
[Volume 3 issue 8 August 2015] 

 PageNo.1150-1153 ISSN : 2320-7167 

INTERNATIONAL JOURNAL OF MATHEMATICS AND 
COMPUTER RESEARCH 

 

                                                                                 IJMCR  www.ijmcr.in| 3:8|August|2015|1150-1153 |                                                            1150 

 

Applications Of Lagrange’s Theorem In Group Theory 

Mamidi Sai Akash 

12th Standard Fiitjee Jr. College, Hyderabad, Telangana State, India 

Email: Akash.Davinci@Gmail.Com 

 

Abstract:  

The objective of the paper is to present applications of  Lagrange’s theorem, order of the element, finite 

group of order, converse of  Lagrange’s theorem, Fermats little theorem and results, we prove the first 

fundamental theorem for groups that have finite number of elements. In this paper we show with the 

example to motivate our definition and the ideas that they lead to best results. It can be used to 

prove Fermat's little theorem and its generalization, Euler's theorem. These special cases were known long 

before the general theorem was proved. In this paper some Corollaries gives the famous result called the 

Fermat’s Little Theorem. In this paper we see that given a subgroup H of a group G, it may be possible to 

partition the group G into subsets that are in some sense similar to H itself 
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Introduction: 

A consequence of the theorem is that the order of any element a of a finite group (i.e. the smallest positive 

integer number k with ak = e, where e is the identity element of the group) divides the order of that group, 

since the order of a is equal to the order of the cyclic subgroup generated by a. If the group has n elements, 

it follows 

  we now prove that in general, the converse of Lagrange’s Theorem is not true.  

The theorem also shows that any group of prime order is cyclic and simple. This in turn can be used to 

prove Wilson's theorem, that if p is prime then p is a factor of . 

Lagrange's theorem can also be used to show that there are infinitely many primes: if there was a largest 

prime p, then a prime divisor q of the Mersenne number  would be such that the order of p in 

the multiplicative group  (see modular arithmetic) would divide the order of this group which 

is . Hence , contradicting the assumption that p is the largest prime.[1] 

Definition: 1. 1.1 (Order of an Element). Let G be a group and let g ∈ G. Then the smallest    positive 

integer m such that g m = e is called the order of g. If there is no   such positive integer then g is said to have 

infinite order. The order of an element is denoted by O(g).  

Example1. 2. 1. The only element of order 1 in a group G is the identity element of G. 

2. In D4, the elements r2 , f, rf, r2f, r3f have order 2, whereas the elements r and r 3 have order 4.  

With the definition of the order of an element, we now prove that in general, the converse of Lagrange’s 

Theorem is not true. To see this consider the group G discussed in Example 3.2.1.2a. This group has 12 

elements and 6 divides 12. Whereas it can be shown that G doesn’t have a subgroup of order 6. We give a 

proof for better understanding of cosets.  

Proof. Let if possible, H be a subgroup of order 6 in G, where  

G = {e,(234),(243),(124),(142),(123),(132),(134),(143),(12)(34),(13)(24),(14)(23)}. 

https://en.wikipedia.org/wiki/Fermat%27s_little_theorem
https://en.wikipedia.org/wiki/Euler%27s_theorem
https://en.wikipedia.org/wiki/Order_(group_theory)
https://en.wikipedia.org/wiki/Cyclic_group
https://en.wikipedia.org/wiki/Generating_set_of_a_group
https://en.wikipedia.org/wiki/Simple_group
https://en.wikipedia.org/wiki/Wilson%27s_theorem
https://en.wikipedia.org/wiki/Primes
https://en.wikipedia.org/wiki/Mersenne_number
https://en.wikipedia.org/wiki/Multiplicative_group
https://en.wikipedia.org/wiki/Modular_arithmetic
https://en.wikipedia.org/wiki/Lagrange%27s_theorem_(group_theory)#cite_note-1
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Observe that G has exactly 8 elements of the form (ijk), for distinct numbers i, j and k, and each has order 3. 

Hence, G has exactly 8 elements of order 3. Let a ∈ G with O(a) = 3.  

Then using Theorem we see that cosets of H in G will be exactly 2 and at the same time, the possible cosets 

could be H, aH and a2H (as a 3 = e, no other coset exists).  

