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Abstract 

A Čech closure space (X, u) is a set X with Čech closure operator u: P(X) → P(X) where P(X) is a power set of X, which satisfies 

u𝝓=𝝓, A ⊆u A for every A⊆X, u (A⋃B) = u A ⋃uB, for all A, B ⊆ X. Many properties which hold in topological space hold in 

Čech closure space as well. Let Z be a topological space with more than one point. A space X is Z-connected if and only if any 

continuous map from X to Z is constant. In this paper we introduce Z-connectedness in Čech closure space and study some of its 

properties. 
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1. Introduction :- 
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The topological study of connectedness is heavily geometric. Intuitively, a space is connected if it does not consist of 

two separate pieces. Čech closure space was introduced by Čech E. [1] in 1963. The modern notion of connectedness 

was proposed by Jorden (1893) and Schoenfliesz, and put on firm footing by Riesz [2] with the use of subspace 

topology. The concept of Z-connectedness was introduced by Bo.Dai. and Yan-loi Wong[3].  

                                  Many mathematicians such as Eissa D. Habil, Khalid A. Elzenati[4], Eissa D. Habil[5], 

Stadler B.M.R. and Stadler P.F.[6] have extended various concepts of Z-connectedness. In this paper we introduce Z-

connectedness in Čech closure space and study its properties. 

 

2. Preliminaries:- 

Definition 2.1[7]:- An operator u: P(X) →P(X) defined on the power set P(X) of a set X satisfying the axioms: 

1. u𝝓=𝝓, 

2. A ⊆uA , for every A⊆X, 

3. u (A⋃B)=uA ⋃uB   , for all  A, B⊆X. 

is called a Čech closure operator and the pair (X, u) is a Čech closure space. 

 

Definition 2.2[8]:- A Čech closure space (X, u) is said to be connected if and only if any continuous map from X to 

the discrete space {0, 1} is constant .A subset A in a Čech closure space (X, u) is said to be connected if A with the 

subspace topology is a connected space. 

Definition 2.3[3]:- Let Z is a topological space with more than one point. A space X is called 

 Z-connected if and only if any continuous map from X to Z is constant. 

  

3. Z-CONNECTEDNESS IN CLOSURE SPACE:- 

 

Definition 3.1: - Let (Z, u1) be a Čech closure space with more than one point .A Čech closure space (X, u2) is called 

Z- connected Čech closure space if and only if any continuous map f from X to Z is constant. 

Example 3.2:- Consider a non empty set   Z = {x, y}, we define a Čech closure operator 

u1: P (Z) → P (Z) such that 

u1{x} = u1{X} = X, u1{y} = {y}, u1 {⌀} =⌀. 

Hence (Z, u1) is a Čech closure space. 

Consider a non empty set X= {a, b, c}, we define a Čech closure operator  

u2: P (X) → P (X) such that 

u2 {a} = {a, b}, u2 {b} = {b, c}, u2 {c} = {c, a},  

u2 {a, b} = u2 {b, c} = u2 {c, a} = u2 {X} = X, u2 {⌀} =⌀. 

Hence (X, u2) is a Čech closure space. 

Define a mapping f: X→Z such that 
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f{a}=f{b}=f{c}=f{a, b}=f{b, c}=f{c, a}=f{X}=x, 

f{⌀}=y. 

Here function f is constant. Hence (X, u2) is called Z-connected Čech closure space.  

Proposition 3.3: -A Z-connected Čech closure space is a connected Čech closure space. 

Proof: - Let (X, u) is a Z-connected Čech closure space i.e. there exist a function f: X→Z is constant, where Z is a 

Čech closure space having more than one element. If Z = {0, 1} a two point Čech closure space then function f: X→ 

{0, 1} is constant. Hence (X, u) is a Z-connected Čech closure space.  

The Čech closure space (X, u) varies when different topologies are added to a two point set  

{0, 1}. Then there   are only three types of topologies on Z, namely, indiscrete topology, order topology and discrete 

topology.  

