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Introduction

Recent years, fractional calculus has attracted attention of many authors, see, e.g. [1]-[7]. Fractional differential equations have
been proved to be important tools in modeling of many scientific problems. Zhang et al.[1] investigated the stability of »
-dimensional nonlinear fractional order systems with order of 1<a<2. Wang et al. [2] proposed the generalized Caputo
fractional derivative, and sufficient conditions of stability were proved by comparison principles. Qin et al. [3] considered the
approximate controllability and optimal controls of fractional systems of order 1<« < 2in Banach space. Gao et al. [4] presented
observer-based fuzzy control for nonlinear fractional-order dynamical systems with orderl<a < 2. K. Balachandran et al. [5]
provide a computational procedure for state and control for the following nonlinear fractional systems of order 1l<a <2

{CD“x(t) + A°x(t) = Bu(t) + f(t,x(t),j;h(t,s,x(s))ds) teJ (11)

x(0) = x5, x'(0)=y,

K. Balachandran et al. [6] derived sufficient conditions for controllability of nonlinear fractional order

1< a < 2in finite dimensional spaces

{CD“x(t) + A%x(t) = Bu(t) + f(t,x(t),u(t)), teJ
x(0) =xp, x'(0)=y,

So the research of fractional calculus theory becomes a rapidly growing filed in mathematical theory and engineering applications.

Since scientific problems are better characterized using a no-integer order model, and inspired by the above works, consider

nonlinear fractional composite dynamical systems of order 1<« < 2 of the following type

© Dx(t) + A2X'(t) = Bu(t) + f(t, X(0).° DPx(1), [ (. 5. X( s))dsj, ted

(1.2)

X(0) = x,, X'(0)=x,
Where state xeR”, control ueR”, 1<a<2, 0<f<1l, 4 is a nxn matrix, and B is a nxm matrix,

f:JxR"xR"xR" — R"is continuous function. Solution represent of nonlinear fractional composite dynamical systems will

be defined. And sufficient conditions of controllability of nonlinear fractional composite systems (1.3) in finite-dimensional
spaces will be established.
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1. Preliminaries

Let R" =[0,+),R, =(0,4+%), R" bethe n-dimensional Euclidean space.

Definition 2.1 Fractional order integral is defined as following

a 1 t o1
BNO=1os [[@=5) f(s)ds (2.1)
where n—1<a<n, neN. Caputo fractional derivative

“DENB = D" )) (22)

For brevity, Caputo fractional derivative “Dj, istakenas “D”.

Definition 2.2 The Mittag-Leffler function is defined by

o k

z
E (2)=Y—"— zeC, 0,8>0 2.3
a,ﬁ( ) ;;F(ak-l—ﬁ) /8 ( )
E (2)=E (z2) =) ———, zeC, «,>0 2.4
w@=E@=Yrr 24)
For an arbitrary nxnmatrix A, the Mittag-Leffler matrix function is
0 Ak
E, (A=) ——~ a, p>0 (2.5)
’ ér(ak + )

The Laplace transform of Caputo fractional derivative
n-1

L(ED f@0))(s)=5"F(s) =2 (0" )" " (2.6)
k=0

If O<a<1, L(EDf(t))(s)=s"F(s)— f(0")s*". And for 1<a<2, L(°D"f())(s)=s"F(s)— f(0")s“" - f'(0")s"*
Lemma 2.1 Consider the following linear fractional composite dynamical systems

°D*x(t) + A’X'(t) = Bu(t), teJ
{X(O) =X, X'(0) =X,
with xeR", 4 isa nxn matrix and Bisa nxm matrix, u<L’(J,R™), It solution is given by the following integral
equation

2.7)

X(t) = B, (At )X, +tE, (F AR APXGHE, L, (AT X

-l

t a-1 (28)
¥ jo (t-s) E,,,(-A*(t—s)“")Bu(s)ds

Proof: In order to establish the solution represent of system (2.7), taking Laplace transform on both sides, we obtain
$“X(8)—5""xy —57x) + A% X (s) — A*x,= BU(s) (2.9)

Then
s“X(8)+ A%sX(s) = BU(s) + 5" "xy + 5 7x) + A°x,(2.10)
That is
(s“ + A*5) X (s) = s“"xy + Axy+5"*x) + BU(s) (2.11)
So
a-1 AZ a-2 B
X(s)= > 7 Xt 7 Yot d 2 xf; U(Sz) (2.12)
(s“+ A%) (s* + A°s) (s“+ A%s) (s“+ A%s)
It is easy to get that
a—2 71A2 a-3 71B
X(s) = S s s ,  STBU(s) (2.13)

X, + Xqt X,
(s“P+a?) " (A (s AD) T (57T + 4D
Apply inverse Laplace transform on both sides of (2.13), one can get that the solution of (2.7) as

X(t) = B, (A )X, +tE, L (AT APXGHE, L, (AT X

a-la

t a-l ) 1 (214)
+ jo (t-s) E,,,(~A*(t—s)**)Bu(s)ds
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Definition 2.3 The system (1.3) or (2.7) is said to be controllable on J if, for each x,, X(') , x, €R", there exists a control
function u e I7(J,R™) such that the solution of (1.3) or (2.7) with x(0)=x, satisfies x(7)=x,.

