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In an integral equation formulation, the electromagnetic fields are expressed in terms of surface 

currents. The numerical calculation of the integral equation, in many cases, needs a vector basis with 

continuity of the normal components across the interfaces among adjacent elements. This paper 

provides and proves the approximation properties of RWG basis function and extended high order 

basis functions. 
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I. INTRODUCTION 

Various numerical techniques have been developed to carry 

out the electromagnetic field simulation [1-4]. The integral 

equation formulation of electromagnetic scattering of 

conductive surfaces is a very popular approach for many 

applications [5]. 

In an integral equation formulation, the electromagnetic 

fields are expressed in terms of surface currents. To represent 

the current vector field over conductor’s surfaces, in many 

cases it is important to have a vector basis with continuity of 

the normal components across the interfaces among adjacent 

elements. The RWG basis function [6] is the most used basis 

function with such a property for scattering calculation. The 

high order basis functions derived in [7] have same property, 

which are higher order while the lowest order, over flat 

triangular patches, reduces to the usual RWG basis function. 

In this paper we will provide and prove the approximation 

properties of RWG basis function and the high order basis 

functions. 

The remainder of the paper is organized as follows. Sec. II 

presents the construction of the triangular basis functions. In 

Sec. III we provide a complete proof of the approximation 

properties of RWG basis function and the high order basis 

functions. Sec. IV contains the conclusion of the paper. 

II. BASIS FUNCTIONS 

A. RWG Basis Function 

Let S be the surface of a scatter and  be a flat triangulation 

of S. Each RWG basis function [6] is associated with an 

interior edge. Fig. 1 shows two such triangles,   
 and   

 , 

corresponding to the nth edge in triangulation   . Points 

in  
  can be designated by the position vector   

  defined 

with respect to the free vertex of  
 . Similar remarks apply 

to the position vector  
 except that it is directed toward the 

free vertex of   
 ,The plus or minus designation of the 

triangles is determined by the choice of a positive current 

reference direction for the nth, for which is assumed to be 

from  
 to  

 . 

 
Figure 1: Triangle pair and geometrical parameters 

associated with interior edge. 

Then the RWG vector basis function associated with the nth 

edge is defined as 

      

 
 
 

 
 

  

   
   

                  
 

  

   
   

                  
 

                            

                   (2.1) 

where    is the length of the edge and   
  is the area of 

triangle   
 . 

The current basis function (2.1) has no component normal to 

the boundary of surface formed by the triangle pair   
 and  

  
 . The component of current normal to the nth edge is 

constant and continuous across the edge. 
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B. High Order Basis Functions 

The RWG basis function is a popular basis in numerical 

calculation of electromagnetic scattering problem due to its 

simplicity. But its approximation order is low. The RWG 

basis was extended in [7] to high order basis functions over 

arbitrary curved triangular patches, as defined below. 

Let   be a curved triangular surface in    and   is 

parameterized by            ,             ,     is a 

standard reference triangle in         plane (see Fig. 2) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Standard reference triangle     

Tangential vectors:     ,      , are defined as 

                                      
  

   
                                            

Metric Tensor: The distance between two points on   

parameterized by         and                 is 

given by 

                           (2.3) 

where repeated indices imply summation 

                           (2.4) 

The determinant of       is denoted by  

                     
           

    (2.5) 

Let     be the reference triangle with vertices a, b, c in Fig.2. 

The polynomials with variables   and   ,            , 

can be grouped into three modes: vertex modes, edge modes 

and internal modes [8].  

Vertex modes:  

             

                                     (2.6) 

             

Each vertex mode will take value 1 at one vertex and zero at 

other two vertices. 

Edge modes:       

  
                                        

  
                                       (2.7) 

  
                                        

where               , is l-th order Legendre polynomial. 

Each of the edge modes is only nonzero along one edge of 

the triangle     

Internal modes:           

    
           

                                               

(2.8) 

Each of the internal mode will vanish over all edges of   . 

Consider two curved triangular patches    and    with a 

common interface AC with length   in Fig. 3. Let    and 

  be parameterized, respectively, by 

                                      (2.9) 

                                    (2.10) 

We assume that the interface AC in both    and    is 

parameterized by         and is labelled as side   
  in 

   and side   
 in   . 

