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In this, we are analysing a multiphase queueing system of three heterogeneous servers using 

matrix – geometric method. Arrival of passengers follows the Poisson’s distribution law with 

parameter λ, while the servers serving their services (parameter µ) using exponential distribution 

law on the basis of FCFS discipline. The solution of steady state queue length for a continuous 

Markov chain is derive by Matrix Geometric method. Various performance measurements for 

this system such as stationary queue length distribution, waiting time distribution and busy 

period distribution are obtained. Numerical example with graphical arrangement are also 

discuss. 
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1. Introduction  

Recently queueing systems with multiservers have a wide 

range of utility. Normally it is suppose that the server is 

consistent, where the rate of services are same for all the 

servers which are working in the system. But practically it is 

possible in those cases where the service process is 

mechanically or electronically controlled. Most probably, the 

above assumption is not applicable in human based servers. 

It is observe that services are server depiction for same jobs 

at different service rates. Thus, we need a system with 

different servers where the distribution of service time is 

different for each server.  In this paper, we consider a 

multiserver queueing model with three assorted servers. 

Consider a situation of bus stand having three servers, where 

one server is for bulk arrival, one server is for individual 

passengers and one server is for VIP passengers. By Matrix 

Geometric method, we can analyse Quasi Birth Death process 

(QBD’s), continuous time Markov chain (CTMC) whose 

transition rate matrices have repetitive block structure also 

known as tridiagonal block structure.  

                                         The method of Matrix Geometric 

method is applied by many researchers for solving different 

types of queueing system. The tridiagonal block structure was 

first developed by Marcel F. Neuts in 1975. Neuts [12] 

defines Matrix Geometric solutions of various stochastic 

models. Neuts [11] developed a system of Markovian queue 

having N servers with respect to server breakdown and repair. 

Madhu Jain and Anamika Jain [10] developed a matrix 

geometric method for a queueing model with multiple 

vacations and breakdowns. Wang, Chen and Yang [20] 

defines the optimal management for machine repair problem 

with working vacations. Padma, Venkateswara [13] 

represents the approach of M/M/C/N queueing system by 

matrix method. Jau- Chuan Ke [6] describes the optimal 

solution of M/G/1 queueing system with server vacations, 

startup and breakdowns. Amani, Rayes [2] solving infinite 

stochastic process using matrix geometric method. Shah, 

Kumar [19] evaluate the controlled arrival rate system for 

Quasi Birth Death process. Ramswami, taylor [16] analysed 

the Quasi Birth Death process with countable number of 

phases for stochastic models of Markovian distribution. 

Various performance measures are generated through 

Markovian distribution. If we apply matrix geometric method 

for such a queueing system then block matrices can be solved 

easily without constructing the Markov chain. Matrix 

geometric method is helpful for constructing explicit formula 

for the probability distribution of the queue length. Krishna 

kumar, Madheshwari [7] analysed the queueing system with 
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two heterogeneous servers and multiple vacations with 

respect to server breakdowns. Similarly, Chandrasekar, 

Renisagaya Raj [15] proposed the theory for matrix geometric 

method of a queueing system having n- vacations policy with 

respect to server breakdown and repair. Chandrasekar, 

Renisagaya Raj [17] also proposed matrix method for 

queueing system with state dependent arrival of an unreliable 

server and PH service. R.Aniyeri, R.Nadar [18] gives the 

model for multiphase queueing system with assorted number 

of servers. Qi Ming He, discuss some basics of matrix method 

in his book Fundamentals of Matrix – Analytic methods.    

                       The remaining overview of this paper is as 

follows – In point 2, we represent the description of 

mathematical model. Point 3 stands for some proof of 

theorems used in methodology. Point 4 and 5 stands for 

numerical illustration and graphical representation. Finally 

conclusion is drawn in last one. 