Hence, at most two of the cosets H, aH and a2H are distinct. But, using Theorem, it can be easily verified 

that the equality of any two of them gives a ∈ H. Therefore, all the 8 elements of order 3 must be elements 

of H. That is, H must have at least 9 elements (8 elements of order 3 and one identity). This is absurd as |H| 

= 6. 

We now prove that in general, the converse of Lagrange’s Theorem is not true. The observation that for each 

g ∈ G, the set H = {e, g, g2 , g3 , . . .} forms a subgroup of any finite group G gives the proof of the next 

result.  

Corollary1. 3.1 Let G be a finite group and let g ∈ G. Then O(g) divides |G|. 

Remark1. 4.1 Corollary 3.5.3 implies that if G is a finite group of order n then the possible orders of its 

elements are the divisors of n. For example, if |G| = 30 then for each g ∈ G, O(g) ∈ {1, 2, 3, 5, 6, 10, 15, 30}.  

Let G be a finite group. Then in the first corollary, we have shown that for any g ∈ G, O(g) divides |G|. 

Therefore, |G| = m · O(g), for some positive integer m.  

Hence g |G| = g m·O(g) = (g O(g) ) m = e m = e.  

This observation gives our next result.  

1.5.1 Applications Of Lagrange’s Theorem   

Corollary1. 3.2 Let G be a finite group. Then, for each g ∈ G, g|G| = e. Let P be an odd prime and consider 

the set ℤ ∗p = {1, 2, . . . , p − 1}. Then, check that ℤ ∗ p forms a group with respect to the binary operation 

 a ⊙ b = the remainder, when ab is divided by p.  

Applying Corollary 3.2 to ℤ ∗ p gives the famous result called the Fermat’s Little Theorem. To state this, 

recall that for a, b ∈ ℤ, the notation “a ≡ b (mod p)” indicates that p divides a − b. 

Corollary1. 3.3. Let a be any positive integer and let p be a prime. Then a p−1 ≡ 1 (mod p),if p does not 

divide a. In general,a p ≡ a (mod p). 

 We now state without proof a generalization of the Fermat’s Little Theorem, popularly known as the 

Euler’s Theorem. to do so, let Un = {k : 1 ≤ k ≤ n, gcd(k, n) = 1}, for each positive integer n. Then Un, with 

binary operation 

 a ⊙ b = the remainder, when ab is divided by n forms a group.  

Also, recall that the symbol ϕ(n) gives the number of integers between 1 and n that are coprime to n. That is, 

|Un| = ϕ(n), for each positive integer n. Now applying Corollary 3.5.5 to Un, gives the next result. 

Corollary1. 3.4 Let a, n ∈ Z with n > 0. If gcd(a, n) = 1 then a ϕ(n) ≡ 1 (mod n).  

Example1. 2.2 1. Find the unit place in the expansion of 131001 .  

Solution : Observe that 13 ≡ 3 (mod 10). So, 131001 ≡ 3 1001 (mod 10). Also, 3 ∈ U10 and therefore by 

Corollary 3.5.5, 3 |U10| = 1 (mod 10). But |U10| = 4 and 1001 = 4·250+1. Thus, 

 131001 ≡ 3 1001 ≡ 3 4·250+1 ≡ (34 ) 250 · 3 1 ≡ 1 · 3 ≡ 3 (mod 10).  

Lagrange’s Theorem In this section, we prove the first fundamental theorem for groups that have finite 

number of elements. To do so, we start with the following example to motivate our definition and the ideas 

that they lead to.  
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Example  2.2.2. Consider the set R 2 = {(x, y) : x, y ∈ R}. Then R 2 is an abelian group with respect to 

component wise addition. That is, for each (x1, y1),(x2, y2) ∈ R 2 , the binary operation is defined by (x1, 

y1) + (x2, y2) = (x1 + x2, y1 + y2). 