 

Figure 3: Left: standard reference triangle   ; Right: curved 

triangular patches 

Then the M-th order basis function for a triangular patch in 

Fig. 3 can be defined as [7] 

        

 
  
 

  
 

 

   
   

              
            

                                  
 

 

   
   

              
            

                                 
 

            

Based on condition 

     
         

  onAC 

  
        ,   

        ,   
         and   

         can be 

derived as 

  
           

            
  
       

   

 
  
         

 

   

 

                              
    

   

        

 

  
           

            
  
       

   

 
  
         

 

   

 

                              
    

   

        

 

   (2.12) 

and 

        

   
   

   

  

  

    

  

  

   

   



“The Approximation Properties of a Type of Current Basis Functions” 

3 Yijun Yu
1
, IJMCR Volume 07 Issue 07 July 2019 

 

  
            

          

  
   

       
   

 
  
         

 

   

 

                              
    

   

        

 

  
            

          

  
   

       
   

 
  
         

 

   

 

                              
    

   

        

 

                                                                                        (2.13) 

with 

                               (2.14) 

Unknowns for each edge AC are  

  
    

    
       

       
   

                    (2.15) 

and interior unknowns are 

   
     

     
     

                      (2.16) 

The high order basis function (2.11) with (2.12) and (2.13) 

has no component normal to AB, AD, CB and CD, and 

component normal to AC is continuous across the edge. 

If    and     are flat triangular patches, and we take   , 

  
    

    , then basis function (2.11) reduces to usual 

RWG basis function. 

III. APPROXIMATION PROPERTIES OF BASIS FUNCTIONS 

In this section, we will analyse the approximation properties 

of RWG and high order basis functions on a plane polygonal 

region. 

Let Ω be a plane polygonal region with boundary . We 

introduce the following normed spaces 

                    
 
             

withnorm 

                                    

and 

                                 

Where n is the unit outward normal vector to  . 

Let    be a regular triangulation with maximum diameter h 

over the   . We have            
. 

For     , let        , be the vertexes of K,       

     , be the mid-points of the edges,     and     be the 

unit outward normal vector and unit tangent vector, 

respectively (see Fig. 4). 

 

Figure 4: Triangle K on a plane 

A. Approximation Properties of RWG Basis Functions 

Let 

        

             
 
                                   

where      is formed by the restrictions to the K of all 

polynomials of degree   , then dim          . 

We introduce finite element 

                                              (3.1) 

where                               . 

For           , we can define a unique interpolation 

  such that for all     , 

                                             

From the definition, it is directly deduced that finite element 

(3.1) is conforming in         . 

Now we can define the finite-dimensional subspace    

of         

                             

                           
 
       

                        (3.3) 

where   and    are the unit outward normal vectors to    

and    along their common edge, respectively, and the 

finite-dimensional subspace     of           

                               (3.4) 

where n is the unit outward normal vector to Ω. RWG basis 

constructed in [6] is a basis of   . 

Let family of finite elements                      be 

regular affine, the corresponding reference finite element be 

                 and affine transformation be  

                                       (3.5) 

with   an invertible     matrix and    a vector of   . 

We use u and    to denote the corresponding functions, 

respectively,  and define the transformation 

           
                              (3.6)  

where    
   
       

 . 
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In the following, we will use C to indicate various constants 

not necessarily the same in all instances, use          to 

express              and            for all     . 

Lemma 3.1For           , if we use formula (3.6) to 

transform the vector function   , then we have  

          

where   is corresponding interpolation operator on   . 

Proof Let          ,             , 

                              , 

then 

                    
   

     
       

    

      
   

By definition, we have  

                         

and 

             
      , 

           
    . 

Now we have  

    
                                         

     
        

                 
      

                           

                .                (3.7) 

By this equality, we can get             .  

In addition, we have 

                                          

            
        

             

                .    (3.8) 

By (3.7) and (3.8), we obtain                        , 

so we have conclusion          .  

From the proof of Lemma 3.1 above, we also obtain that  

         if and only if           . 

Let 

     
 

 
                  

 

 
             

           . 

We use smooth curves to connect the points     and     , 

      and      ,    , respectively. The new regions are 

denoted by   and     , respectively. (see Fig. 5). 

 

Figure 5: Triangles and corresponding regions with smooth 

boundary 

Lemma 3.2There exists a constant       such that     

        
 

, 

 

   
         

     
        

  

          
        

                      
  

    

 

                    
   .(3.9) 

where                        ,        . 

