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Abstract. In this article, we discuss the approximate method of solving discontinu-ous
mixed boundary value problem for nonlinear uniformly elliptic complex equation of
second order in a multiply connected domain. If the complex equation and the boundary
value condition satisfy certain conditions, then we can obtain some solv-ability results
for the above boundary value problem by the method of parameter extension. Moreover
the error estimates of approximate solutions of the discontinuous mixed problem can be
obtained.
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1. Formulation of Discontinuous Boundary Value Problems for Elliptic
Complex Equations of Second Order

Let D be an (N + 1)-connected domain with the boundary | = [szoij in C, where | 2 C12 (0 <1 < 1). Without loss of generality,

we assume that D is a circular domain

inJ2Zj < 1, where the boundary consists of N + L circles jo = in+1 =fj2j = 19, ij=fjz i zj = rjg; ] = 1; ::5; N and 2 = 0 2 D. In this article, the notations are

as the

same in References [3-14]. We discuss the nonlinear uniformly elliptic complex equation of second order

8 Wzz = F (Z; W; Wz, W ; Wzz; Woz); F =Q1wz; (1:1)
<

Suppose that the complex equation (1.1) satisfies the conditions, namely
Condition C 1) Qj(z; Wy Wz wz; X; Y)(= 15 2); Aj(Z; Wy Wz wa = 1, CCC; 4) are
measurable in Z 2 D for all continuously differentiabte functions W(Z) in D and all mea-surable unctions X(2); Y (z) 2 I—pO
(D); and satisfy

Lpl[Aj(z; w; Wz; wy); D] - kjj1;j=1; ¢¢C; 4; (2:2)
where Po; P (2<p0 p), kj(j =0;1;2; 3) are non-negative constants.



) The above functions are continuous in W; Wz; W 2 C for almost every point Z 2 D;

2
X, Y 2C; and Q] = O(j =1; 2); A] =0 (j =1; ¢¢cC; 4)for Z 62D: Besides, we assume that

Q2 =0 inaneighborhood of i-
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3) The complex equation (1.1) satisfies the following uniform ellipticity condition,
namely for any functions W(Z) 2 Cl(D) and Xj; Yj2 C (j = 1; 2); the inequality JF (Z; W; Wz; W;
X1, Y1) i F (z; w; wz; Wy, X2; Y2)j
- 01jX1 i Xof +a2Y1 i Y2j;
holds for almost every point Z 2 D; where j(Q1 + g2 < 1)(j = 1; 2) are all non-negative constants.

We introduce the discontinuous mixed bovmdavy value prob[em fov the second order complex equation (11) name[y

Problem M Find a continuously differentiable solution w(2) in D’:1 =Dnz of complex equation (1.1) satisfying the boundary conditions

Re[,1(2) Wz +%(2)W(2)|=¢1(2); Rel,2(2W(z N=éa(2); 221 =i nZ; (1:4)

where Z =ft1; t2; :::; tmg are the first kind of discontinuous points of ,j(2) (j = 1;2) on
N N N

R points. We can assume that | 2 jo (1= 1; ::3; mp); 4121 (I=mo + 1
iN (I = mp;1 + 1::2; M) are all discontinuous points of ,j(Z) on j . Denote by ,j(ty j 0)
and ,j(t] +0) the left limit and right limitof ,j(Z) asZ 't (25 1= 1;2; ;s m; j= 1, 2), and
eiAiI: M;° = 1n Li(ti0) Z'AL' K
U0y VA U *0) L e (1:5)

Kj = _12 ’+Jj|; Jj=0or1;1=1;::5m;j=1;2;
in which 0 . ojI <1 when J]I = O,andil < ojl <0 when\]jl = 1, J = 1, 2, | = l, nomo
o= =m ki1 +1 Kik are denoted

There is no harm in assuming that the partial indexes K

the partial index on ji (K = 1; ::3; No ( N)) are not integers, and the parﬁal indexes
i
K = — “ K 5 (Z) i (k=0;N + 1; :::; N) P
ik Fmg1+l jkof on K 0 m are integers. Set
1 Ki ..
K= = ¢arg 2= —j=12
X

and K= (K]_; K2) is called the in_o{ex of Problem M. Moreover, ,j(Z); I’J(_Z) (J =1; 2); ?/4(2) satisfies the conditions
ce L] KC[zt vz t wye | k;

