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1. Introduction: 

 

Let f  be a non constant meromorphic fuction. This always means that f  is defined in the whole complex 

plane. For standard notations of the Nevanlinna theory such as ),(),,(),,( frSfrNfrT etc., we refer to [1, 

2]. 

 

Let f and g  be two such meromorphic fuctions. Let c be a finite complex number. We say that f and g  

share the same value c CM(counting multiplicity) if cf  and cg  have the same zeros with the same 

multiplicities. Similarly we say that f and g  share c IM(ignoring multiliplicities)if cf  and cg  have 

the same zeros ignoring multiplicities. Also if 
f

1
and 

g

1
share 0 CM(resp. IM), we say that f and g  share 

 CM(resp. IM). 

 

Definition 1.1 [3] : Let k  be any positive integer and f  be a meromorphic function. Then for any 

}{ Ca , the notation );,() farN k  means the counting function of those a-points of f (counting 
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multiplicities) whose multiplicity are not greater than k  and );,() farN k  means the counting function of 

those a-points of f  whose multiplicities are not greater than k , where each a point is counted only once. 

Similarly, we denote );,(( farN p  to mean the counting function of those a-points of f  (counting 

multiplicities) whose multiplicities are not smaller than p  and also denote );,(( farN p to mean the counting 

function of those a-points of f  whose multiplicities are not smaller than p , where each a - point is counted 

only once. 

 

Definition 1.2[4] : Let a be any value in the extended complex plane, and let k  be any arbitrary non negative 

integer. We define 

 

.
);,(

);,(
suplim1);(

farT

farN
fa k

r
k



  

 

Definition 1.3[7] Let k be a non negative integer or infinity. For any complex number }{ Ca , we 

denote  faEk ,  as the set of all a-points of f, where an a-point of multiplicity p is counted p times if 

kp  and k + 1 times if p > k. If Ek(a, f) = Ek(a, g), one says that gf , share the value a with weight k . We 

say gf ,  share (a, k) this means that gf , share the value a with weight k. Then it is clear that if gf , share 

),( ka then gf ,  share ),( qa  for all integers q with kq0 . 

 

In 2010, Xiao-Min Li and Ling Gao [4] proved the following theorem. 

 

Theorem 1 .4[4]: Let f  and g  be two transcendental meromorphic functions, let 0P  be a polynomial 

and 15n  be an integer. If Pff n  /))1(( and Pgg n  /))1(( share 0 CM and 
n

f
2

),(  then f = 

g. 

In 2011, Jin-Dong Li[7], proved the following theorems. 

 

Theorem 1.5[7]: Let )(zf  and )(zg  be two non constant meromorphic functions and let n, k be two 

positive integers with )()]1)()(([,
2

),(.113 kn zfzf
n

fIfkn 
)()]1)()(([ kn zgzgand  share (1, 2) 

then .1]1)()(([.)]1)()(([)()( )()(  knkn zgzgzfzforzgzf   

 

Theorem 1.6[7]: Let )(zf  and )(zg  be two non constant meromorphic functions and let n, k be two 

positive integers with ,
2

),(.145
n

fIfkn 
)()]1)()(([ kn zfzf  and 

)()]1)()(([ kn zgzg   share (1, 1) then 

)()( zgzf  or .]1)()(([ )(kn zfzf   1]1)()(([ )(  kn zgzg  

In this paper, we have studied the behavior of certain weighted sharing of non linear differential polynomials 

generated by a transcendental meromorphic functions as well as the behavior of certain non linear 

differential polynomials generated by a transcendental meromorphic functions sharing one point CM. In 

fact, we offer certain new theorems, the above mentioned theorems follows as a consequence from our new 

theorems. 
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2. Main Theorems 

 

In this section, we will prove the following four theorems : 

 

Theorem 2.1: Let f and g  be two transcendental meromorphic functions, let n > 17 be a positive integer 

and n is not divisible by 2 and let 0P  be a polynomial. If Pff n  /2 )]1([  and Pgg n  /2 )]1([   share 0 

CM then, .gf    

 

Theorem 2.2: Let f and g be two transcendental meromorphic functions, let n > 3m + 11 be a positive 

integer where m > 2 is also a positive integer and n is not divisible by m and let 0P be a polynomial. If 

Pff mn  /)]1([  and Pgg mn  /)]1([  share 0 CM, then gf  . 

 

Theorem 2.3: Let f  and g  be two non constant meromorphic function and let n, m and k be three 

positive integers with n > 3m + 3k + 8. If 
)())1(( kmn ff   and 

)())1(( kmn gg   share (1,2) then gf   or 

.1)]1([.)]1([ )()(  kmnkmn ggff   

 

Theorem 2.4: Let f  and g  be two non constant meromorphic function and let n, m and k be three 

positive integers with n > 4m + 5k + 10. If 
)())1(( kmn ff   and 

)())1(( kmn gg   share (1,1) then gf   or 

.1)]1([.)]1([ )()(  kmnkmn ggff  

 

Before proving the theorems, we state some existing results in the form of lemmas, which will be used in the 

sequel. 