1.1 Some basic terms related to matrix – geometric model 

Markov chain is a process of transitions from one state to 

another under some probabilistic rules. It is the probability of 

transitioning to a particular state which depends only on 

current state and time elapsed.  Quasi – birth death process is 

the particular case of infinite state continuous time Markov 

chain (CTMCs). QBD is like two dimensional strip, which is 

finite in one dimension and infinite in the other. Now these 

strips are categorised in levels. First level is called border 

level (level 0) and remaining are repeating levels. Those 

transitions which occur between same level are shown by 

positive entries in Q, whereas repeating levels are in same 

inter and intra level transition structure. In the figure the 

interlevel transitions are B01, B10, A0, A2 whereas the intra-

level transitions are B00, B11 and A1

 
Figure - Distribution of levels in QBD 

 

QBD process is the generalisation of birth death process. In this process state transition occurs between adjacent levels, while there 

is no restriction for phase transition. The transition rate matrix for a QBD process has a tridiagonal block structure. 

 

                                                                       boundary            repeating levels 
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Figure . Block Tridiagonal matrix for Q 

Where, BOO  ∈    
OO MXM

  

represents the intra-level transition structure (boundary level),  
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BO1   ∈    
OMXN   

represents the inter-level transition structure from the boundary level to the border level,  

B1O   ∈    
NXMO

  

represents the  inter-level transition structure from the border level to the boundary level,  

B11   ∈    
NXN  

represents the intra-level transition structure (border level), 

AO   ∈    
NXN  

represents the transitions from one repeating level to the next higher level, 

A1    ∈    
NXN  

represents the intra level transitions for the repeating level, 

A2   ∈    
NXN  

represents the  transitions from one repeating level to the next lower. 

According to Neuts, their survey are solutions of matrix – geometric for stochastic models. For an irreducible, positive recurrent 

Markov chains, are block partitioned structure of the type,   
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which have an invariant probability vector of the form, 

xo, xoT, xoT2, xoT3,  … 

 

where matrix T is the minimal non – negative solution to a 

nonlinear matrix equation. Terms related to Markov chain are 

represent with respect to matrix T and vector xo. The matrix 

T can be evaluated by numerical methodology. These results 

are widely used for stochastic models. In a vector space 

process, states are represented as pairs in the form (x, y) where 

x = 0, 1, … and y =0, 1, …n. Normally x represents the 

number of customers in the system and y represents the state 

of the customer in service. 

 

2. The Mathematical Model Description 

Let us suppose M/M/3 queuing system. We assume that the 

service rate of server is different. The setup of the server is 

such that it works for both batch queue and individual queue. 

The arrival customers enter the terminal with single queue, 

now if servers are doing the batch service then batch queue 

passengers join the queue and if servers are doing the 

individual service then individual passengers join the queue. 

The arrival of passengers follows the Poisson’s distribution 

law with parameter λ. The complete system i.e., total number 

of passengers and the system capacity are supposed to be fix. 

There are three servers and these three server serving their 

services using exponential distribution law. Let µ1 stands for 

service rate of server 1, µ2 stands for service rate of server 2 

and µ3 stands for service rate of server 3. The arriving 

customers follows according to first come first serve 

discipline. Using continuous Markov Chain, we can 

formulate the multiserver queueing system. The states of the 

system at any point are represented by (i , j) where i ≥ 0  stands 

for number of passengers in the system and j = 1, 2, 3 stands 

for states of the server. For example, state (i , 1) means there 

are i passengers in the system corresponds to server 1, state (i 

, 2) means there are i passengers in the system corresponds to 

server 2.  

                               In a continuous time Markov Chain, if a 

transition occurs from state i to state j then it is represented 

by  Q(i , j)  ≥  0, for i ≠ j,  and Q( i , i) denotes the negative 

sum of the off diagonal entries in the same row of Q. 

The transition rate matrix for infinite state markov chain is 

generally represented by Q with tridiagonal structure and is 

given by, 
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Q = 
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Where each of B00, B10, B01, B, A  and C are matrices, matrix Q is the form of Quasi- birth death process. 

A = 
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Note that the row sums are 0 i.e.,  

   (B00 + B01)e  = 0, (B10 + B + C)e  = 0  and  (B + C + A)e = 0 , 

where e represents the column vector with all its elements equal to one.                   

Here the continuous time Markov chain with generators B, C, A is reducible with absorbing state (4, 4) and the stationary probability 

factor is Φ. The sub matrix form which satisfies the condition, 

ΦBe  <   ΦAe 

is the necessary and sufficient condition for the stability of QBD process where e denotes the column vector with all its elements 

equal to 1(one). We have a well-known theorem / result also known as theorem of Ergodicity.   