@ | o @i i ] i o4 (1:6)
Co ' Mliziti ' jzitia) " ¢j@); 1 1]~ ks; =15 2; 1=1; 1 m;
inwhich® (1=2< ® < 1); kj(j=0;4; 5) arcnvn—ncgativcconstemts,_“ + oil < 1, | =
1; 5 m; j = 1; 2;we vequire that the solution [W1(Z); W2(Z)] possesses the property
- m 1=¢ 2
R(z2)wz; R(2)wz =C+(D); R(Z)=j=1jzitiy ~ ;"1=max(1i; "i2);
) i+ ¢; for i, 0;.and °y < 0; it j°il; (1:7)
=\ . . .
: %jlites for %< 0; <o 1=1; 5 m; j=1;2
in the neighborhood(l/z D) of 1 (I=1; 23, m),where £; ¢ (K MIN(®; 1 j 2=pg)) are small positive constants. In

general, Problem M may not be solvable. Hence we consider the modified well-posed-ness of Problem M as follows.
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Problem N Find a continuously differentiable solution W(Z) in D" of the complex system (1.1) satisfying the modified boundary conditions
Re[,1(2)wz +¥4(z2)w(2)]=¢1(2)+h1(2);

( Re[2(2)w(z)] = ¢2(2) + ha(2); z2j (1:8)

where
0;z2jo; . .
® hic; 2 Zik;k=1;:::;N;’ lijbO,
>
h@.i@ > ik k=1; 15 N;
Xi(2) > [Ki +1=2] ;1
z [1+( 1) 2K; Thio +Re ] + . m . 9g1<,<o;
3 - 7 )
“j=12

inwhich Xj(Z)(j = 1; 2) are the solutions of some Dirichlet problems in D, hjk(k =

[1 i(il)ZKj 1=2; 5 N); h+jm; hijm (m=1; =5 [Kjj+1=2] i 1; j = 1; 2) are unknown real constants to be determined appropriately.
In addition, for Kj ,0(j= 1, 2) the solution

W(2) is assumed to satisfy point conditions

Im[,1 (a)U(ay) + ¥a1(anw(an] = bji; 12 Jg;
Iml,2 @)V (a)] = b 12 J2; (1:9)
Jj=11; 52K+ 1g; Kj, 0; )= 1; 2;
where @ 2 jo (1 2 Jj) are distinct points; and Dji(1 2 Jj; ] = 1; 2) are all veal constants satisfying the conditions
jbji - ke; 1235;)=1, 2; (1:10)
with the positive constant Kg.
The well posed-ness is a generalization of corresponding problem of the Riemann-Hilbert problem for first order elliptic

comp[ex equations (see [3]), which is not a simp[e prob[em, hence it is not easy to understand. Moreover, Problem N with

As=0;G=0; (',j(Z) =0; bJ| =0(2J s j = 1; 2) is called Problem Ng.

2. Estimates of Solutions of Discontinuous Boundary Value Problems for
Elliptic Complex Equations of Second Order

First of all, we give the corvesponding complex system of complex equations in the form
Uz =F (z; w; U; V; Uz Vy); F=0Q1U; +Q2V;,
" (2:1)
+A1U + AoV + Aw +Ag; Vz = Uz = Waz;
where U =W5; V =W;!
Theorem 2.1 Let the complex equation (1:1) satisfy Condition C: Then any solution
1

W(z)(RSwzz 2 Lo (D); 2<po - p) of Problem N for (2:1) p(issesl}s(es)s the representation
—_— —_ 2

W(2)=02(2)+T [©1 +TY%]=2(2)+TTY2; TY2=j YWZZp 3z d¥as; (2:2)
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where %2(z) = Waz; ©j(2) (j = 1; 2) are analytic functions in D; 3(z) = ©(z) +T ©1 is a
complex function in D, and w; = ©1(z) + T¥%; w(z) = &(z) + TT% satisfy the boundary
conditions —

(Re[,12)(©1(2)+T¥)]= iRe[¥a(2)W]+¢1(2)+ha(2); 7 2jx; (2:3)

Re[,2(2)((2) + TTY2)] = ¢2(2) + h2(2);
and point conditions

Im[ 1 (2)(©1(2)+T¥2)liz=aj =ilm[¥a(a))W(a)]+b1j; j 2J1; (2:4)

Im[,2(2)(%(2) + TTY2)liz=q; = b2j; j 2 J2:
Proof Let the solution w(z) of Problem N be substituted into the equation (2.1) and
denote the equation in the form