Proof        with the norm of         
 

 is a normed space 

and              . Let          , be a basis of the 

dual space of        . By the Hahn-Banach extension 

theorem, there exist continuous linear forms over the space 

        
 

, again denoted by         , such that for any 

          , we have              , if and only if  

   . 

By Sobolev embedding theorem [9], we have 

        
 

          
 

             
 

           
 

, 

(3.10) 

so 

             
        

 

                 
 

   

Now we show that there exists a constant       such that 

            
 

, 

   
        

           
        

   

                       
             

 
    .(3.11) 

If it is true, then inequality (3.9) will be a consequence of 

inequality (3.11). In fact, given any function           
 

, 

let           be such that                  Then 

by (3.11), 
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   . 

Suppose inequality (3.11) is false, then there exists a 

sequence        
  of functions      

      
 

 such that  

              
        

    

and 

   
   

     
        

                        
    

          

 

   

  

  .(3.12) 

Since the sequence        
  is bounded in         

 

, by 

Rellich-Kondrachov theorem [9], there exists a subsequence, 

again denoted by        
 , and function           

 

, such 

that  

   
   

      
        

   .    (3.13) 

By (3.12), we have 

   
   

    
        

   .    (3.14) 

Since the space         
 

 is complete, we conclude from 

(3.13) and (3.14) that the sequence        
  converges in the 

space         
 

. The limit  of this sequence is such that  

                 

     
        

     
   

      
        

    

and thus       for all             . Since    is 

connected, we get           
 

. Using (3.10), we have 

                                
 

                   
          

   

             
          

   

             
        

  .(3.15) 

By (3.12) 

   
   

                      
  

   

 

and thus we conclude from (3.15) that  

                     
   

 

                             
      . 

So 

                                      

and thus  

                                      

Since           
 

, we obtain 

                                             

and therefore          . 

 

Using (3.12), we have  

         
   

                     

so that we conclude that     from the properties of the 

linear form   . But this contradicts the     
        

    for 

all  .                                                                        

Let                 , be basis functions of        , and 

satisfy  

                                , 

                   , 

then 

                                  . 

By Sobolev embedding theorem [9] 

              , 

It is easy to check that we have  

             
 

         
 

  .(3.16) 

Theorem 3.3Let   be the interpolation operator defined by 

(3.2). Then for all          
 
, we have 

       
       

        
       

     
       

   

(3.17) 

 

                       
       

 (3.18) 

where C is a constant independent of h. 

Proof Since                  , we have 

                    , 

             
 

             . 

By Lemma 3.2, we get 
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   .(3.19) 

By Lemma 3.1, we have                  

       
       

  

           
               

       
  

     
             

       
  

     
             

 

          
        

 .        (3.20) 

Since 

    
        

           
     

        
  

         
        

  

and from [10]we have 

   
        

       
           

 
 

    
       

 , 

so 

    
        

       
           

 
 

    
       

 .    (3.21) 

Let                                 . 

Using 

                          

and 

                                        

where   and     are the Frechet derivative of  , we can 

obtain from [10] that  

                             

             

                                

       

and for multi-index           with       

                            

     
          

      
           

      . 

Thus, use Sobolev embedding theorem, and let 

                ,  

we have  

                    
                    

  

   

 

                         
 
   

    

 

 

 

 

   

 

                   
 
   

    

 

 

 

  

                         
                     

   

           
         

      
         

   

      
           

 
 

     
        

         
        

   

      
           

 
 

     
       

         
       

  . 

(3.22) 

By (3.19)-(3.22), and inequalities from [10] 

       and    
        , 

we obtain 

       
       

  

     
             

 

      
           

 
 

   

      
           

 
 

      
       

     
       

   

       
       

     
       

   

which is inequality (3.17). 

Now we prove inequality (3.18). 

It can be directly checked that  

                 
               .   (3.23) 

In fact, let 

  
    

   
    

 

   
    

  , and          
 and             

 , 

then 

     
        

       

and 

           
         

  
   
    

  
   
    

 

   
    

   
       
    

      
       

  
      

     
 

    
    

       
      , 

therefore 
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and thus 

        
    

          
    

             
        . 

Similarly 

             
          . 