 Theorem 2.1- The QBD is ergodic (i.e., mean recurrence time of the states is finite) iff  

                                                      ΦBe <  ΦAe  (mean drift condition)  

where e is the column vector of ones and Φ is the equilibrium distribution of the irreducible Markov chain  with generator, 

D = B + C + A , ΦD = 0, Φe = 1 

where Φ = stationary probability vector 

          e = column vector (value of each element is 1) 

Above condition is also known as necessary and sufficient condition for stability of QBD process. 

Interpretation: ΦBe is the mean drift from level i to i + 1, 

                        ΦAe is the mean drift from level i to i - 1, ( by using Neut’s drift condition [12] ) 

Generator D decides the behaviour of Quasi Birth Death Chain within the level, where D is the generator of an irreducible Markov 

chain. 

 

2.1 Equilibrium distribution of QBD’s 

For stability the required condition 

λ  <  µ1  +  µ2  +  µ3                                                           (2.1) 
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under equation (2.1) the stationary probability vector X of the matrix Q , the stationary probability vector Φ is partioned as follows, 

let  Φn = ( Φ(n,0),…. Φ(n,m - 1)) and  Φ = ( Φ0, Φ1, Φ2,….) which is given by 

Φ0B00 + Φ1B10  =  0                                                                                                             (2.2) 

Φ0B01 + Φ1C + Φ2A   = 0                                                                                                    (2.3) 

Φ1B + Φ2C + Φ3A   = 0                                                                                                       (2.4) 

. 

          . 

          . 

Φn-1B + Φ nC + Φ n+1A   = 0            n ≥ 2                                                                            (2.5) 

 

 Theorem 2.2 – For the positive recurrent of Quasi Birth Death process, there exists a constant matrix R such that,              

Φ n = Φn-1 R        , n ≥ 2            =≫                    Φ n = Φ1 Rn-1 ,        n ≥ 2 

 

Proof : See in section 3. 

 

Using result of above theorem,         

Φ n = Φ1 Rn-1                                                                 (2.6) 

and the normal equation is, 

1 =   Φ0  +  Φ1 e  +  ( I – R )-1  Φ2 e                                (2.7) 

where Φ0 is the probability for no passengers in the system, 

           I = identity matrix of order 4, 

           R = minimal non – negative solution of the matrix quadratic equation  

B + RC + R2A = 0                                                          (2.8) 

The vector,     Φ n =  (Φn0 , Φn1 , Φn2 )  and  Φ 1 =  (Φ10 , Φ11 , Φ12 ) for   n ≥ 2  denotes the probability for n  passengers in the system 

in which Φ ij means the joint probability that there are i customers in the system and j = 0, 1, 2, 3 corresponds to the status of the 

servers in the system.              

 Theorem 2.3 (R – Matrix lemma). The matrix R is the minimal non – negative solution of the matrix equation,                                       

B + RC + R2A = 0 

Proof: Substituting Φn = Φ1Rn-1 ,  n ≥ 2 in equation (2.5) we have 

     Φn-1B + Φ nC + Φ n+1A     = 0            n ≥ 2         gives, 

        Φ1 Rn-2B +  Φ1 Rn-1C  +  Φ1 RnA  =  0        

        Φ1 Rn-1 ( R-1B  + C + RA )  =  0  

        Φ1 Rn-1 ( IB + RC + R2A )  =  0 

        Φ1 Rn-1 ( B + RC + R2A )  =  0 

        ⸫            Φ1 ≠ 0,     Rn-1  ≠ 0,         B + RC + R2A   =  0      

 R is called the rate matrix of the Markov process Q. 

 The spectral radius of R is less than one i.e., R < 1 , it implies ( I – R ) is invertible. 

 

Now the square matrix A, B, C of order 4 x 4 are upper triangular matrices, R is also a 4 x 4 upper triangular matrix. Now the 

relation,  

RBe  =  Ae            (2.9) 

shows that the rate of transition from a state where there are n passengers to a state with n + 1 matches the transition rate from n to 

n – 1. To obtain R from equation (2.8), 

B + RC + R2A   =  0 

                                                                                        RC = - B – R2A 

R = - BC-1 – R2AC-1 

Using initial value of R = 0, we can find the value of R and check the accuracy of this approximation by using equation (2.9). Since 

(-C-1) and (B + R2A) are positive implies value of R converges. The iteration can be shown to converge to R (fixed point equation), 

since spectral radius < 1. Thus, for each iteration, the elements of R will increase monotonically. The boundary probabilities Φ0, Φ1, 

Φ2 and Φn, n > 3 are obtained from solving equation (2.2) to (2.7).     
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3. Theorems Based on Above Methodology. 