Wzz1 = ¥2(2); R(2)S(z)¥2(z) 2 Lpo (D); (2:5)
hence we have
w; = U(2) = ©1(2) + T%: (2:6)
Noting that w(z) satisfies the second formulas of boundary and point conditions (1.8)
and (1.9), it is easy to see that w, = ©1(z) + T satisfies the complex equation

Wyz = ©1°(2) + %5 in D; 2:7)
and the boundary condition

0

i
where s is the arc length parameter of j.
Theorem 2.2 Suppose that Condition C holds and q2; k1; ko; k4 in Condition C and
(1:2); (1:3); (1:6) are small enough. Then any solution w(z)(RSwzz = RS%2(z) 2 Lpo
(D)) of Problem N for (2:1) with G(z; w; U; V) = 0 satisfies the estimates
nt — 10 — o
Siw=C-[w(z); D] =C-[R (2)w(z); D] - M1k (2:9)
ne —_ 1 Io}
Srﬁw :Lp0£W(Z); D]=Lpo [RS(Wz1j+Wzzi+Waz): D]-Mok | (2:10)
in which S(2)=!"|=1jzitj~ “*; ~ = min(®; 1i2=pg); Mj = Mj(q1; po; ko; ®; K; D) (j = 1; 2)
are non-negative constants, and K = k3 + kg + Kg:
Proof Let the solution w(z) of Problem N be substituted into the equation (2.1) and
boundary conditions (1.8),(1.9). It is easy to see that w(z) satisfies the complex
equation (2.1) and the second formulas in (1.8) and (1.9), i.e.
Wzz1iQ1Wzz iA1Wz =A+Ag; A=QowWzz +AwW,+ Asw in D; (2:11)
“Re Wo] = 1(z) + ¢1(2) + h1(2); r = Re[¥(z)w] on j ;

S (2:12)

3

According. to the method in the proof of Theorem 1.2.3, Chapter I, [13], we can derive
that the solution w; of the boundary value problem (2.11)—(2.13) satisfies the estimates

C-[R(z)Wz; D] - Mgka; (2:14)
Lpo [RS(Wzzj + j#zzj); D] - Mgka; (2:15)
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where ; po are stated as before, and M; = Mj(q1; po; kKo; ®; K; D)(j = 3; 4) are non-
negative constants,

_ _ _ P

0 L. .

Ka =02Lpo [RSW27;D]+k1 C[RW;D]+koC[R “(2)W(2);D1+Celr; i [+ j 24is; j+ib; Il
- 2Sow + (K1 + ko + Kg)Sgw + K - goSow + k- Siw + K ;

inwhichk " = k1 + ko + kg. Moreover w(z) satisfies (2.6) and the second formulas in
(1.8) and (1.9), and we can obtain the estimates

C- R @W(2); D] - Mskas; (2:16)
Lpo [R(jwz] + jwj); D] - MeKan; (2:17)
where
Kaa =C—[RWzD]+ks +kg -Mgka+k

. Ma[a2Sow + K Sqw +k]+K

- Maa2Sow + k- Sqw] + K (1+Mg):
In addition, from (2.5),(2.6) and the second formulas in (1.8) and (1.9), we know that
Wy is a solution of the equation

Wyzt = ©15(2) + 1%2; 2 2 D; (2:18)
satisfying the boundary condition

v

i 2
Here we mention that Condition C and (1.6),(1.10) can be derived the function ©1,(z) 2
Lpo (D) (po > 2) by (3.6), Chapter I, [1]. Thus we can get that w; = 21,(z)+T%2 satisfies

C[Rwz;D]-M7[Lpo [RSWzz; D]+ko(C[Rwz1;i ]+C‘[R0(Z W(z );i +K ] (2:20)
M7f[Mg +koM3(1+Ms)][q2Sow+K" S1w+k ]+(1+koMaMs)K g;
where M7 = M7(qz1; po; ko; ®; K; D). Thus the estimates
S1w = C-{w(2); D] + C-[Rwy: D] + C-[Rwy; D]
MMy +koMz(1+Ms)][q2Sow+K" Sgw+k']
+(1 + koM3Ms)k" g + Mska + Mskag (2:21)
‘M7[My +koMza(1+Ms)+Ms(1+Ms)][q2Sow+k Syw-+k ]