So 

                  

           
                

     
 

           
 
 

               
      

(3.24) 

Since             
 

, 

             

 
 

        
                
  

 

 
 

        
                
   

 

 
 

        
                              

   

 

   , 

we obtain              
 

 

                             . 

From this equality, we deduce that 

              
      

 

       
          

 
         

 
 

   
           

 
       

        
  

   (3.25) 

By (3.21), (3.25) and inequality from [10] 

             
 

, 

   
           

        
        

       
        

 , 

we have  

              
      

 

      
        

  

      
           

 
 

    
       

 .            (3.26) 

It follows from (3.24) and (3.26) that 

                  

      
           

     
       

  

      
       

   

Now we can prove following theorem. 

Theorem 3.4Let Ω be a plane polygonal region with 

boundary  . Let    and     be defined by (3.3) and (3.4), 

respectively, Then 

           
 
 

   
     

      
       

        
       

     
       

   

           (3.27) 

   
     

                     
       

     
       

   

                               (3.28) 

and 

           
 
           

   
      

      
       

        
       

     
       

   

             (3.29) 

   
      

                     
       

     
       

   

      (3.30) 

Proof By Theorem 3.3, we have 

   
     

      
       

  

       
       

  

          
       

 
 

    

 

 

 

 

   

 
 
 
 

     
       

 
 

    

 

 

 

      
       

 
 

    

 

 

 

 
 
 
 

 

       
       

     
       

   . 

Similarly we can prove (3.28). 

Taking into account       if         
 
          , 

(3.29) and (3.30) can be proved completely similar to the 

proof of (3.27) and (3.28), respectively.   

B. Approximation Properties of High Order Basis 

Functions 

Let       be formed by the restrictions to   of all 

polynomials of degree   .  

Define the finite-dimensional subspace   
   

 of          
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                          (3.31) 

where   and    are the unit outward normal vectors to    

and   alongtheir common edge, respectively, and the finite 

–dimensional subspace        
   

of           

       
                 

                     (3.32) 

where   is the unit outward normal vector to  . The high 

order basis constructed in [7] is a basis of   
   

. 

Since            
 
            , we can define 

ordinary finite elements as in [10] 

          
 
    

   
                  .  (3.33) 

Then the finite element space   
   

, constructed 

corresponding to the finite element (3.33), satisfies 

  
   

        
 
                  . 

For          
 
, we define a unique interpolation 

        
   

 

such that for all      

  
   
                     

   
    

   
. 

Using notation   
   
         

   
 , we have estimation 

from [10] 

             
 
     

     
   
  

       
            

         
             .                                

    (3.34) 

By the definition of   
   

,        
   

 and     , we can deduce that 

for     

        
           

 
                  

 
 

and 

             
           

 
   

             
 
          , 

sonow we can prove following theorem. 

Theorem 3.5Let   
   

and         
   

be defined by (3.31) and 

(3.32), respectively. Then  

             
 
     

   
     

         
       

          
         

   (3.35)                                                                                 

   
     

                        
         

   (3.36) 

and             
 
               

   
          

         
       

          
         

  (3.37)                                                                                 

   
          

                        
         

 (3.38) 

Proof For            
 
, by (3.34) and the fact 

        
           

 
,  

we have 

   
     

   
      

       
  

          
       

  

        
   
  

       
 

 

    

 

 

 

 

           
         

 
 

    

 

 

 

 

         
         

  , 

   
     

   
               

          
        

 

          
       

  

       
         

   . 

Similarly prove (3.37) and (3.38).                       

Actually, by definition we have   
      

   
. Also we notice 

that   
      

   
. 

In fact, let    and    be any two triangles in   , which have 

common edge   with ends    and    (see Fig. 6), then 

       
   

 if and only if 

                 
 
,                       

 
 

and 

                         .                 (3.39) 

 
Figure 6: Two triangles with common edge   
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(3.39) is equivalent to  

 
                         
                         

 . 

Let 

  
                                          

                                      

(see Fig. 4). 

Then   
   

 is finite element space constructed corresponding 

to the finite element           
 
    

  , but    
  is 

equivalent to    
   

, so   
      

   
. 

IV. CONCLUSION 

In numerical simulation of electromagnetic scattering 

problem with integral equation formulation, basis function is 

very important. In this research we provided and proved the 

approximation properties of the basis functions, which 

provided theoretical reference for selection of appropriate 

basis function in numerical calculation based on the 

accuracy requirement of the application problem. 
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