 

Lemma 2.5[4] : Let f and g be two transcendental meromorphic functions such that Pf k )(
 and 

Pg k )(
share 0 CM, where k is a positive integer, 0P  is a polynomial. If 

 

7),0(),0(),0(),0(),(2),()2( 111   kgfgfgfk kk   

and 

7),0(),0(),0(),0(),(2),()2( 112   kfgfgfgk kk   

Then either f
(k)

 g
(k)

 = P
2
 or f = g.  

 

Lemma 2.6[6] : Let f  be a transcendental meromorphic function and 

0

1

1

2

2.......)( afafafafP n

n  Then ).1(0),()(,(  frnTfPrT  

 

Lemma 2.7[7]: Let f  and g  be two non constant meromorphic functions and let )1(),1(  lk  be two 

positive integers. Suppose that f
(k)

 and g
(k)

 share ).,1( l  

(i) If l  = 2 and 
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7),0(),0(),0(),0(),(2),()2( 111   kgfgffgk kk   then either 

.1)()( gforgf kk   

(ii) If l  = 1 and 

92),0(),0(2),0(),0(),()2(),()3( 112   kgfgfgkfk kk   

then either .1)()( gforgf kk   

 

Proof of Theorem 2.1: Let )1( 2  ffF n
and )1( 2  ggG n

 

and let 

),0(),0(),0(),0(),(2),(3 221 GFGFGF    

and 

),0(),0(),0(),0(),(2),(3 222 FGFGFF    

 

Now,  

2

1

),()2(

),(3
suplim1

),()2(

)
1

1
,()

1
,(

suplim1

),(

)
1

,(

suplim1),0(

2
























n

n

frTn

frT

frTn

f
rN

f
rN

FrT

F
rN

F

r

r

r

 

and  

2

1

),()2(

),(
suplim1

),()2(

),(
suplim1

),(

),(
suplim1),(




















n

n

frTn

frT

frTn

frN

FrT

FrN
F

r

r

r

 

Similarly, 
2

1
),0(






n

n
G  and 

2

1
),(






n

n
G

 

Now,  

),(

)
1

,(

suplim1),0(
2

2
FrT

F
rN

F
r 

  
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2

2

),()2(

),(4
1

),()2(

1

1
,,()

1
,(2

suplim1

),(

)1(

1
,

suplim1

2

22









































n

n

frTn

frT

frTn

f
rrN

f
rN

FrT

ff
rN

r

n

r

 

 

Similarly, .
2

3
),0(2






n

n
G  

Therefore,  

178

2

19
9

2

19

2

2
2

2

1
2

2

1
51


























nif

n

n

n

n

n

n

n

n

n

 

 

Similarly, 1782  nif  

Now since f  and g are transcendental meromorphic functions, so F and G are transcendental meromorphic 

functions. 

From the conditions that PF /  and PG / share 0 CM together with 81   and 82   and the 

lemma(2.5), we get either .2// GForPGF   We discuss the following two cases : 

 

Case I : Suppose .2// PGF   

i.e., 
2/2/2 )]1([)]1([ Pggff nn   

i.e., 
3

2
/21/21

)2(
)

2
()

2
(








 

n

p
g

n

n
ggf

n

n
ff nn

 

Let }0)(:{0  zPzz  be a point such that ,
2

)( 0

2




n

n
zf  with multiplicity p. Then z0 is a pole of g with 

multiplicity q(say). 

 

Therefore, 121  qqqnqpp  

2

4
.,.

)3(1)2(12.,.






n
pei

nqnpei
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Again let }0)(:{1  zPzz be a zero of f with multiplicity r  then z1 be a pole of g with multiplicity 

s(say). 

 

Therefore, 121  sssnsrrnr  

.
2

2
,

)2(2)(2.,.






n
sSo

nsrnsei

 

So,  
2

44
2

2

)2)(2(
22

2 





nnn
snnr   

Therefore, 
2

n
r    

Now, any pole of g must be either a zero of f  or points for which 0
2

2 



n

n
f  or a zero of 

/f  

(consider those zeros for which f  is not zero or 
2


n

n
 ). 