+[M7 + M3aMs(L + koMK ;
and
_ __ 0
Lpo [RSWzz; D]-MgflLpo [RSW2z; D]+ko(C[Rwz;i [+C[R(z )W(z );i ])+ks +ks @

- Mgf[My + koM3(1 + Ms)|[q2Sow+k” Sqw+k ] + (1 + koMs)gk ;
(2:22)
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can be derived, where Mg = Mg(qQ1; Po; Ko; ®; K; D). Combining (214) —(217) and (2.21), (2.22), we obtain
Siw + Saw - (M7 + Mg)f[Mg + koM3(1 + Ms) + M3(1 + Ms)]
E[q2Saw+k” Siw+k J+k g+Ms(Ms +koMaM7 +koMg))]k +Maks
- Mg + (M7 +Mg)[Mg + koM3(1 + Ms) + M3(1+Ms)]g
£[qoSow+k- Sgw+k ]+[M7 +Mg +Ms(Mg +koMzM7 +koMg]k” (2:23)
. Mg + (M7 + Mg)[Ma + M3(L + ko)(1 + Ms)]g(dz + k)
E[S1w+Sow]+fMg + (M7 + Mg)[1+Mg + M3(1 + ko)(1 + Ms)]
+Ms(M3 +koM3M7 +koMg)gk~ -Mok” =Mg(k3 +ks +kg):

Because we choose the sufficiently small positive constants 02; K1; K2; K4 in Condition C and (1.2),(1.3),(1.6), such that

Li fMa +(M7 +Mg)[Ma +M3(L + ko)(1 + Ms)l(z +k)g > 1=2;
and can select the positive constant Mg = 2fMg+(M7+Mg)[1+Mg+M3(1 + ko)(1 + Ms)]+

Ms(M3+koM3M7+koMg)g: Thus the estimates (2.9) and (2.10) with M1 = Mo = Mg are derived.

— In ovder to prove the uniqueness of solutions of Problem N fov 1.1), we need to add the fo“owmg condition: For any contmuous[y

differentiable functions WJ(Z)(j 1; 2) in D and any continuous functions U(Z) V (Z) 2 Wp 0 (D)(2 <Ppo- p) there is
F (z; W1; Wiz, Wiz Uz V)iF (2 W, Woz; woo Uz V7)

(2:24)

= Q1Uz +Q2Vz +A1(W1z iW2z)+A2(W12 iW2z)tAz(W1 iw2);
(D);j =1;2;3n particular, if the equation (1.1) is

here Q) - G 1= 12 A2 Lpo

a linear comp[ex equation, then (2.24) is obvious[y held, name[y
F (2, wi; Wiz, Wiz; Uz V7) i F (2 W2; Waz; waz Uz V7)
(2:25)
= A1(2)(W1z iW2z)+A2(Z)(W1z iw2z)+A3(Z) (W1 iW2);

where Lp[Aj(2); D] - kji1; j= 1, 2; 3.
Theorem 2.3 If Condition C and (2:27) hold, and q2; ki1; ko; k4 in (1:2); (1:3); (1:6) are
small enough, then the solution [w(z); U(z); V (z)] of Problem N for (2:1) is unique.
Proof Denote by [WJ(Z), Uj(Z); VJ(Z)](J =1; 2) two solutions of Problem N for (11) and substitute them into (2.1),(1.8) and (1.10),
we see that [w; U; V] = [wq(2) iwa(2); U1(2) i U2(2); V1(2) i V2(2)] is a solution of the following homogeneous boundary

va[ue pYO’O[EWl

U =1z +QaVi +Asl) gV Vis =Us (2:26)
Re[ 1(2)U(2) + %(z2)w(2)] = h1(2);
( Re[,2(2)w(2)] = h2(2); z2j; (2:27)
Im[, (Z)U(Z) +¥(2)w(z)]  a =0;] Jg
(MW =o;ji=) 2 (2:28)

2 jz:aj 2



Discontinuous Boundary Value Problem for Elliptic Complex Equations 7

z

Z
w(z) = . [U(@)dz +V (2)dzY; B (2:29)
the coe:chients of which satisﬁ/ same conditions, pvovideom 2, k]_; k2 and k4 are mﬁcienﬂy small, ﬁrom Theovem 2.2, we can
derive that W(Z) =U(2) =V (2) = 0in D, ie. W1(2) =W2(2); U1(2) = U2(2); V1(2) = V2(2) n D.

