[Volume 2 issue 10 October 2014] Page No.674-678 ISSN :2320-7167

Z – Connectedness in Closure Space

U.D.Tapi^[1] Bhagyashri A. Deole^[2]

M.Sc., Ph. D.

Professor and Head

Department of Applied Mathematics and Computational Science

Shri G. S. Institute of Technology and Science Indore (M.P.), India

E-mail: utapi@sgsits.ac.in

M. Sc.

Research Scholar

Department of Applied Mathematics and Computational Science

Shri G. S. Institute of Technology and Science (M.P.) Indore, India

E-mail: deolebhagyashri@gmail.com

Affiliated By D.A.V.V. Indore, (M. P.), India

Corresponding Author

Bhagyashri A. Deole^[2]

Address: B-103, Ridhhi-Sidhhi apart. Telephone Nagar

6-Gyans park Indore (M.P.) India

Pin code: 452018

Abstract

A Čech closure space (X, u) is a set X with Čech closure operator u: $P(X) \rightarrow P(X)$ where P(X) is a power set of X, which satisfies $u\phi = \phi$, A $\subseteq u$ A for every A $\subseteq X$, u (AUB) = u A UuB, for all A, B $\subseteq X$. Many properties which hold in topological space hold in Čech closure space as well. Let Z be a topological space with more than one point. A space X is Z-connected if and only if any continuous map from X to Z is constant. In this paper we introduce **Z-connectedness in Čech closure space** and study some of its properties.

Keywords: - Čech Closure space, connectedness in Čech closure space, Z-connectedness in topological space, Z-connectedness in Čech closure space.

Mathematics Subject Classification: 54A40

1. Introduction :-

The topological study of connectedness is heavily geometric. Intuitively, a space is connected if it does not consist of two separate pieces. Čech closure space was introduced by Čech E. [1] in 1963. The modern notion of connectedness was proposed by Jorden (1893) and Schoenfliesz, and put on firm footing by Riesz [2] with the use of subspace topology. The concept of Z-connectedness was introduced by Bo.Dai. and Yan-loi Wong[3].

Many mathematicians such as Eissa D. Habil, Khalid A. Elzenati[4], Eissa D. Habil[5], Stadler B.M.R. and Stadler P.F.[6] have extended various concepts of Z-connectedness. In this paper we introduce **Z**-connectedness in Čech closure space and study its properties.

2. Preliminaries:-

Definition 2.1[7]: An operator u: $P(X) \rightarrow P(X)$ defined on the power set P(X) of a set X satisfying the axioms:

- 1. u**φ=φ**,
- 2. $A \subseteq uA$, for every $A \subseteq X$,
- 3. $u(A \cup B)=uA \cup uB$, for all A, B $\subseteq X$.

is called a Čech closure operator and the pair (X, u) is a Čech closure space.

Definition 2.2[8]:- A Čech closure space (X, u) is said to be connected if and only if any continuous map from X to the discrete space $\{0, 1\}$ is constant .A subset A in a Čech closure space (X, u) is said to be connected if A with the subspace topology is a connected space.

Definition 2.3[3]:- Let Z is a topological space with more than one point. A space X is called Z-connected if and only if any continuous map from X to Z is constant.

3. Z-CONNECTEDNESS IN CLOSURE SPACE:-

Definition 3.1: - Let (Z, u_1) be a Čech closure space with more than one point .A Čech closure space (X, u_2) is called Z- connected Čech closure space if and only if any continuous map f from X to Z is constant.

Example 3.2:- Consider a non empty set $Z = \{x, y\}$, we define a Čech closure operator

 $u_1: P(Z) \rightarrow P(Z)$ such that

 $u_1{x} = u_1{X} = X, u_1{y} = {y}, u_1{\emptyset} = \emptyset.$

Hence (Z, u_1) is a Čech closure space.

