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Abstract

The notion of maximisor of a subset of an Almost Distributive
Lattice (ADL) is introduced and certain properties of these are dis-
cussed analogous to those of annihilators. Mainly, Almost Boolean
algebras (ABA’s) are characterized interms of their annihilators and
maximisors.
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1 Introduction

It is well-known that a complemented distributive lattice is called a Boolean
algebra and that a ring with unity, in which every element is an idempotent,
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is called a Boolean ring. Swamy, and Rao [5] have introduced the notion of an
Almost Distributive Lattice (ADL) as a common abstraction of several lattice
theoretic and ring theoretic generalizations of Boolean algebras (Boolean
rings). In this paper, we introduce the concept of maximisor of a subset of an
ADL and prove certain properties of these analogous to those of annihilator
ideals.

An Almost Boolean algebra [5, 6] is an ADL (A,∧,∨, 0) with a maximal
element satisfying the condition that for any a, b ∈ A, there exists x ∈ A such
that a ∧ x = 0 and a ∨ x = a ∨ b and this is equivalent to the condition that
to each a ∈ A, there exists b ∈ A such that a ∧ b = 0 and a ∨ b is maximal;
here b is called a complement of a and note that b is not unique.
We characterize ABA’s interms of their annihilators and maximisors. Also,
we define the set c(a) of all complements of an element a in an ABA A and it
is proved that the set {c(a) : a ∈ A} is a Boolean algebra under the induced
operations.

2 Preliminaries

Definition 2.1. An algebra A = (A,∧,∨, 0) of type (2, 2, 0) is called an
Almost Distributive Lattice (abbreviated as ADL) if it satisfies the following
identities

(1). 0 ∧ a = 0

(2). a ∨ 0 = a

(3). a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

(4). (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c)

(5). a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

(6). (a ∨ b) ∧ b = b.

Any distributive lattice bounded below is an ADL, where 0 is the smallest
element. Also, a commutative regular ring (R,+, ., 0, 1) with unity can be
made into an ADL by defining the operations ∧ and ∨ on R by

a ∧ b = a0b and a ∨ b = a+ b− a0b,

where, for any a ∈ R, a0 is the unique idempotent in R such that aR = a0R
and 0 is the additive identity in R. Further any nonempty set X can be made
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into an ADL by fixing an arbitrarily choosen element 0 in X and by defining
the operations ∧ and ∨ on X by

a ∧ b =

{
0, if a = 0

b, if a ̸= 0
and a ∨ b =

{
b, if a = 0

a, if a ̸= 0.

This ADL (X,∧,∨, 0) is called the discrete ADL. An ADL A is said to be
an associative ADL if the operation ∨ on A is associative. Throughout this
paper, by an ADL we always mean an associative ADL only.

Definition 2.2. Let A = (A,∧,∨, 0) be an ADL. For any a and b ∈ A, define

a ≤ b if and only if a = a ∧ b (⇔ a ∨ b = b).

Then ≤ is a partial order on A.

Theorem 2.3. The following hold for any a, b and c in an ADL A.

(1) 0 is the zero element for the operation ∧ (that is, a ∧ 0 = 0 = 0 ∧ a)

(2) 0 is the identity for the operation ∨ (that is, a ∨ 0 = a = 0 ∨ a)

(3) a ∧ a = a = a ∨ a

(4) a ∧ b ≤ b ≤ b ∨ a

(5) a ∧ b = a ⇔ a ∨ b = b and a ∧ b = b ⇔ a ∨ b = a

(6) (a ∧ b) ∧ c = a ∧ (b ∧ c) (i.e., ∧ is associative)

(7) a ∨ (b ∨ a) = a ∨ b

(8) a ≤ b ⇒ a ∧ b = a = b ∧ a and a ∨ b = b = b ∨ a

(9) (a ∧ b) ∧ c = (b ∧ a) ∧ c and (a ∨ b) ∧ c = (b ∨ a) ∧ c

(10) a ∧ b = b ∧ a and a ∨ b = b ∨ a whenever a ∧ b = 0

(11) a ∧ b = b ∧ a ⇔ a ∨ b = b ∨ a ⇔ a ∧ b = inf{a, b} ⇔ a ∨ b = sup{a, b}.

An element m ∈ A is said to be maximal if m ≤ x implies m = x.