3. Estimates of Solutions for Modified Problem of Elliptic System of First
Order Equations

In this section, we mainly discuss the modified mixed boundary value problem N for nonlinear elliptic system of second order equations in the complex form as
stated in (1.40)

of Chapter1, [7], ie.
8

> Waz = F (2 W, Wz Wgi Wazi Waz)i F = QuWaz + QoWzz
<
> AW, + Ao, + Agw + Ag; Qj = Qj(z; Wi Wy Wy
> (3:1)
Wzz; Wzz); ] = 1; 2, Aj= A((Z, W; Wz, W) | = 1; ¢CC ; 4;
with the modﬁed boundary conditions

 Re[1@w; + Y(@W(@)] = ¢1(2) + h1(2)

Re[,2(2)wW(z)] = ¢2(2) + h2(2); 2 2 §; (3:2)
Im[, 1{(Z)Wz + Ya(2)W(2)]jz=4j = b1j; | 2 J1;
5
:3)

IM[,2(2)W(2)]jz=aj = b2j; j 2 J2;
where ,j(2); ¥4(2); ¢j(2); hi(2); aj; bjI(1 2 Jj; j = 1; 2) are as stated in (1.8)(111) of Sec-tion 1. Suppose that (3.1) satisfies Condition C and the following
condition:

F (21 Wl T Wiz Wiz U; V) i F (2 Wo; Wozs Wozy U V) = QU +QaV, :A;(Wl IWZ)Z (3 4)

+A2(wy iwo)z +Ag(wr iw2); jQj-aj J =15 2 Lpo (Aj 3 D)kjin - ko;j=1;2;3
for any continuously differentiable functions w1(2); w2(2) and any measurable functions U(2); V (2) on D, where po(2 < po - p); k](j =0;1; 2) are

nonnegative constants.

Fi‘rsﬂy, we prove the existence of solutions of Problem N for (31) by using the method of parameter extension.

Theorem 3.1 Let the nonlinear complex equation (3:1) satisfy Condition C, (3:4) and

the constants qp; ki1; k2; k 4; ks; kg in Section 1 and (3:4) are small enough. Then
Problem N for (3:1) is solvable.

Proof Let us introduce a complex equation with the parameter t 2 [0; 1]

Wzz1 = tF (Z; W; Wz, Wz, Wz, Wzz) + A(2); R(2)S(2)A(2) 2 Lo (D): (3:5)
Whent = 0, it can be found a unique solution W(Z) of Problem N for the simple complex equation Wzz1 = A(Z) by the Newton imbedding method. n fact, we

may consider the
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following boundary vglue problem N with the parameter t 2 [0; 1]:

Wyzt =tA(2);0 - t - 1;

s
<

_ Relz @W@)I= ¢a(z) + ha(@) 2 2 (3:6)

(2w, + YA)W(2)liz=ai

WD o= bai | %

| 2

Obviously, (3.6) with t = 0 possesses a solution of Problem N. From this, we can
derive the solvability of Problem N for (3.6) with t = 1. Suppose that Problem N for the

complex equation (3.5) with t = tg(0 - tg - 1) is solvable. To prove that there exists a
positive constant +, so that Problem N of (3.5) foreveryt 2 E =fjt jtgj - ; 0 - t - 1g
and any RSA(z) 2 Lo (D) is solvable. We rewrite (3.5) in the form

Wzzt i toF (2, W; Wz; Woy Wzz; Woz) = (Ui to)F (2, W; Wz Woy W2z, Woz) + A(Z):  (3:7)
M= N . : .

Choosing an arbitrary function wo(z) 2 B = C- (D)\Lpo (D), there is no harm in assuming

wo(z) = 0, and substituting wo(z) into the position of w(z) in the right hand side of

(3.7), we denote by w1 (z) the solution of (3.7). Using the successive iteration, we find

a sequence of solutions: wp(z) 2 B; n =1; 2; ¢¢¢ ; which satisfy
Wneizzt | 1oF (Z; Wn+1; Wneiz; Wiz, Wiz, Waeizz) (3:8)

