International Journal of Mathematics and Computer Research ISSN: 2320-7167

Volume 07 Issue 05 May- 2019, Page no. - 1970-1972 Index Copernicus ICV: 57.55 DOI: 10.31142/ijmcr/v7i5.03

Co-equitable Resolving Sets of a Graph

J. Sivakumar¹ , A. Wilson Baskar² , V. Swaminathan³

¹Deputy Superintendent of Police, Tamilnadu, India.

^{2,3}Ramanujan Research Center in Mathematics Saraswathi Narayanan College, Madurai, Tamilnadu, India.

Introduction 1.1 Let $G = (V, E)$ be a simple graph. Let $S = \{u_1, u_2, ..., u_k\}$ be an ordered subset of $V(G)$. To each v in $V(G)$, associate the k-vector $r(v \setminus S) = (d(v, u_1), d(v, u_2), ..., d(v, u_k))$. If the associated k-vectors are distinct for distinct v, *then S is called a resolving set. If* $V - S$ *is degree equitable in G (that is,* $|deg(x) - deg(y)| \le 1$ *for any* $x, y \in V - S$ *, where the degree is with respect to G), then S is called a complementary equitable resolving set (or co-equitable resolving set). The minimum cardinality of a co-equitable resolving set of a graph G is called the co-equitable metric dimension of G and is denoted by coeqdim(G). A study of this parameter and the concept is initiated in this paper.*

Definition 1.2 Let $G = (V, E)$ be a connected graph. A Subset S of $V(G)$ is called a co-equitable resolving set of G if S is *resolving and V – S is degree equitable(That is, for any* $u, v \in V - S$ *,* $|deg(u) - deg(v)| \le 1$ *). The minimum cardinality of a* co -equitable resolving set of G is called the co-equitable dimension of G and is denoted by co eqdim(G).

Remark 1.3 *(i)* $V(G)$ *is a co-equitable resolving set of G.* (ii) The property of co-equitable resolvability is super hereditary.

Definition 1.4 *A double star is a graph obtained by taking two stars and joining the centers with an edge. If the stars are* $K_{1,r}$ and $K_{1,s}$, then the double star obtained by joining the centers of $K_{1,r}$ and $K_{1,s}$ is denoted by $D_{r,s}$.

<i>coeqdim(G) for some well known graphs

```
1. coeq dim(K_n) = n - 12. coeq dim(K_{1,n}) = n3. coeqdim(P_n) = 14. coeqdim(C_n) = 25. \textit{coeqdim}(K_{m,n}) = \begin{cases} m \\ 0 \end{cases}\boldsymbol{m}
```
"Co-equitable Resolving Sets of a Graph"

- if $m = 2, a_1 = 1, a_2 = 1$ 6. $coeqdim(K_m(a_1, a_2, ..., a_m)) = \begin{cases} 1 \\ 2 \end{cases}$ otherwise α 7. $\textit{coeqdim}(D_{r,s}) = \begin{cases} r \\ 1 \end{cases}$
	- $\mathbf{1}$
- 8. $coeq dim(K_{n_1,n_2,...,n_r})=n_1+n_2+...+n_r$ if K of $n_1, n_2,...,n_r$ are equitable
- 9. $coegdim(P) = dim(P) = 4$ 10. $coeq dim(W_n)=\{$ 3 4 3

Remark 1.5 $dim(G) \leq coeqdim(G)$

Observation 1.6 $\text{coegdim}(G) = 1$ if and only if $G = P_n$.

Proof. Suppose $coegdim(G) = 1$. Then $dim(G) = 1$. Therefore, $G = P_n$. The converse is obvious.

Theorem 1.7 Let G be a connected graph of order $n \ge 4$, $dim(G) = n - 1$ or $n - 2$. Then coegdim(G) = $n - 1$ if and only if $G = K_n$ or $K_{m,n}$ or $K_s + (K_1 \cup K_t)$ or $K_s + K_t$.

Proof. Let G be a connected graph of order $n \ge 4$. Let $coegdim(G) = n - 1$. Let S be a minimum co-equitable resolving set of G. Then $|S| = n - 1$. Suppose $dim(G) = n - 1$. Then $G = K_n$. Otherwise $dim(G) \leq n - 2$. Suppose $dim(G) = n - 2$. Then $G = K_{m,n}$ or $K_s + \overline{K_t}$ ($s \ge 1, t \ge 2$) or $K_s + (K_1 \cup K_t)$, $s, t \ge 1$. When $G = Km, n$, coeqdim($G = m + n - 1$ if and only if $|m-n| \geq 2$. When $G = K_s + K_t$. Then $coeqdim(G) = s + t - 1$ if and only if $t \geq 3$. When $G = K_s + (K_1 \cup K_t)$, $coeqdim(G) = dim(G) = s + t - 1$. When $dim(G) = n - 2$, $coeqdim(G) = n - 1$ if and only if $G = K_{m,n}$ with $|m - n| \ge 2$ or $G = K_s + \overline{K_t}$ with $t \geq 3, s \geq 1$.