For brevity, define
n, = max|| (T ) *B"E,.,,, (CA°) (T )" W |

n, =max|| (T =5)"*E, ., (-A(T -5)" )|

M, =max [ E, , (CAR) +UE, L, (CATAT -1,

a-1,a

m, =max||tE, ;, (A ) 1% |

N =max || (t-5)""E, ., (-A*(t-5)"")|

p=IBIl. =l
o a—1
d = max | (1-5)E, 1,1 (- A -9)) )

Lemma 2.2 The linear system (2.7) is controllable on .J iff the controllability Gramian matrix
W=[ (T-5)"2E,,,(-A*T—5)"")BB'E, , ,(-4*) (T-5)*")ds  (2.15)

a-l,a a—1,a
is nonsingular, where * denotes the transpose of matrix.
Proof: Defined the control function u(z) as following

u®) = (T -t)**B'E, ., ((-A%)"(T —)“)xWy, (2.16)

where Y, =% —E, ., (A T )%, —T“E,, , (-AT“)A*X,—TE, , ,(—A*T“*)x;. Then the solution of (2.7) at
t =T, satisfies

X(T)=E, 1y (AT )X +TE, 1, (AT APXATE, 1, (AT “1)x;

w1
[T =9 E, 1, (AT —5)"*)Bu(s)ds
=E, (AT X +TE, (AT A XATE,, , (AT )X
H T =9)" 2, (-A(T —5)")BBE, ,, (-A%) (T —)" W y,ds
=B, (CAT X +TME, , (“APT“Y) A2 +TE, ,(-A*T“)x;
(T =8, 4, (AT —9) )BT~ BE, 1, (AT (T =)W y,ds
=Y, +E, o (AT +TE, L, (AT ) APXG+TE,, , , (AT “H)xg =%,

Hence the system (2.7) is controllable on J .

2. Main Results
Let X={x:x'eC(J,R") and “D’xeC(J,R")} with norm | x|,=max{|| x|,|° D’x|]} . Assume the following

hypotheses:

(H1) For teJ,xeR", there exists a positive constant A7 >0 such that

Hf(t,x(t),c D/x(®), [ h(t.s, x(s))ds) <M 3.1)

(H2) For teJ,x,y,u,v,w,zeR", there exist functions 7, € C(J,R™) (i=12) such that
| St w) - £y, v.2) [Sn@ 1 x =y [ 47,0 | w=2(3.2)
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(H3) For t,seJ,x,yeR", there exists a function e C(J,R") such that
| 1t,5,%) - e, p) < m@) |1 x =y | (33)

Theorem 3.1 Suppose that linear system (2.7) is controllable, and nonlinear term f satisfies (H1) ,(H2) and (H3). Then the
nonlinear fractional composite dynamical system (1.3) is controllable on J .
Proof: Apply iterative technique to prove the controllability result. Define

X, (1) = x,

X (t) = Ea—l,l (_Aztail)xo + tail E (_Aztail) A2X0+tEa—1,2 (_Aztail)x(,)

+£(t—s)“‘l E, .. (-A? (t—s)"“l)[Bun (s)+ f(s,xn (s),°D”x, (s),j: h(s,r,xn(r))drﬂds oo

where
u, (=T =0"BE, | (4?) T-0"h

(3.5)

< W—l(yl _ JOT(T —5)® _1Ea —]_,a(_AZ(T —)? _1)f(s’xn (S),CDﬁxn (s),jgh(s,r,xn (r) rjdsj

with Yi=%X — Eafl,l (_AZT ail)xo ~Te* Eafl,a (_AZT ail)AZXo_TEafl,z (_AZT ail)xc’) :
Note that the sequence of the function {x, ()} is known, we shall show that {x,(¢)} is a Cauchy sequence in X. Noting that

X, =X+ 2 (x,,,—x;), we only need to prove that the series » (x
j=0 J=0
easy to see that

|, O] (T =) B'E, , ,(—4%) (T =ty W ||| 3| +| (T =ty B'E, , (-4 (T -0y W ™|
< [T =) E, (A>T =) )| f(s,xn ().°D’x,(s). [ hls.r.x, (r))dr)n ds

<mgq+nmn,MT

. —X;) converges uniformly with respectto ze.J/ . Itis

and

U, () =, . (O]
QT - BE, ., (CA) T -t) W

x [ 1T =), 1, (-AX(T =9)" Y|

ol f(s, % (8).D”x,(5), [ h(s.r, xn(r))dr)— f(s, %, 2(9).°D7%,,(8). [ his.r, xn_l(r))drj | ds
T O 150 =%, O I+, O [ TG 1,3, (1) =h(E, . %, () 1]
From (H2), there exist constants M,,M,,M; >0 such that