= (tj to)F (z; Wn; Wnz; Wnz; Wnzz; Wazz) + A(2):
From (3.8) it follows

(Wn+1 i Wn)zz2 i tog(Wn+1; Wn) = (t i t0)g(Wn; Wn;1);
g(Wn+1; Wn) = F (Z; Wn+1] Wn+1z] Wa+iz, Wn+1zz, Wha+1z2) (3:9)

i F(Z; Wn; Wnz; Waz; Wnzz; Wazz):
By Condition C, it is easy to see that

g(Vl’n+1; Wp) = Ql(Wn+1~ i Wn)zz + QZ(WHf—l i Wn)zz
+A1(Wn+1 i Wn)z + A2 (Was | Wa)z + A3 (Wn+1 | Wn);
jQil g =1; 2 Lpo [Aj; D] - kjja - ko ;j=1;2;3;
where qij(j = 1; 2); ki(j = 0; 1, 2) are nonnegative constants satisfying the condition
g1 + g2 < 1. Hence
Lpo [RSg(Wn+1; Wn); D] - (g1 + d2)Lpo [RS((Wn+1 i Wn)zz) + j(Wa+1 | Wn)zz));

1.0
D] + koC [R"(Wn+1 i Wn); D] - (d1 + g2 + ko)S(wWn | Wn;1);
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where

1 . .

S(Wn+1 i Wn) = C[R(Wn+1 i Wn); Di‘* Lpo [RS((Wn+1 i Wn)zz1

+)(Wn+1 | Wn)zz) + J(_Wnd-—l i Wn)zz]); DI; _
1.0 0

C—[R"(Wn+1 i Wn); D] = C[R (Wn+1 i Wn); D ]+

+C[R(Wn+1 i Wn)z; D] + C-[R(Wn+1 i Wa)z; DI

Moreover, Wn+1 | Wn satisfies the homogenous boundary conditions

Re[,1(2)(Wn+1 i Wn)z + ¥a(2)(Wn+1 i Wn)] = h1(2); (3:10)

Re[,2(2)(Wn+1 i Wn)] = h2(2); 2 2 j;

IM[,1(2)(Wn+1 i Wn)z + ¥4(Z)(Wn+1 | Wn)liz=aj = 0;] 2 J1; (3:11)

IM[,2(2)(Wn+1 i Wn)ljz=aj = 0; ] 2 J2:
On the basis of Theorem 5.6, Chaptev 1, [7], we have the estimate

S(Wn+1 i Wn) - Mjt i toj(q1 + a2 + ko)S(Wn i Wn;1); (3:12)
where M = M14(qo; po; Ko; ®; K; D)(K = (K1; K2)) is a constant as stated in Theorem 5:6 of Chapter 1. Choosing that a positive number * is
sufficiently small so that = =

*M(Q1 + g2 + k) < 1; it can be obtained that when t 2 E,
. N
S(Wn+1 i Wn) - "S(Wn i Wn;1) = S(wa):
Thus

N+

Nij

SWn i win) - (MM 4 gee + M)S(wy) - 1§ 7 S(wa)
forn, M > N; where N is a positive integer. This shows S(wp iW,E) 10asn; m! 1: —
Hence there exists a function wg(z)2B=C—(D) \Wp 0 (D), such that S(W j Wg) ! O as n'! 1: 1t can be seen that Wi(Z) is a solution of Problem N
for (35) with t 2 E.

Similarly to the proof of Theorem 1.2, Chapter 1, [7], from Problem N for 31) witht = 1g = 0 is solvable, we may derived
Problem N for (31) with t = 1 is solvable. n particular, Problem Nfov (31) with A(Z) = (l i t)F (Z; 0;0;0; 0); t
= 1;ie.(31) is solvable. This completes the proof.

Now we estimate the diﬁéw‘ence of the solution of Problem N for (31) and its ap-proximations, and give the fo[[owing result.

Theorem 3.2 Suppose that the complex equation (3: 1) satisfies the same condlitions in Theorem 3:1. Then the difference W
Wnt of the solution W(Z) of Problem N | for (3: 1) and its approximative solution Wnt = Wn(Z; t) possesses the following accuracy:
t 1, .0 = . .. .
SWiwn)=C (R (Wjwn); D]+ Lpo [RS(GW i Wn)zz1 + J(W i Wn )zzj+
(3:13)

t . /ot . N n
+w w) o] ek -LiCtit) @ p+er )@
i iz - 1i°jtito] i jooio i0
where® = M(Qq + 02 + Ko); k=M(k3z + ks +Kg); 0 -to; t- 1; q1; g2; k](j =0;3;5;6); M are nonnegative constants as stated in Condition C, (2:25)
and(328),
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Proof From (3.1) and (3.7) with A(z) = (1 j t)F (z; 0; O; O; 0; 0), we have
t