So, 

 

)
1

,(),()
4

42
(

)
1

,()

2

1
,(

4

2

2

1
,(

4

2
)

1
,(

2

)
1

,()

2

1
,()

2

1
,()

1
,(),(

/0

/0

/0

f
rNfrT

nn

f
rN

n

n
f

rN
n

n

n
f

rN
nf

rN
n

f
rN

n

n
f

rN

n

n
f

rN
f

rNgrN
































 

 

where )
1

,(
/0

f
rN refers to those zeros of 

/f  which occur at points other than roots of the equation 

0
2

2 











n

n
ff   

Now, from the second fundamental theorem, we have 

),()
1

,(

2

1
,()

2

1
,(),()

1
,(),(2

/0 grS
g

rN

n

n
g

rN

n

n
g

rNgrN
g

rNgrT 











 







































4

2
)

2

1
,(

4

2
),(

4

42
)

1
,(

2
),(2..

n

n

n
g

rN
n

frT
nng

rN
n

grTei  

),()
1

,()
1

,()

2

1
,(

/0/0 grS
g

rN
f

rN

n

n
g

rN 




 

So, ),()
1

,()
1

,(),()
4

42
(),()

4

42
2(

/
0

/
0 grS

g
rN

f
rNfrT

nn
grT

nn






   
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Similarly we get 

),()
1

,()
1

,(),()
4

42
(),(

4

4
_

2
2

/
0

/
0 frS

f
rN

g
rNgrT

nn
frT

nn














  

Adding these two, we get 

),(),()},(),({)
4

84
2( grSfrSgrTfrT

nn



  

Which is a contradiction for given n. 

 

Case II : Suppose F = G. 

 

i.e., )1()1( 22  ggff nn

   ………………(1)   

 

Let 
f

g
h   

If possible, suppose that h is a non constant. From equation (1) we have, 

 

1

1
2

2






n

n

h

h
f  

Now we assume that 1nh  for otherwise we have trivial solution. So we must assume that n is not divisible 

by 2. By simple calculation it can be shown that the number of common zeros of 11 2  nn handh  is at 

most 2 and hence 12 nh  has at least n zeros which are not the zeros of 1nh . We denote these n zeros 

by ap, p = 1,2,……n.. Now 
2f can not have any simple pole and hence we conclude that h - ap = 0 has no 

simple root for p = 1,2,……n. Hence 
2

1
);(  hap

for p = 1, 2,…..,n which is not possible for given n. This 

means that our assumption that h is non constant, is wrong. Therefore h is constant. Now if 1h , this 

means f will become a constant, which is clearly not the case. So 1h  and hence f = g. 

This completes the proof. 

 

Proof of Theorem 2.2: Let )1()1(  mnmn ggGandffF and let  

),0(),0(),0(),0(),(2),(3 221 GFGFGF   ………………(2)   

and 

 

),0(),0(),0(),0(),0(),(2),(3 2222 FGFFGFG   ……………(3)   

Now, 
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 

mn

n

frTmn

frTm

frTmn

f
rN

f
rN

FrT
F

rN
F

r

m

r

r


























1

),()(

),()1(
suplim1

),()(

)
1

1
,()

1
,(

suplim1

),(

)
1

,(
suplim1,0

  

 

and, 

 

mn

mn

mn

frTmn

frT

frTmn

FrN

FrT

FrN
F

r

r

r























1

1
1

),()(

),(
suplim1

),()(

),(
suplim1

),(

),(
suplim1,

 

 

and  

 

mn

n

frTmn

frtm

frTmn

f
rN

f
rN

FrT

ff
rN

FrT
F

rN
F

m

r

mn

r

r





























2

),()(

),()2(
1

),()(

)
1

1
,()

1
(2

suplim1

),(

)
1(

1
,(

suplim1

),(

)
1

,(
suplim1,0

2

2

2

 

 

Applying similar logic, we have 
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 
mn

n
Gand

mn

mn
G

mn

n
G
















2
,0

1
),(

1
),0(

 

Now putting these values in (2), we get 

mn

mn

mn

n

mn

n

mn

mn





















1159

2
2

1
2

1
51

 
1138  mnif    ………………(4)   

 

Similarly we get from (3)  

11382  mnif    ………………(5)   

 

Now since f and g are transcendental meromorphic functions, so F and G are transcendental meromorphic 

functions. 

From the condition that PF / and GF / share 0 CM, together with the inequality (4) and (5) and the 

lemma (2.5), we get either 
2// PGF  or F = G. We discuss the following two cases : 

Case I: Suppose that 
2// PGF   

i.e., 
2// ]1([)]1([ Pggff mnmn 
  ………………(6)   

Now, /1/ )()()]1([ f
mn

n
ffmnff mnmn


    

and /1/ )()()]1([ g
mn

n
ggmngg mnmn


   

Putting these two values in equation (6), we get  

2

2
/1/1

)(
)(.)(

mn

P
g

mn

n
ggf

mn

n
ff mnmn








 

 

Let z1, z2, z3,..., }0)(:{  zPzzm be points such that 
mn

n
zf i

m


)(  for i = 1,2, ...m and also let the 

multiplicity of z1 is p. Then z1 is a pole of g of multiplicity q (say). 