[lu, (8) = U, () 1< nn, TIM [ X, (8) = Xy (0 | +MMGT ] X () = X, (01
Then

| %0a © -, O |
< [N E=9)"E, 1 A -9 [ BII u,(5)- U, ,(9)

(50, LD 9, [l () ) .5,,91D 72,40 [0
<Np [ l1u,(s)-u, ,(5) ds

N[5, D%, (9, s, %, (1) )= ((51%,4(5). D, (9, [ .o, (1) s
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< N[ [1uy ()~ Uy 1() s+ N [ 72() [ %, (8) — X, +(5) s
+N[ 7, ) 1| h(s 1%, (r)dr = [ h(s,r, x, 4 ()dr |igs

t t t
< NP 11U, (5) =y 4(5) lds + NM, [ %, (5) =X, 5 (5) ds + NM,MT [ [ %, (5) =%, 4 (s) s
Further, we have
1%, (1) =%, O |l

I,y AT HTE Ly, (CATETT) AT - LI+ ITE Ly, (CAE ) ]G I

a-la

LIE=9) " E, L, (A=) ) [ Blluy(s)

o f(s,xl(s),CD"”xl(s), ['hGs.r, xl(r))dr)ds]
<m, +m, +N[pn,g+nn,MT + MJT <LT,L>0
[l u, (t) —u, |l
(T =)' BE, 4 ((CA") (T - W |

%[ 1T =), 1, (AT =)™ )|

<l f(s,xl(s),CDﬁxl(s),I;h(S, r,xl(r))dr)— f(s,xo(s),CD/’xo(s),j:h(s, r,xo(r))dr)n ds

<2nn,MT <RT,R>0

After simple calculation, it is easy to obtain
n+l n+l Tn+1
— + NM,M,TR
(n+1)!

” xn+1(t)_xn(t) ”S NpL (l’l+1)'

(n+1)! '

and
”C DﬁXm—l (t)_CDﬁX(t) ”

SHral—ﬂ) [t=97([ = E, sua- A s-0)) [BU, () -u(e)

+( £ (7., D%, () [ hle, v x, ) | (7, x0) D" x(0), [ i, x(r))erHdzds
= [ (t-9)""E, 1, A*(t=9)) " x[B(u, (5)-u(s))
+(f(s, % (5). D%, (5), [ hs.r, xn(r))dr)- f(s, X(9).°D"x(s), [ hs.r, x(r))erds]H

t
< pdjoll U, (8) —u(s) [Ids + dM,T || x, (t) = x(t) [ +dM,M T [ x, (t) = x (1) |
Then it implies that x, () = x(¢), “D’x,,,(t)>D"x(t),n — o, thatis, {x,(¢)} isa Cauchy sequence in X, and {x,(¢)}

converges uniformly to a continuous function x(¢#) on J . Therefore, we have

X(t) =E, 1, (At )X, +tE, (AT APXGHE, L, (FATETT)XG

+ _[; (t—s)"E, ., (-A*(t- s)“‘l)[Bu(s) + f (s, x(s),° Dﬂx(s),Jj h(s,r, x(r))drﬂds

where
u(t)
=(T- t)“"lB*Eaflﬂ (4% (T - t)“"l)W"l(y1 - -[OT (T - s)“"lf(s, x,(5),“D’x, (s),j;h(s, r,X, (r))dr)is)
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By taking limitas » — oo on both sides. Then x(7)=x, which means that the control function u(z) steers the system from the

initial state x, to x, intimes 7 provided that the system (1.3) is controllable on .J .

3. Example

Consider the following fractional composite dynamical system of order 1<a <2

1

©D2x(t) + A*X'(t) = Bu(t) + f (t,x(t),° D2x(t)), teJ =[0]]

1] 0 (4.1)
ol ol

Wherex(z):(xlc)] - x,(t):[xl:(t)) ac(l 0) 5[0 1) L
X%, (1) X (1) 01 1 0

[P x @11 [ x (X DY@+ D)D)

[exp(=2) (| %, (1) [ +] I; X, (8)ds )V (L+[° D%, (t) ])

After simple matrix calculation one can get

W= Jj(l_ s) E1/2.3/2 (_AZ (- 3)1/2) BB*E1/2,3/2((_A2)*(1— 3)1/2 )js - |:

0.1294 0
0 0.1294

is positive definite for any 7> 0. Further, the nonlinear function f is continuous and satisfies the hypotheses of Theorem 3.1.

Observe that the control defined by

u(t) = A—t)"*B’E, 4, (A*) @-t)"*)W

. (yl -9 E s (A A-9)Y) (s, X($).°D"*x(s), [ h(s.r.x, (r))drjds

jsteers the system (4.1)

from x, to Xx,.Hence the system (4.1) is controllable on [0,1].
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