABA. O

Corollary 4.5. Let A be an ABA and a € A. Then a* and [a > are
complements to each other in the lattice F(A) of filters of A.

In the above, we have proved that any principal filter in an ABA is com-
plemented. The converse of this is true in any ADL with maximal elements.

Theorem 4.6. Let A be an ADL with mazimal elements and F' and G are
filters in A such that FNG = M and FV G = A. Then F = [a > and
G =a" for somea € A.

Proof. Since 0 € A, we get that 0 = a A b for some a € F' and b € G. Now,
we prove that F' = [a > and G = a*. Clearly [a >C F. On the other hand,
reF=x=xV(bAa) (sinceaANb=0=0bAa)
=(xVbA(xVa)
=xVa  (since Vb is maximal, because xVb € FNG = M).

and hence x € [a >. Thus F' = [a >. Similarly, G = [b >. Since FNG = M,
we get that G C Ft =a™.
Now, r€at=rVa ismaximal,zVae€ FNG

= (xVa)ANbeG

=xANbeCG (since a A b =0)

=z=zV(xAb) €Gq.
Thus G =a* and F' = [a >. O

Corollary 4.7. Let A be an ABA and F a filter of A. Then F is comple-
mented in the lattice F(A) if and only if F is a principal filter of A.

Corollary 4.8. Let A be an ABA and a € A. Then there exists b € A such
that at = [b >.

Theorem 4.9. Let A be an ADL with a maximal element. Then A is an
Almost Boolean algebra if and only if a* N a™ is non-empty for all a € A.

Proof. Suppose that A is an ABA. Let m be a maximal element in A. Then,
for any a € A, there exists x € A such that aAz =0 and aVx = aVm. Since
m is maximal so is aVm and hence aV z is maximal. This implies x € a*Na™
and hence a*Na™t # ¢. Conversely, suppose that a*Na™ # ¢ for alla € A. Let
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m be a maximal element in A. Then clearly [0, m] is a bounded distributive
lattice. Let a € [0,m] and choose z € a* Na®. Thena Az =0and zVais
maximal. Put b =x Am. Then b € [0,m] and aANb=aAzAm=0Am=0
andaVb=aV(xAm)=(aVz)A(aVm)=aVm=m. Therefore b is the
complement of a in [0,m]. Thus [0,m] is a Boolean algebra for all maximal
m in A and hence A is a Boolean algebra. O

5 The Complements

For any element a in a Boolean algebra it well known that the annihilator a*
is precisely the ideal generated by the complement a’ of a and the maximisor
a™ is precisely the filter generated by a’. These imply that a* Na™ = {a}.
This may not hold good in case of an Almost Boolean algebra. However, in
this section we prove that a* Na™ is a congruence class corresponding to the
associativity relation ~ [1].

Definition 5.1. Let A be an ADL and for any a € A, define the set ¢(a) by
cla) =a*Na*
and c(a) is called the set of complements of a.

Theorem 4.9 says that an ADL A with a maximal element is an ABA if
and only if ¢(a) is non-empty for all a € A. Infact c(a) is an associative class,
as proved below. First, let us recall from [1], that two elements a and b in
an ADL A are said to be associates to each other if a Ab=b and b A a = a;
in this case we write a ~ b. Also the relation ~ is a congruence relation on
A such that the quotient A/ ~ is a lattice.

Theorem 5.2. Let A be an ABA and a € A. Then c(a) is an associate
class.

Proof. For any x,y € c¢(a) we have aAz =0=aAy and zVa and y V a are
maximal and hence Ay = (z Ay)VO=(xAy)V(aAy)=(xVa) ANy =uy.
Similarly, y A = x. Therefore z ~ y for all z,y € ¢(a). Now, by the
theorem 4.9, c¢(a) # ¢ and hence we can choose b € ¢(a). Then, by the above
argument x ~ b for all € ¢(a). Therefore c¢(a) C ~ (b).