For simplicity we write: 

(2i): The space {0, 1} with indiscrete topology, whose open sets are   and {0, 1}; 

(2o): The space {0, 1} with order Topology, whose open sets are   {0} and {0, 1}; 

(2d): The space {0, 1} with discrete topology, whose open sets are   {0},{1},  {0, 1}. 

Corollary 3.4:- A Čech closure space (X, u) is called 2i-connected Čech closure space, if and only if X is a one point 

Čech closure space. 

Proof:  Consider a Čech closure space Z= {0, 1}.If X is a one point Čech closure space, for any continuous map f: X 

→Z, f(X) is constant. Hence (X, u) is 2i-connected Čech closure space.  

                                           Conversely, if Čech closure space (X, u) has more than one point, 

 X = U V where U and V are nonempty and disjoint sets. Define f: X→Z such that f[U] = 0 and  

f [V] = 1 this function is continuous but not constant .Thus X is not 2i-connected Čech closure space. Therefore X is 

not Z-connected Čech closure space except that X is one point Čech closure space. 

Corollary 3.5:- A Čech closure space (X, u) is called 2o-connected Čech closure space if and only if X is indiscrete 

Čech closure space. 

Proof: Let X is indiscrete Čech closure space. Consider a continuous map f from X to the 

Z= {0, 1}. Since {0} is open in the 2o -space.  So f  1(0) is open in indiscrete Čech closure space X, thus f  1(0) = X 

or  . If f  1(0) =X, f(X) =0 if f 1(0) = , f(X) =1. In either case, f is constant. 

                                         Conversely, if X is not indiscrete, there exists a proper open set S of X. Define f: X → {0, 1} 

by f[S] =0 and f[X-S] =1. Then f 1(0) = S, f 1({0, 1}) =X, thus f is continuous but not constant. Therefore, X is 2o - 

connected if and only if X is indiscrete. 

Corollary 3.6:- X is 2d-connected Čech closure space if and only if X is connected. 

The following proposition is a summary of the above corollaries. 
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Proposition 3.7:- Let Z is a two point space. Then 

1. X is 2i-connected Čech closure space if and only if X is one point space. 

2. X is 2o-connected Čech closure space if and only if X is indiscrete. 

3. X is 2d-connected Čech closure space if and only if X is connected. 

Proposition 3.8:- A continuous image of Z-connected Čech closure space is Z-connected. 

Proof: Let X is any Z-connected Čech closure space. By definition, there exists a continuous map from X to Z is 

constant. Let f: X →f(X) is a continuous surjective map and g: f(X) →Z is continuous. But the function gof: X→Z is 

continuous and constant, so g is constant. Therefore f(X) is Z-connected, i.e. the continuous image of X is Z-

connected. 

 Proposition 3.9:- If {Xα} is a collection of Z-connected subspaces of a Čech closure space X such that  α Xα≠  then 

 αXα is Z-connected. 

Proof: For any continuous map f:  αXα →Z, let map i: Xα → αXα be the inclusion map and let  

f:  αXα →Z be any continuous map. Since each Xα is Z-connected Čech closure space, 

 foi: Xα →Z is continuous and thus constant and  αXα ≠ , so there exists a point p such that  

p  αXα i.e. p Xα for all α. Then function foi is constant and equal to f (p). Therefore f is constant and  αXα is Z-

connected. 

Proposition 3.10:- Let A and B are subsets of a connected Čech closure space X such that  

A⊆B⊆ A. If A is Z-connected then B is Z-connected. 

Proof: Let f: B→Z be any continuous map where A⊆B ⊆ A and let f|A: A→Z be the restriction of f. Since A is Z- 

connected and f|A is continuous, f|A (A) =f (A) is constant. Z is a T1 space, thus  

f (A) is closed. Note that A B=    B=B, therefore, f (B) =f (  AB) ⊆f(A) = f(A).Thus f(B) is constant and B is Z-

connected.  

Proposition 3.11:- A Čech closure space (X, u) is connected if and only if for all T1-Čech closure doubleton space Y= 

{0, 1}, any continuous function f: X→Y is constant. 

Conclusion: - In this paper the idea of Z-connectedness was introduced and relationship between the Z-

connectedness and Čech closure space were explained. 
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