Theorem 2.4. Let A be an ADL and ≤ be the induced partial order. Then
the following are equivalent

(1) m is a maximal element in (A,≤)
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(2) m ∧ a = a for all a ∈ A

(3) m ∨ a = m for all a ∈ A

(4) a ∨m is maximal for all a ∈ A.

Definition 2.5. Let A be an ADL.

(1) A non empty subset I of A is called an ideal of A if
a and b ∈ I ⇒ a ∨ b ∈ I and a ∧ x ∈ I for all x ∈ A.

(2) A non empty subset F of A is called a filter of A if
a and b ∈ F ⇒ a ∧ b ∈ F and x ∨ a ∈ F for all x ∈ A.

It follows as a consequence that, for any ideal I of A, x ∧ a ∈ I for all
a ∈ I and x ∈ A and, for any filter F of A, a ∨ x ∈ F for all a ∈ F and
x ∈ A. For any X ⊆ A, we denote the ideal generated by X (the smallest
ideal of A containing X) by (X] and the filter generated by X by [X). We
have

(X] =
{( n∨

i=1

xi

)
∧ a | n ≥ 0, xi ∈ X and a ∈ A

}
and [X) =

{
a ∨

( n∧
i=1

xi

)
| n ≥ 0, xi ∈ X and a ∈ A

}
.

In particular, when X = {x}, we have

(X] = (x] = {x ∧ a | a ∈ A} and [X) = [x) = {a ∨ x | a ∈ A}.

and these are called the principal ideal (filter respectively) generated by x in
A.

3 Maximisors

In this section, we define the concept of maximisor (in other words, dual
annihilator) of a subset of an ADL and prove certain properties analogous to
those of annihilator ideals [3].

Definition 3.1. Let A be an ADL with a maximal element. For any X ⊆ A,
define

X+ = {a ∈ A : a ∨ x is maximal for all x ∈ X}
X+ is called the maximisor of X in A. If X is a singleton set {x}, we
simply write x+ for {x}+.
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Note that, for any elements a and b of an ADL A, a ∨ b is maximal if
and only if b ∨ a is maximal (since (a ∨ b) ∧ x = (b ∨ a) ∧ x for all x ∈ A).
Therefore, X+ = {a ∈ A : x ∨ a is maximal for all x ∈ X}.

Theorem 3.2. An ADL A has maximal elements if and only if S+ is a filter
of A for all S ⊆ A.

Corollary 3.3. Let A be an ADL with maximal elements. Then the following
hold good.

(1) A+ = The set of all maximal elements in A

(2) For any S ⊆ A, S+ contains all the maximal elements of A

(3) ϕ+ = A

(4) If M is any set of maximal elements, then M+ = A

(5) The set of all maximal elements is the smallest filter of A.

Theorem 3.4. Let A be an ADL with maximal elements. Then the following
hold good for any subsets S and T of A.

(1) S ∩ S+ ⊆ M , the set of maximal elements of A.

(2) (S ∪ T )+ = S+ ∩ T+

(3) S ⊆ S++

(4) S ⊆ T ⇒ T+ ⊆ S+

(5) S+++ = S+

(6) S+ = [S)+.

Proof. (1): m ∈ S ∩ S+ ⇒ m ∈ S and s ∨m is maximal for all s ∈ S
⇒ m ∨m(= m) is maximal since m ∈ S.

Thus S ∩ S+ ⊆ M .
(2) is trivial
(3): s ∈ S ⇒ s ∨ x is maximal for all x ∈ S+ ⇒ s ∈ S++.

Therefore S ⊆ S++.
(4): follows from (2).
(5): follows from (3) and (4).
(6): By (4), [S)+ ⊆ S+. On the other hand, let x ∈ S+. Then, s ∨ x

is maximal for all s ∈ S. Let y ∈ [S). Then by 2.5, y = a ∨ (
n∧

i=1

si),

5



n > 0, si ∈ S and a ∈ A. For any z ∈ A, (y ∨ x) ∧ z = (a ∨ (
n∧

i=1

si) ∨ x) ∧ z =

n∧
i=1

(a ∨ si ∨ x) ∧ z = z since each a ∨ si ∨ x is maximal. Therefore y ∨ x is

maximal for all y ∈ [S) and hence x ∈ [S >+. This implies that S+ ⊆ [S >+.
Thus S+ = [S >+.

Definition 3.5. A filter F of an ADL A is called a maximizing filter if
F = S+ for some S ⊆ A. We denote the set of all maximizing filters of A by
M(A).