Theorem 1.8 Let H be a connected graph. Thencoeqdim(H) \leq coeqdim(H \mathbb{R} K_2) \leq 2coeqdim(H).

Proof. Let $G = H \, \boxtimes K_2$. Let $V(H) = \{u_1, u_2, ..., u_n\}$. Let $V(K_2) = \{V_1, V_2\}$. Let $V(G) = \{(u_1, v_1), (u_2, v_1), \dots, (u_n, v_1), (u_1, v_2), (u_2, v_2), \dots, (u_n, v_n)\}$. Let $S = \{w_1, w_2, ..., w_k\}$ be a minimum co-equitable resolving set of H. Let $S_1 = \{(w_1, v_1), (w_2, v_1), ..., (w_k, v_1), (w_1, v_2), (w_2, v_2), ..., (w_k, v_2)\}\)$. Let $x, y \in V(G) - S_1$. Case (i): Let $x = (x_i, v_1)$, $y = (x_i, v_1)$. Clearly, $x_i, x_j \notin S$. Therefore, x_i, x_j are resolved by some $w_r \in S$. Therefore, $d_H(x_i, w_r) \neq d_H(x_i, w_r)$. Therefore, $d_G((x_i, v_1), (w_r, v_1)) \neq d_G((x_i, v_1), (w_r, v_1))$. Therefore, $(x_i, v_1), (x_i, v_1)$ are resolved in by $(w_r, v_1) \in S_1$. $deg_G(x_i, v_1) = deg_H(x_i) + 1$, $deg_G(x_i, v_1) = deg_H(x_i) + 1$. Therefore, $deg_G(x_i, v_1) - deg_G(x_i)$ $|deg_H(x_i) - deg(x_i)| \le 1$ since x_i, x_j are equitable in H. Therefore, S_1 resolves x, y and x, y are equitable in G. Case (ii): Let $x = (x_i, v_1)$, $y = (x_i, v_2)$. Consider $d_G((x_i, v_1), (w_1, v_2)) = d_G((x_i, v_1), (w_1, v_1)) + 1 = d_H(x_i, w_1) + 1$. $d_G((x_i, v_2), (w_1, v_2)) = d_H(x_i, w_1)$. Therefore, $d_G((x_i, v_1), (w_1, v_2)) \neq d_G((x_i, v_2), (w_1, v_2))$. Therefore, (x_i, v_1) and (x_i, v_2) . are resolved in G by (w_1, v_2) in S_1 . Clearly $x_i, x_i \notin S$.

Therefore, $|deg_H(x_i) - deg_H(x_i)| \le 1$. $|deg_G((x_i, v_1) - deg_G(x_i, v_2))| = |deg_G((x_i, v_1) - deg_G(x_i, v_1))|$ $deg_H(x_i) \leq 1$. Therefore, (x_i, v_1) and (x_i, v_2) are degree equitable in G.

Case (iii): Let $x = (x_i, v_2)$, $y = (x_i, v_1)$. Arguing as in case (ii), we get that x and y are resolved in G by S_1 .

Case (iv): Let $x = (x_i, v_2)$, $y = (x_i, v_2)$. Clearly $x_i, x_i \notin S$. There exists $w_r \in S$ such that $d_H(x_i, w_r) \neq d_H(x_i, w_r)$. $d_G((x_i, v_2), (w_r, v_2)) \neq d_G((x_i, v_2), (w_r, v_2))$. Therefore, (x_i, v_2) and (x_i, v_2) are resolved in G by S_1 . Since $x_i, x_j \notin S$, $|deg_H(x_i) - deg_H(x_i)| \leq 1$. That is, $|deg_G(x_i, v_2) - deg_G(x_i, v_2)| = |deg_H(x_i) - deg_H(x_i)| \leq 1$. Therefore, (x_i, v_2) and (x_i, v_2) are degree equitable in G. Therefore, S_1 is a co-equitable resolving set of G. $2\text{coeqdim}(H)$.

Let $G = H \boxtimes K_2$. Let H_1 and H_2 be the copies of H in G. Let V_1 be the vertex set of H_1 and V_2 be the vertex set of H_2 . Then $V(G) = V_1 \cup V_2$. Let W be a minimum co-equitable resolving set of G. Let $W_1 = W \cap V_1$, $W_2 = W \cap V_2$. Let $W_1 \cup W_2'$ where W_2' consists of those vertices of V_1 corresponding to W_2 . $|U_1| = |W_1 \cup W_2'| \le |W_1| + |W'|$ coeqdim(G). Let $x, y \in V(H_1)$. Suppose $x, y \notin W_1 \cup W_2'$. Let $x' = (u_i, v_1), y' = (u_i, v_1)$. There exists $w \in W$ such that $d_G(x', w) \neq d_G(y', w)$. Let $w = (u_r, v_1)$. Therefore, $d_G(x', w) \neq d_G(y', w)$.