Theorem 3.1 For a Quasi Birth Death process ( Xz,  Jz ) z = 0, 1, 2.. is ergodic its limiting probabilities is given by  Φ n = Φ1 Rn-1  n 

= 2, 3, …. where Φ = stationary probability vector, R = minimal non – negative solution of the matrix quadratic equation  B + RC 

+ R2A = 0. 

Proof:  Let              

Q = 



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


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


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...........000
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...........0000
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and  Φ = ( Φ0, Φ1, Φ2,….)  where Φi = ( Φi1, Φi2, Φi3,…. Φiz) then from equilibrium equation ΦQ = 0 we have, 

Φ0B00 + Φ1B10  =  0 

Φ0B01 + Φ1C + Φ2A   = 0 

Φ1B + Φ2C + Φ3A   = 0 

Φ2B + Φ3C + Φ4A   = 0 

.          (3.1) 

. 

. 

. 

Φn-1B + Φ nC + Φ n+1A   = 0 

 

which is similar to solution of M/M/1. Therefore Φ n is a function only of the transition rates between states with n – 1 queued 

customers and states with n queued customers.  

In analogy with the point situation, there exists a constant matrix R such that,  

Φ n = Φn-1 R        , n ≥ 2       (3.2) 

The sub vectors Φi are geometrically related to each other since, 

Φ n = Φ1 Rn-1       , n ≥ 2       (3.3) 

By putting equation (3.3) in equation (3.1) we have, 

Φn-1B + Φ nC + Φ n+1A     = 0            n ≥ 2         gives, 

Φ1 Rn-2B +  Φ1 Rn-1C  +  Φ1 RnA  =  0 

                                        ⸫            B + RC + R2A   =  0                                        (3.4) 

 

                                                               Value of R-     RC = - B – R2A 

R = - BC-1 – R2AC-1 

                                                   R = - V – WR2                                                    (3.5) 

where V = BC-1,  W =  AC-1 

Iteration:  

R(0) = 0,                    R(z+1) = - V – W 
2

)( zR             z = 1, 2, …… 

Theorem 3.2 The stationary probability vectors Φ0 and Φ1 are the unique positive solution of the linear system ΦQ = 0. 

Proof : By taking first two equations of system (3.1) 

Φ0B00 + Φ1B10  =  0 

Φ0B01 + Φ1C + Φ2A   = 0 

⸫ Φ n = Φn-1 R  implies Φ 2 = Φ1 R, substituting value of Φ 2 

Φ0B00 + Φ1B10  =  0 

Φ0B01 + Φ1C + Φ1RA   = 0 

In matrix form,  (Φ0  , Φ1)   








 RACB

BB

10

0100
        =   (0   ,  0)                                                          (3.6) 
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can be solved for  Φ0 and Φ1 with condition , Φe = 1 

1 = Φe  =  Φ0e +  Φ1e  +  


2i
Φie 

=  Φ0e +  Φ1e  +  


2i
Φ1Ri-1 e 

=  Φ0e +   


1i
 Φ1Ri-1 e 

=  Φ0e +   


0i
 Φ1Ri e 

This implies the condition,  

Φ0e +    Φ1 [


0i

iR ]e  = 1 

The eigen values of R lies within the circle of radius 1, implies that (I – R) is non – singular and hence 




0i

iR   =  S (let) 

⸫            S   =   


0i

iR  

                S     =    






1

1

i

iR  

                         S     =     I + R + R2 + …. 

                             SR   =      R + R2 + R3 + …. 

On subtracting      S (I – R)   = I  

S     =   I (I – R)-1  = (I – R)-1                                                                      (3.7) 

Normalise the vector Φ0 and Φ1 by solving , 

α =  Φ0e + (I – R)-1  Φ1e 

and dividing the computed sub vectors Φ0 and Φ1 by α. 