Let z € ~ (b). Then # ~ b and hence  Ab = b and b Az = z. Now,
aNz=aN(bANz)=(aANb)ANz=0Az=0. For any y € A, consider

(xVa)Ay=((xVvb)Va)Ay
=(avbVzx)Ay
=(aVb) Ny (since bAxz =x, bV =0)
=y (since b € c¢(a), aV b is maximal ).
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Therefore a A x = 0 and z V a is maximal for all z € ~ (b). This implies
~ (b) C ¢(a). Thus ¢(a) =~ (b) for any b €~ (a). O

Finally we prove that the class {c(a) : a € A} forms a Boolean algebra.
First we have the following.

Theorem 5.3. Let A be an ADL with a mazimal element m and a,b € A.
Then

(1) (aVvb)*=a*Nb"=(bVa)*

(2) 0* = A and m* = {0}

(3) (aANb)T =atNb" =(bAa)"

(4) m* = A and 0T = M, the set of mazimal elements in A.

Proof. (1). zAa=0=xAb=xA(aVb) =(xANa)V(xAb)=0V0=0.
This implies a* N b* C (a V b)*. On the other hand,
zA(aVb)=0= (zAa)V(rAb) =0=xANa=0=uzAb Therefore
(aVvb)* Ca*Nb*. Thus (aVb)*=a*Nb* = (bVa).
(2). It is clear.
(3). x€atNb" = xVaand x Vb are maximal

= (z Va) A (z Vb) is maximal

=z V (a A b) is maximal

=z € (aNd)T.
Therefore a™ N b C (a Ab)T. On the other hand suppose that = V (a A b)
is maximal. Then, it can be easily observed that z V (b A a) is maximal and

hence 2 V a and z V b are maximal. Therefore x € a* N b*". This implies
(@aAb)T CatNbT. Thus a™ NbdT = (aAD)T.

(4). is trivial. O
Theorem 5.4. Let A be an ABA and a,b € A. Then the following are
equivalent.

(1) a~b

(2) a* =b* and a™ = b"
(3) c(a) = c(b).

Proof. (1) = (2) : Suppose a Ab = b and b Aa = a. Then a Vb = a and
bV a =b. Therefore, a* = (a V b)* = (bV a)* = b* and

at=0bANa)t =(anb)T =b".

(2) = (3) is trivial since ¢(z) = z* Na™ for all x € A.
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(3) = (1) : By theorem 5.2, ¢(a) =~ (z) for some z € A.

Now, z €~ (z) = c(a) = ¢(b). Therefore z Aa =0 =2 Aband zV a and
x V b are maximal. Now,
a=(xVvVbANa=(xANa)V(bANa)=0V (bAa)=0bAa and
b=(zVa)ANb=(zAb)V(aAb) =0V (aAb)=aAb. Therefore a ~b. O

The following is the converse of the theorem 5.2.

Theorem 5.5. Let A be an ABA. Then any associate class in A is of the
form c(x) for some x € A.

Proof. Let a € A and consider ~ (a). Let x € ¢c(a). ThenaAz=0=xAa
and z V a and hence a V x are maximal. Therefore a € 2* Nz = ¢(z). Since
c(z) is an associate class (by theorem 5.2), it follows that

~ (a) C ¢(xr) = ~ (b) for some b € A and hence ~ (a) = ~ (b) = ¢(x)
(since ~ is an equivalence relation). O

The following are consequences of theorems 5.2 and 5.5.
Corollary 5.6. For any ABA A, A/ ~ ={c(a):a € A}.

Proof. For any ABA A, it can be proved that A/ ~ is a Boolean algebra
under the induced operations defined by

~(a) A~ ()= ~(aAb)and ~ (a) V~(b)= ~(aVDb)
and the complement ~ (a)’ = ~ (x) for some z € c¢(a). O

Corollary 5.7. For any ABA A, the set {c(a) : a € A} is a Boolean algebra.
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