The following is an important elementary property of maximisors.

Theorem 3.6. For any filters F and G of an ADL A in which M is the
smallest filter,

F ∩G = M ⇔ G ⊆ F+ ⇔ F ⊆ G+.

Proof. Suppose that F ∩ G = M . Then for any x ∈ G and a ∈ F , a ∨ x ∈
F ∩ G = M and hence a ∨ x is maximal. Therefore G ⊆ F+. Similarly,
F ⊆ G+. Conversely, suppose that F ⊆ G+. Then

x ∈ F ∩G ⇒ x = x ∨ x is maximal ⇒ x ∈ M.

Therefore F ∩G ⊆ M and hence F ∩G = M.

Recall that F ∈ M(A) if and only if F = S+ for some S ⊆ A. In the
following we prove that the set M(A) is a complete Boolean algebra that is,
it is a complete lattice which is distributive and complemented.

Theorem 3.7. Let A be an ADL with maximal elements. Then the set M(A)
of all maximizing filters of A forms a complete Boolean algebra in which the
lattice operations are as follows: If {Fα}α∈∆ ⊆ M(A), then

inf{Fα}α∈∆ =
∩
α∈∆

Fα and sup{Fα}α∈∆ = (
∪
α∈∆

Fα)
++.

Proof. First we observe that M and A are the smallest and the greatest
elements respectively in M(A) since M = A+ and A = M+. Therefore
(M(A),⊆) is a bounded poset. Let {Fα}α∈∆ ⊆ M(A) where Fα = S+

α for
some Sα ⊆ A. Then∩

α∈∆

Fα =
∩
α∈∆

S+
α = (

∪
α∈∆

Sα)
+ ∈ M(A)

and henceM(A) is closed under arbitrary intersections. Therefore inf{Fα}α∈∆ =∩
α∈∆

Fα. Now, sup{Fα}α∈∆ = ∩{F ∈ M(A) : Fα ⊆ F for all α ∈ ∆} =
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∩{F ∈ M(A) :
∪

α∈∆
Fα ⊆ F} = (

∪
α∈∆

Fα)
++. Thus (M(A),⊆) is a complete

lattice. The distributivity of maximisors can be easily proved by using the lat-
tice operations on M(A). Further, for any F ∈ M(A), we have F+ ∈ M(A)
such that F ∩ F+ = M and F ∨ F+ = (F ∪ F+)++ = M+ = A. Therefore
F+ is the complement of F in M(A). Thus M(A) is a complete Boolean
algebra.

4 Annihilators and Maximisors

Let us recall from [5, 6] that a non- trivial ADL A is said to be an Almost
Boolean algebra (ABA) if it has a maximal element and satisfies the condition
that, for any a, b ∈ A, there exist x ∈ A such that

a ∧ x = 0 and a ∨ x = a ∨ b.

In this section, we characterize Almost Boolean algebras interms of its anni-
hilators (ideals) and maximisors (filters).
As defined in [3], for any element a in an ADL A, the annihilator a∗ is defined
as

a∗ = {x ∈ A : a ∧ x = 0}

and recall that the maximisor a+ is defined as

a+ = {x ∈ A : x ∨ a is maximal in A}

The following is a characterization of Almost Boolean algebra interms of their
complemented ideals.

Theorem 4.1. Let A be an ADL with a maximal element. Then A is an Al-
most Boolean algebra if and only if every principal ideal of A is complemented
in the lattice of ideals of A.

Proof. Suppose that A is an ABA. Let I be a principal ideal of A. Then I =<
x] for some x ∈ A. Now we prove that < x] ∩ x∗ = {0} and < x] ∨ x∗ = A.
For, a ∈< x] ∩ x∗ ⇒ a = x ∧ a and x ∧ a = 0 ⇒ a = 0.
Therefore < x] ∩ x∗ = {0}. Let y ∈ A. Then there exists a ∈ A such that
x ∧ a = 0 and x ∨ a = x ∨ y and hence y = (x ∨ y) ∧ y = (x ∨ a) ∧ y =
(x∧y)∨(a∧y). Now, x∧y ∈< x] and a∧y ∈ x∗ (since x∧a∧y = 0∧y = 0).
Therefore y ∈< x] ∨ x∗. This implies < x] ∨ x∗ = A. Therefore x∗ is a
complement of < x] and hence < x] is complemented.
Conversely suppose that every principal ideal is complemented. a, b ∈ A.
Then there exist an ideal J of A such that < a]∩ J = {0} and < a]∨ J = A.
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Now a∨ b ∈ A and hence a∨ b = (a∧x)∨ y for some x ∈ A and y ∈ J . Then
a ∧ y ∈ (a] ∩ J = {0} and therefore a ∧ y = 0 and a ∨ y = a ∨ (a ∧ x) ∨ y =
a ∨ a ∨ b = a ∨ b. Thus A is an ABA.