t t t
(W i Wn +1)zz2 = f(Z; W; Wz, Wz, W2z, Waz) i 10f(Z; Wn +1; Wn +12; Wn +12;
t t t t t t t
Wn +172; Wn +122) i (1 i 10)f(Z; Wn'; Wnz s Wnz ; Wnzz ; Wnzz ) = (3:14)
t t
= tog(W; Wn +1) + (ti to)g(w; wn) + (1 i Of(Z; W; Wz; We; W2z, Wzz);
where

f(z; W; Wz; Wz, Wzz; Wez) = F (2, Wy Wz, Wo, Wiz Wo) § F (25 0 0; 0; 0)

t t t t t t
g(w; wn ) = f(z; W; Wz, We; Wzz, Waz) i F(Z, Wn's Wnz s Wnz 3 Wnzz 3 Whnzz ):

By (3.4) it is easy to see that
t - t - t - t
g(w; Wn) = Qu(W i Wn)zz + Q1 (W i Wn)zz + A(W i Wn);

+A2(V~V i_Wn)z +Asz (W Wn) Qi-agrj=12,01+02 <1,
Lpo [Aj; D] - kin - Koy J=1;2;3;p> 2
and then
t o= .. t _
Lpo [(tito)RSg(w; wp ); D] jtitoj[d1Lpo (RS(Wiwn)zz; D)
t — 1,0 t .. t —
+02Lpo (RS(Wiw n)zz); D)+koC™ (R (wiwn); D)]jtitoj(d1 +02 +ko)S(wiwn ; D); Lpo

[(1 i YRSF(Z; W; Wz; Wy; Waz; Waz); D] - (1§ D[g1lpo (RSWyz; D)+

1, 0 —
+02Lpo (RSWZZa D) + koC (R 'w; D)] - (1 i t)(d1 + g2 + ko)S(w);

where
S(W):C(RW;D_)+L RS( w + w +w )D)

_Po J zzlj J zzj J zzj
C- (R w; D)—C (Rw; D)+ C(Rwg D) + C-(Rwy; D):

In addition, the function w(z) i Wnt +1(2) satisfies the homogeneous boundary conditions
t t
Re[,1(2)(W i Wn +1)z + Ya(2)(W i wn +1)] = h1(2); (3:15)
t
Re[,2(2)(w i wn +1)] = h2(2); 2 2 j;

t
Im[,1(Z)(W i Wn +1)z + %(Z)(W i wn +1)]jz=aj= 0; ] 2 J1; (3:16)
[
IM[,2(2)(W | Wn +1)]jz=a; = 0; j 2 J2:
On the basis of Theorem 5.6 of Chapter 1, it can be obtained

t : . t
S(W i Wn +1) - M(q1 + 02 + ko)[it i to]S(W i Wnl) + (1 tl)S(W)]
+1. N+
°nt1t  t n1S(w Wt) +°(1 1 oM It tnjn S(w);
ji o i i 1i°titol
where ° = M(q1 + g2 + ko) and wg = w(z; tp) is the solution of Problem N for (3.7) with
t=tpand A(z) = (1 j to)F (z; 0; O; 0; 0; 0): Due to w(z) is a solution of Problem N for

(3.1), and w j wq is a solution of the following boundary value problem

(3:17)

t t
(W i Wo)zz i tog(w; wo) = (1 i Of(z; w; Wz; Wy, Wzz; Waz); (3:18)
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Re[ 1(2)W i o)z + F4(2)W i wo)] = ha(2)
Re[,2(2)(w i wo)] = h2(2); 2 2 §;
IM[12)(W | Wo)z + %@)W | Wo)iz=a) = 0; ] 2 J1;

Im[,2(2)(W i Wo )liz=aj = 0; ] 2 J2;
we can conclude

S(w) - Mg(ks + ks + kg) = k;
t _
S(w j wo) - M(1 j to)Lpo [RSH(z; W; Wz; Wz Wzz; Wez); D]

-M(g1 + g2 + ko)(1 i to)S(w) - °(1 j to)k:
Thus from (3.17), it follows that

sw ow ) et te®(l Ok+ (LiokLi it
i o 0o i 0 1 °jti toi
:ok[on+1 t ot (] t)+_(1_i_t)(l_ii+ljl_i_tgjﬂ)_ I
i i0 1 °jt i toj

Hence (3.13) is true.
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