Check that if H is a subgroup of R 2 then H represents a line passing through (0, 0). Hence, H1 = {(x, y) ∈ R 

2 : y = 0}, H2 = {(x, y) ∈ R 2 : x = 0} and H3 = {(x, y) ∈ R 2 : y = 3x} are subgroups of R 2 . Note that H1 

represents the X-axis, H2 represents the Y -axis and H3 represents a line passes through the origin and has 

slope 3. Fix the element (2, 3) ∈ R 2 . Then 1. (2, 3) + H1 = {(2, 3) + (x, y) : y = 0} = {(2 + x, 3) : x ∈ R}.  

This is the equation of a line that passes through the point (2, 3) and is parallel to the X-axis. 2. verify that 

(2, 3) + H2 represents a line that passes through the point (2, 3) and is parallel to the Y -axisHence, the unit 

place in the expansion of 131001 is 3. 3. (2, 3) + H3 = {(2 + x, 3 + 3x) : x ∈ R} = {(x, y) ∈ R 2 : y = 3x − 3}. 

So, this represents a line that has slope 3 and passes through the point (2, 3).  

So, we see that if we fix a subgroup H of R 2 and take any point (x0, y0) ∈ R 2 , then the set (x0, y0) + H 

gives a line that is a parallel shift of the line represented by H and (x0, y0) + H contains the point (x0, y0). 

Hence, it can be easily observed that 1. (x1, y1) lies on the line (x0, y0) + H if and only if (x0, y0) + H = 

(x1, y1) + H. 2. for any two (x0, y0),(x1, y1) ∈ R 2 , either (x0, y0) + H = (x1, y1) + H or they represent two 

parallel lines which themselves are parallel to the line represented by H. 3. S x∈R S y∈R (x, y) + H = R 2 . 

That is, if we define a relation, denoted ∼, in R 2 by (x1, y1) ∼ (x2, y2), whenever (x1 − x2, y1 − y2) ∈ H, 

then the above observations imply that this relation is an equivalence relation. Hence, as (x, y) vary over all 

the points of R 2 , we get a partition of R 2 . 

 Moreover, the equivalence class containing the point (x0, y0) is the set (x0, y0) + H. Therefore, we see that 

given a subgroup H of a group G, it may be possible to partition the group G into subsets that are in some 

sense similar to H itself. Example 2.2.2 also implies that for each g ∈ G, we need to consider the set g + H, if 

G is an additive group or either the set gH or the set Hg, if G is a multiplicative group. So, we are led to the 

following definition. 

Definition 2.2.3 (Left and Right Coset). Let G be a group and let H be a subgroup of G. Then for each g ∈ G 

the set 1. gH = {gh : h ∈ H} is called the left coset of H in G. 2. Hg = {hg : h ∈ H} is called the right coset of 

H in G. 

Remark 1.4.2. Since the identity element e ∈ H, for each fixed g ∈ G, g = ge ∈ gH. Hence, we often say that 

gH is the left coset of H containing g. Similarly, g ∈ Hg and hence Hg is said to be the right coset of H 

containing g. 

Example 2.2.3. Consider the group D4 and let H = {e, f} and K = {e, r2} be two subgroups of D4. Then 

observe the following: H = {e, f} = Hf, 

Hr = {r, f r} = H f r, 

H r2 = {r 2 , f r2 } = H f r2 and H r3 = {r 3 , f r3 } = H f r3 . (2.1) 

H = {e, f} = fH, rH = {r, rf} = rf H, 

r 2 H = {r 2 , r2 f} = r 2 f H and r 3 H = {r 3 , r3 f} = r 3 f H. (2.2) 

K = {e, r2 } = Kr2 = r 2K, 

Kr = {r, r3 } = rK = Kr3 = r 3K Kf = {f, r2 f} = fK = K r2 f = r 2 f K and K f r = {f r, f r3 } = f r K = K f r3 = 

f r3 K. (2.3) . 

 

Lagrange’s Theorem  From (2.1) and (2 .2), we note that in general Hg 6= gH, for each g ∈ D4, whereas 

from (2.3), we see that Kg = gK, for each g ∈ D4. So, there should be a way to distinguish between these 

two subgroups of D4. This leads to  study of normal subgroups and beyond. The interested reader can look 
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at any standard book in abstract algebra to go further in this direction. This can be used to prove Fermat's 

little theorem and its generalization, Euler's theorem. These special cases were known long before the 

general theorem was proved. 
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