In the above, every principal ideal is complemented in any ABA. Infact,
the converse holds good in any ADL with a maximal element.

Theorem 4.2. Let A be an ADL with a maximal element m. Then every
complemented ideal of A is a principal ideal.

Proof. Let I be a complemented ideal of A. Then I ∩J = {0} and I ∨J = A
for some ideal J of A. Now m ∈ A = I ∨ J and hence m = a ∨ b for some
a ∈ I and b ∈ J . Now we prove that I =< a]. Clearly < a] ⊆ I. On the
other hand, x ∈ I ⇒ x = m ∧ x (since m is maximal )

⇒ x = (a ∨ b) ∧ x = (a ∧ x) ∨ (b ∧ x)
⇒ x = a ∧ x since b ∧ x = 0
⇒ x ∈< a].

Thus I =< a] and hence I is a principal ideal.

Corollary 4.3. Let A be an ABA and I ∈ I(A). Then I is complemented
if and only if I is a principal ideal.

The following is a characterization of Almost Boolean algebra in terms of
it’s maximisors (filters).

Theorem 4.4. Let A be an ADL with a maximal element. Then the following
are equivalent.

(1) A is an Almost Boolean algebra.

(2) For any a ∈ A, [a > ∨ a+ = A

(3) Every principal filter in A is complemented.

Proof. (1) ⇒ (2) : Let a ∈ A and m be a maximal element in A.
Then by (1), there exists x ∈ A such that a∧x = 0 and a∨x = a∨m. Since
m is maximal, so is a∨m and hence a∨x is maximal. Therefore x ∈ a+ and
a ∧ x = 0. This implies that 0 ∈ [a > ∨a+ and hence [a > ∨a+ = A.
(2) ⇒ (3) : is trivial since [a > ∩ a+ = M , the smallest filter of A.
(3) ⇒ (1) : Let a, b ∈ A. Then, by (3), there exists a filter F of A such that
[a > ∩ F = M and [a > ∨ F = A. Since 0 ∈ A, we get 0 = (y ∨ a) ∧ z for
some y ∈ A and z ∈ F . Put x = z ∧ (a ∨ b). Then a ∨ z ∈ [a > ∩F = M.
Now, a ∧ x = a ∧ z ∧ (a ∨ b)

= (y ∨ a) ∧ a ∧ z ∧ (a ∨ b)
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= (y ∨ a) ∧ z ∧ a ∧ (a ∨ b)
= 0 ∧ a = 0

and a ∨ x = a ∨ (z ∧ (a ∨ b))
= (a ∨ z) ∧ (a ∨ a ∨ b)
= (a ∨ z) ∧ (a ∨ b)
= a ∨ b.

Thus A is an ABA.

Corollary 4.5. Let A be an ABA and a ∈ A. Then a+ and [a > are
complements to each other in the lattice F(A) of filters of A.

In the above, we have proved that any principal filter in an ABA is com-
plemented. The converse of this is true in any ADL with maximal elements.

Theorem 4.6. Let A be an ADL with maximal elements and F and G are
filters in A such that F ∩ G = M and F ∨ G = A. Then F = [a > and
G = a+ for some a ∈ A.

Proof. Since 0 ∈ A, we get that 0 = a ∧ b for some a ∈ F and b ∈ G. Now,
we prove that F = [a > and G = a+. Clearly [a >⊆ F . On the other hand,

x ∈ F ⇒ x = x ∨ (b ∧ a) (since a ∧ b = 0 = b ∧ a)
= (x ∨ b) ∧ (x ∨ a)

= x∨a (since x∨b is maximal, because x∨b ∈ F ∩G = M).
and hence x ∈ [a >. Thus F = [a >. Similarly, G = [b >. Since F ∩G = M ,
we get that G ⊆ F+ = a+.
Now, x ∈ a+ ⇒ x ∨ a is maximal, x ∨ a ∈ F ∩G

⇒ (x ∨ a) ∧ b ∈ G
⇒ x ∧ b ∈ G (since a ∧ b = 0)
⇒ x = x ∨ (x ∧ b) ∈ G.