 

Therefore, 

 

2

2

2)(2)(2

11








mn
p

mnqmnp

qmqqnppp

 

Hence, 
2

2
1),( 1




mn
fz  

Similarly, 
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2
1),( 2


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mn
fz  
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,, ,, ,, ,, ,, ,, ,, ,, ,, 

 

And 
2

2
1),(




mn
fzm

  

Adding we get, 2
5

2
),(.......),( 1 




mn

m
mfzfz m

 

if n > 3m +11 and m > 2 where n and m are both integers, which is impossible. 

So, 
2// PGF   

 

Case II: Suppose F = G. 

 

i.e., )1()1([  mnmn ggff
  ………………(7)   

Let 
f

g
h   If possible suppose that h is non constant. Then it follows from equation (7) that, 

 

.
1

1






mn

n
m

h

h
f

   
………………(8)   

 

Now we assume that 1nh  for otherwise we have trivial solution. So we must assume that n is not divisible 

by m. By simple calculation it can be shown that the number of common zeros of 11  mnn handh  is at 

most m and hence 1mnh  has at least n zeros which are not the zeros of 1nh . We denote these n zeros 

by ap, p = 1,2,……n..  

 

Now, 
mf can not have any simple pole and hence we conclude that h - ap = 0 has no simple root for p = 

1,2,……n. where 











mn

ip
a p

2
exp . Hence 

2

1
);(  hap

for p = 1, 2,…..,n which is impossible for given n. 

Therefore h is a constant. if 1h , it follows that f is a constant, which is a absurd. So h = 1 and hence f = 

g.  

This proves the theorem. 

 

Remark 2.8: The Theorem (1.4) follows from the Theorem (2.2) as a particular case if we take m = 1. 

 

Proof of Theorem 2.3: Let F(z) = f
n
 (f

m
 – 1) and G(z) = g

n
 (g

m
 – 1). 

Also let 

),0(),0(),0(),0(),()2(),(2 111 GFGFGkF kk     

 

Now, 
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
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and, 

 
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,
suplim1),(
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F

r 

  

 
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,
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Similarly, 
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n
G




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1
),0(  and 
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G




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1
),(  
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F
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Similarly, 
mn

kn
Gk




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1
),0(1  

So, 
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


834
)8(  

833..834)7(  kmneikmmnifk  

 

Now, F
(k)

 and G
(k)

 share (1,2) together with the condition that 
1 > k + 7 and the lemma (2.7) that either 

F
(k)

.G
(k)

 = 1 or F = G. 

Now we discuss the following two cases: 

 

Case I: F(k)
.G

(k)
 = 1 that is [f

n
(f

m
— 1)]

(k)
 .[g

n
 (g

m
 – 1) ] 

(k)
 = 1  

Case II: F = G that is f
n
(f

m
 – 1) = g

n
 (g

m
 – 1) 

Let .
f

g
h   If possible suppose that h is not a constant. We have 

1

1






mn

n
m

h

h
f  

 

We assume that 1nh  for otherwise we have trivial solution. So we must assume that n is not divisible by 2. 

By simple calculation it can be shown that the number of common zeros of 1nh and 1mnh is at most m 

and hence 1mnh has at least n zeros which are not the zeros of 1nh . We denote these n zeros by ap, p = 1, 

2, ……………., n. Since f
m

(m > 1) has no simple pole, it follows that h — ap = 0 has no simple root for p = 

1, 2, ..., n. Hence 
2

1
);(  hap

for p = 1, 2, ………, n. Which is impossible. Therefore h is a constant. If 

h 1, it follows that f is a constant, which is not the case. So h = 1 and therefore f = g. 

 

This proves the theorem. 

 

Remark 2.9: The Theorem (1.5) follows from the Theorem (2.3) as a particular case if we take m = 1. 

 

Proof of Theorem 2.4: Let F = f
n
 (f

m
 — 1) and G = g

n
(g

m
 — 1)  

Also let, 

),0(),0(2),0(),0(),()2(),()3( 112 GFGFGkFk kk     

As in the previous theorem, we have 
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So,  

mn

kn

mn

n

mn

mn
k

mn

mn
k





















1
3

1
2

1
)2(

1
)3(2

 

mn

knnmnk






)1(3)1(2)1)(52(
 



IJMCR www.ijmcr.in| 2:7 |July|2014|518-530 |  530 

 

mn

kmmnk






1055))(102(
 

mn
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Now, F
(k)

 and G
(k)

 share (1, 1) together with condition that 
2 > 2k + 9 and the lemma (2.7) that either 

F
(k)

G
(k)

 = 1 or F = G. 

The remaining proof is similar to the proof of the Theorem (2.3). 

 

Remark 2.10: The Theorem (1.6) follows from the Theorem (2.4) as a particular case if we take m = 1. 
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