Consider a non empty set $X = \{a, b, c\}$, we define a Čech closure operator

 $u_2: P(X) \rightarrow P(X)$ such that

 $u_{2} \{a\} = \{a, b\}, u_{2} \{b\} = \{b, c\}, u_{2} \{c\} = \{c, a\},$

 $u_{2} \{a, b\} = u_{2} \{b, c\} = u_{2} \{c, a\} = u_{2} \{X\} = X, u_{2} \{\varnothing\} = \varnothing.$

Hence (X, u_2) is a Čech closure space.

Define a mapping f: $X \rightarrow Z$ such that

 $f{a}=f{b}=f{c}=f{a, b}=f{b, c}=f{c, a}=f{X}=x,$

 $f\{\emptyset\}=y.$

Here function f is constant. Hence (X, u₂) is called Z-connected Čech closure space.

Proposition 3.3: - A Z-connected Čech closure space is a connected Čech closure space.

Proof: - Let (X, u) is a Z-connected Čech closure space i.e. there exist a function f: $X \rightarrow Z$ is constant, where Z is a Čech closure space having more than one element. If $Z = \{0, 1\}$ a two point Čech closure space then function f: $X \rightarrow \{0, 1\}$ is constant. Hence (X, u) is a Z-connected Čech closure space.

The Čech closure space (X, u) varies when different topologies are added to a two point set

 $\{0, 1\}$. Then there are only three types of topologies on Z, namely, indiscrete topology, order topology and discrete topology.

For simplicity we write:

(2_i): The space $\{0, 1\}$ with indiscrete topology, whose open sets are \emptyset and $\{0, 1\}$;

(2₀): The space $\{0, 1\}$ with order Topology, whose open sets are \emptyset , $\{0\}$ and $\{0, 1\}$;

 (2_d) : The space $\{0, 1\}$ with discrete topology, whose open sets are $\emptyset, \{0\}, \{1\}, \{0, 1\}$.

Corollary 3.4:- A Čech closure space (X, u) is called 2_i -connected Čech closure space, if and only if X is a one point Čech closure space.

Proof: Consider a Čech closure space $Z = \{0, 1\}$. If X is a one point Čech closure space, for any continuous map f: X $\rightarrow Z$, f(X) is constant. Hence (X, u) is 2_i-connected Čech closure space.

Conversely, if Čech closure space (X, u) has more than one point,

 $X = U \cup V$ where U and V are nonempty and disjoint sets. Define f: $X \rightarrow Z$ such that f[U] = 0 and

f[V] = 1 this function is continuous but not constant .Thus X is not 2_i-connected Čech closure space. Therefore X is not Z-connected Čech closure space except that X is one point Čech closure space.

Corollary 3.5:- A Čech closure space (X, u) is called 2_0 -connected Čech closure space if and only if X is indiscrete Čech closure space.

Proof: Let X is indiscrete Čech closure space. Consider a continuous map f from X to the

Z= {0, 1}. Since {0} is open in the 2_o -space. So $f^{-1}(0)$ is open in indiscrete Čech closure space X, thus $f^{-1}(0) = X$ or \emptyset . If $f^{-1}(0) = X$, f(X) = 0 if $f^{-1}(0) = \emptyset$, f(X) = 1. In either case, f is constant.

Conversely, if X is not indiscrete, there exists a proper open set S of X. Define f: $X \rightarrow \{0, 1\}$ by f[S] =0 and f[X-S] =1. Then $f^{-1}(0) = S$, $f^{-1}(\{0, 1\}) = X$, thus f is continuous but not constant. Therefore, X is 2_0 - connected if and only if X is indiscrete.

Corollary **3.6:-** X is 2_d-connected Čech closure space if and only if X is connected.

The following proposition is a summary of the above corollaries.

Proposition 3.7:- Let Z is a two point space. Then

1. X is 2_i -connected Čech closure space if and only if X is one point space.

2. X is 2_o -connected Čech closure space if and only if X is indiscrete.

3. X is 2_d -connected Čech closure space if and only if X is connected.

Proposition 3.8:- A continuous image of Z-connected Čech closure space is Z-connected.