Thus G = a+ and F = [a >.

Corollary 4.7. Let A be an ABA and F a filter of A. Then F is comple-
mented in the lattice F(A) if and only if F is a principal filter of A.

Corollary 4.8. Let A be an ABA and a ∈ A. Then there exists b ∈ A such
that a+ = [b >.

Theorem 4.9. Let A be an ADL with a maximal element. Then A is an
Almost Boolean algebra if and only if a∗ ∩ a+ is non-empty for all a ∈ A.

Proof. Suppose that A is an ABA. Let m be a maximal element in A. Then,
for any a ∈ A, there exists x ∈ A such that a∧x = 0 and a∨x = a∨m. Since
m is maximal so is a∨m and hence a∨x is maximal. This implies x ∈ a∗∩a+

and hence a∗∩a+ ̸= ϕ. Conversely, suppose that a∗∩a+ ̸= ϕ for all a ∈ A. Let
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m be a maximal element in A. Then clearly [0,m] is a bounded distributive
lattice. Let a ∈ [0,m] and choose x ∈ a∗ ∩ a+. Then a ∧ x = 0 and x ∨ a is
maximal. Put b = x∧m. Then b ∈ [0,m] and a∧ b = a∧ x∧m = 0∧m = 0
and a∨ b = a∨ (x∧m) = (a∨ x)∧ (a∨m) = a∨m = m. Therefore b is the
complement of a in [0,m]. Thus [0,m] is a Boolean algebra for all maximal
m in A and hence A is a Boolean algebra.

5 The Complements

For any element a in a Boolean algebra it well known that the annihilator a∗

is precisely the ideal generated by the complement a′ of a and the maximisor
a+ is precisely the filter generated by a′. These imply that a∗ ∩ a+ = {a′}.
This may not hold good in case of an Almost Boolean algebra. However, in
this section we prove that a∗ ∩ a+ is a congruence class corresponding to the
associativity relation ∼ [1].

Definition 5.1. Let A be an ADL and for any a ∈ A, define the set c(a) by

c(a) = a∗ ∩ a+

and c(a) is called the set of complements of a.

Theorem 4.9 says that an ADL A with a maximal element is an ABA if
and only if c(a) is non-empty for all a ∈ A. Infact c(a) is an associative class,
as proved below. First, let us recall from [1], that two elements a and b in
an ADL A are said to be associates to each other if a ∧ b = b and b ∧ a = a;
in this case we write a ∼ b. Also the relation ∼ is a congruence relation on
A such that the quotient A/ ∼ is a lattice.

Theorem 5.2. Let A be an ABA and a ∈ A. Then c(a) is an associate
class.

Proof. For any x, y ∈ c(a) we have a∧ x = 0 = a∧ y and x∨ a and y ∨ a are
maximal and hence x∧ y = (x∧ y)∨ 0 = (x∧ y)∨ (a∧ y) = (x∨ a)∧ y = y.
Similarly, y ∧ x = x. Therefore x ∼ y for all x, y ∈ c(a). Now, by the
theorem 4.9, c(a) ̸= ϕ and hence we can choose b ∈ c(a). Then, by the above
argument x ∼ b for all x ∈ c(a). Therefore c(a) ⊆ ∼ (b).
Let x ∈ ∼ (b). Then x ∼ b and hence x ∧ b = b and b ∧ x = x. Now,
a ∧ x = a ∧ (b ∧ x) = (a ∧ b) ∧ x = 0 ∧ x = 0. For any y ∈ A, consider

(x ∨ a) ∧ y = ((x ∨ b) ∨ a) ∧ y

= (a ∨ b ∨ x) ∧ y

= (a ∨ b) ∧ y (since b ∧ x = x, b ∨ x = b)

= y (since b ∈ c(a), a ∨ b is maximal ).
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Therefore a ∧ x = 0 and x ∨ a is maximal for all x ∈ ∼ (b). This implies
∼ (b) ⊆ c(a). Thus c(a) =∼ (b) for any b ∈∼ (a).

Finally we prove that the class {c(a) : a ∈ A} forms a Boolean algebra.
First we have the following.