That is,
$$
d_G((u_i, v_1), (u_r, v_1)) \neq d_G((u_j, v_1), (u_r, v_1))
$$
. That is, $d_G(u_i, u_r) \neq d_G(u_j, u_r)$ and $u_r \in W_1$. Therefore, x, y
1971 | **J. Sivakumar¹, JIMCR Volume 07 Issue 05 May 2019**

"Co-equitable Resolving Sets of a Graph"

are resolved by W_1 . Suppose $w = (u_r, v_2)$. Then $d_G(x', w) \neq d_G(y', w)$. $d_G((u_i, v_1), (u_r, v_2)) \neq d_G((u_i, v_1), (u_r, v_2))$. That is, $d_H(u_i, u_r) + 1 \neq d_H(u_i, u_r) + 1$. $d_H(u_i, u_r) \neq d_H(u_i, u_r)$. Therefore x and y are resolved in H_1 by U_1 . Let $x' = (u_i, v_2), y'$ (u_i, v_2) . Then proceeding as in case (i), x and y are resolved in H_1 by U_1 . $\deg_G(x') - \deg_G(y')$ $deg_H(u_i) \leq 1$. Therefore, x and y are degree equitable in H_1 . Therefore, U_1 is a co-equitable resolving set of H_1 . Therefore, $coeqdim(H_1) \leq |U_1| \leq |W| = coeqdim(H \boxtimes K_2).$

Remark 1.9

(i) Let H = K_3 , coeqdim(H) = dim(H) = 2, coeqdim(H \mathbb{Z} K₂) = dim(H \mathbb{Z} K₂) = 2. (ii) Let $H = D_{3,5}$. coeqdim(H) = 8, coeqdim(H \mathbb{Z} K₂) = 16 = 2coeqdim(H).

Remark 1.10 Let $G = K_{1,n}$. $coeqdim(G) = n$, $coeqdim(K_2) = 1$. Therefore, $\frac{coequim(G)}{coeqdim(K_2)} = n$ and K_2 is an induced subgraph of $K_{1,n}$. Thus, the ratio $\frac{\text{coequation}}{\text{coequation}(H)}$ can be made arbitrarily large when H is an induced subgraph of G.

Remark 1.11 Let $n \ge 3$. Let $H = K_{1,2^{n+1}}$. Construct the graph G as in [1]. G is obtained by attaching two vertices x and x and the $2n+1$ edges xv_i and $x'v'_i$, $1 \le i, i' \le 2^n$ where v_i, v'_i are the product vertices of H. Add two sets $W = \{w_1, w_2, ..., w_n\}$ and $W' = \{w_1', w_2', ..., w_n'\}$ of vertices together with edges $w_i x, w_i' x', 1 \le i \le n$. Finally, add edges between W and $\{v_1, v_2, ..., v_{2^n}\}$ and edges between W' and $\{v'_1, v'_2, ..., v'_{2^n}\}$. The resulting graph is denoted by G. coeqdim(H) = 2^{n+1} , coeqdim(G) $\leq 2n + 7$. H is an induced subbgraph of G. Therefore, $\frac{coeqdim(G)}{coeqdim(H)} = \frac{2}{3}$ $\frac{2n+7}{2^{n+1}} \to 0$ as $n \to \infty$. Hence we have the following result.

Theorem 1.12 *For every* $\varepsilon > 0$, *there exists a connected graph G and a connected induced subgraph H such that* $\frac{coequim(v)}{coequim(H)}$ *.*

References

- 1. G. Chartrand, L. Eroh, M. Johnson and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Applied Mathematics, Vol.105, (2000), 99-113.
- 2. K.M. Dharmalingam and V. Swaminathan, Degree Equitable Domination in Graphs, Kragujevac Journal of Mathematics, 35(1) (2011), 191-197.
- 3. F. Harary and R.A. Melter, On the metric dimension of a graph, Ars Combinatoria, 24 (1976), 191-195.
- 4. Hemalatha Subramanian and Subramanian Arasappan, Secure Resolving sets in a graph, Symmetric (Sep, 2018) 1-10.
- 5. D. Laksmanaraj, Equitable domination and irredundance in graphs, Ph.D. Thesis, Madurai Kamaraj University (2011).
- 6. P.J. Slater, Dominating and reference sets in graphs, J.Math.Phys. Sci.,22 (1988), 445-455.
- 7. P.J. Slater, Leaves of trees, Proceedings of sixth South East Conference, Combinatorics Graph Theory and computation, Boca Raton ,14 (1975), 549-559.
- 8. W. Meyer, Equitable Coloring, Amer. Math. Monthly, 80 (1973), 920-922.