Proof: Let X is any Z-connected Čech closure space. By definition, there exists a continuous map from X to Z is constant. Let f: $X \rightarrow f(X)$ is a continuous surjective map and g: $f(X) \rightarrow Z$ is continuous. But the function gof: $X \rightarrow Z$ is continuous and constant, so g is constant. Therefore f(X) is Z-connected, i.e. the continuous image of X is Z-connected.

Proposition 3.9:- If $\{X_{\alpha}\}$ is a collection of Z-connected subspaces of a Čech closure space X such that $\bigcap_{\alpha} X_{\alpha} \neq \emptyset$ then $\bigcup_{\alpha} X_{\alpha}$ is Z-connected.

Proof: For any continuous map $f: \cup_{\alpha} X_{\alpha} \to Z$, let map $i: X\alpha \to \cup_{\alpha} X_{\alpha}$ be the inclusion map and let

f: $\cup_{\alpha} X_{\alpha} \rightarrow Z$ be any continuous map. Since each X_{α} is Z-connected Čech closure space,

foi: $X_{\alpha} \rightarrow Z$ is continuous and thus constant and $\bigcap_{\alpha} X_{\alpha} \neq \emptyset$, so there exists a point p such that

 $p \in \cap_{\alpha} X_{\alpha}$ i.e. $p \in X_{\alpha}$ for all α . Then function foi is constant and equal to f (p). Therefore f is constant and $\cup_{\alpha} X_{\alpha}$ is Z-connected.

Proposition 3.10:- Let A and B are subsets of a connected Čech closure space X such that

 $A \subseteq B \subseteq \overline{A}$. If A is Z-connected then B is Z-connected.

Proof: Let f: $B \rightarrow Z$ be any continuous map where $A \subseteq B \subseteq \overline{A}$ and let $f|_A: A \rightarrow Z$ be the restriction of f. Since A is Z-connected and $f|_A$ is continuous, $f|_A(A) = f(A)$ is constant. Z is a T₁ space, thus

f (A) is closed. Note that $\overline{A^B} = \overline{A} \cap B = B$, therefore, f (B) = f (\overline{A}^B) $\subseteq f(\overline{A}) = f(A)$. Thus f(B) is constant and B is Z-connected.

Proposition 3.11:- A Čech closure space (X, u) is connected if and only if for all T_1 -Čech closure doubleton space Y= {0, 1}, any continuous function f: X \rightarrow Y is constant.

Conclusion: - In this paper the idea of Z-connectedness was introduced and relationship between the Z-connectedness and Čech closure space were explained.

References

- 1. Čech E. Topological space, Topological Papers of Eduard Čech, Academia, Prague, (1968) 436-472.
- 2. Riesz F. Stetigkeitsbegriff und abstrakte Mengenlehre, in Atti del IV Congress. Internationale di Mat. I(1909) pp. 18-24.
- **3.** Bo. Dai and Yan-loi Wong, Strongly connected spaces. Department of Mathematics, National University of Singapore, (1999).

- **4.** Eissa D. Habil , Elzenati A. Khalid, Connectedness in Isotonic spaces, Turk J. Math Tubitak, (2006) 247-262,30.
- **5.** Eissa D. Habil , Hereditary properties in Isotonic spaces, Department of Mathematics, Islamic University of Gaza, P.O. Box 108, Gaza, Palestine.
- 6. Stadler B.M.R. and Stadler P.F., Basic properties of closure spaces.J.Chem.Inf.Comput.Sci.42, (2002) p: 577.
- 7. Boonpok C. On Continuous Maps in Closure Spaces, General Mathematics (2009) Vol. 17 No. 2.
- Tapi U.D. and Deole Bhagyashri A., Connectedness in closure space, International journal of Math. Sci. & Eng. Appls. (IJMSEA), (2014) Vol. 7, No.4, pp. 147-150.