Theorem 5.3. Let A be an ADL with a maximal element m and a, b ∈ A.
Then

(1) (a ∨ b)∗ = a∗ ∩ b∗ = (b ∨ a)∗

(2) 0∗ = A and m∗ = {0}

(3) (a ∧ b)+ = a+ ∩ b+ = (b ∧ a)+

(4) m+ = A and 0+ = M , the set of maximal elements in A.

Proof. (1). x ∧ a = 0 = x ∧ b ⇒ x ∧ (a ∨ b) = (x ∧ a) ∨ (x ∧ b) = 0 ∨ 0 = 0.
This implies a∗ ∩ b∗ ⊆ (a ∨ b)∗. On the other hand,
x ∧ (a ∨ b) = 0 ⇒ (x ∧ a) ∨ (x ∧ b) = 0 ⇒ x ∧ a = 0 = x ∧ b. Therefore
(a ∨ b)∗ ⊆ a∗ ∩ b∗. Thus (a ∨ b)∗ = a∗ ∩ b∗ = (b ∨ a)∗.
(2). It is clear.
(3). x ∈ a+ ∩ b+ ⇒ x ∨ a and x ∨ b are maximal

⇒ (x ∨ a) ∧ (x ∨ b) is maximal
⇒ x ∨ (a ∧ b) is maximal
⇒ x ∈ (a ∧ b)+.

Therefore a+ ∩ b+ ⊆ (a ∧ b)+. On the other hand suppose that x ∨ (a ∧ b)
is maximal. Then, it can be easily observed that x ∨ (b ∧ a) is maximal and
hence x ∨ a and x ∨ b are maximal. Therefore x ∈ a+ ∩ b+. This implies
(a ∧ b)+ ⊆ a+ ∩ b+. Thus a+ ∩ b+ = (a ∧ b)+.
(4). is trivial.

Theorem 5.4. Let A be an ABA and a, b ∈ A. Then the following are
equivalent.

(1) a ∼ b

(2) a∗ = b∗ and a+ = b+

(3) c(a) = c(b).

Proof. (1) ⇒ (2) : Suppose a ∧ b = b and b ∧ a = a. Then a ∨ b = a and
b ∨ a = b. Therefore, a∗ = (a ∨ b)∗ = (b ∨ a)∗ = b∗ and
a+ = (b ∧ a)+ = (a ∧ b)+ = b+.
(2) ⇒ (3) is trivial since c(x) = x∗ ∩ x+ for all x ∈ A.
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(3) ⇒ (1) : By theorem 5.2, c(a) =∼ (x) for some x ∈ A.
Now, x ∈∼ (x) = c(a) = c(b). Therefore x ∧ a = 0 = x ∧ b and x ∨ a and
x ∨ b are maximal. Now,
a = (x ∨ b) ∧ a = (x ∧ a) ∨ (b ∧ a) = 0 ∨ (b ∧ a) = b ∧ a and
b = (x ∨ a) ∧ b = (x ∧ b) ∨ (a ∧ b) = 0 ∨ (a ∧ b) = a ∧ b. Therefore a ∼ b.

The following is the converse of the theorem 5.2.

Theorem 5.5. Let A be an ABA. Then any associate class in A is of the
form c(x) for some x ∈ A.

Proof. Let a ∈ A and consider ∼ (a). Let x ∈ c(a). Then a ∧ x = 0 = x ∧ a
and x∨ a and hence a∨ x are maximal. Therefore a ∈ x∗ ∩ x+ = c(x). Since
c(x) is an associate class (by theorem 5.2), it follows that
∼ (a) ⊆ c(x) = ∼ (b) for some b ∈ A and hence ∼ (a) = ∼ (b) = c(x)
(since ∼ is an equivalence relation).

The following are consequences of theorems 5.2 and 5.5.

Corollary 5.6. For any ABA A, A/ ∼ = {c(a) : a ∈ A}.

Proof. For any ABA A, it can be proved that A/ ∼ is a Boolean algebra
under the induced operations defined by

∼ (a) ∧ ∼ (b) = ∼ (a ∧ b) and ∼ (a) ∨ ∼ (b) = ∼ (a ∨ b)
and the complement ∼ (a)′ = ∼ (x) for some x ∈ c(a).

Corollary 5.7. For any ABA A, the set {c(a) : a ∈ A} is a Boolean algebra.
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