 

Theorem 3.3 The expected number of customers in the queue is given by, 

E(n) = Φ1 (I – R)-2   e 

Proof: Let there are n customers in the queue, 

E(n) = E (queued customers) 

=   


1n
n Φn e 

                                                                                   =    


1n
n Φ1Rn-1 e                                            (using equation 3.2) 

           =      Φ1 [






1

1

n

nRn ]e 

  Put            






1

1

n

nRn  =  S (let) 

⸫            S   =   






1

1

n

nRn  = ( I + 2R + 3R2 + 4R3 + …..) 

RS  =  R + 2R2 +3R3 + ….. 

On subtracting,  S (I - R) = I + R + R2 + R3 +….. 

S  = I (I – R)-2 = (I – R)-2 

⸫                  E (n) =     Φ1 [






1

1

n

nRn ]e  =    Φ1 (I – R)-2 e 

  

4. Numerical Illustration 

For Matrix – Geometric method, we ensures that it follows following steps- 

Step 1: Verify that the matrix satisfies requirements of QBD structure (for this we check each transition rate matrix row sum equal 

to zero).  

Step 2: Verify that stability condition is satisfied (for this we check Markovian is ergodic i.e., ΦBe <  ΦAe with  D = B + C + A , 

ΦD = 0, Φe = 1)  

Step 3: Use recursion to compute the R-matrix  

Step 4: Solve the set of equations to calculate Φ0 and Φ1  
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Step 5: Use recursion Φn= Φn-1R to find all other Φn vectors. 

 

To understanding the performance of this queueing system, it is necessary to check the effect of parameters λ, µ1, µ2, µ3 on the 

system. Let us suppose the following values of parameters, 

                                                   λ = 1, µ1= 2, µ2 = 3 and µ3 = 4 
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Step 1.  The matrix obviously has the correct QBD structure. 

Step 2. To check the system is stable,    

D = B + C + A = 
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has probability stationary vector, ΦD = ( 0.2116, 0.4652, 0.3232, 0 )  

ΦDBe = ( 0.2116    0.4652    0.3232    0 ) 
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⸫  ΦBe <  ΦAe , means Markovian is ergodic. 

 

Step 3. Recursion for R – matrix.                                                   

R = - BC-1 – R2AC-1 

                                                                                         R = - V – WR2 

First we find inverse of C. 

C-1 =  
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which allows us to compute, 
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and  W =  AC-1  =   
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                       ⸫       R(z+1) = - V – W 
2
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and iterating successively, starting with R(0) = 0,  

at z = 0,      R(1)    =  
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Similarly, we can derive R2, R3, and so on. 

 

Step 4. Calculation of Φ0 , Φ1 and Φ2. 

 

(Φ0  , Φ1,  Φ2)   

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
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 RACB
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10

0100
        =   (0   ,  0   ,  0) 
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(Φ0  , Φ1,  Φ2)                                                                        =   (0 ,  0  ,  0) 

 

 

 

 

 

 Solve this by replacing last equation with 1
10    , i.e., set the first component of the sub vector Φ0 to 1.           

 
 

(Φ0  , Φ1,  Φ2) = ( 1,  0 ,  0  |  0.5396,     0.9578,    0.5462,     0.3254) 

Now for normalisation, let α is the normalisation constant then,  

α =   Φ0  +  Φ1 e  +  ( I – R )-1  Φ2 e     =  5.6724 

Step 5. Using relation Φn= Φn-1R, we have the result. 

 

5. Graphical Illustration of Average Queue Length over Different Values Of Λ. 

 

In section 6, we are trying to observe the variation of mean system size E(N) versus arrival rate λ.  

Mean number of 

passengers in the system,       

λ 

When 

µ1 =14, 

µ2 = 16, 

µ3 = 18 

When 

µ1 = 15, 

µ2 = 17, 

µ3 = 19 

When 

µ1 = 16, 

µ2 = 18, 

µ3 = 22 

5 1.76 1.94 2.01 

10 3.42 3.72 4.10 

15 6.17 6.97 7.12 

20 8.42 8.89 8.99 

25 10.71 11.27 12.12 

30 11.71 12.14 13.16 

35 13.20 13.69 14.11 

40 15.92 16.07 16.14 

 

It is clear from the above table is when the capacity of the system increases then the expected queue length also increases.   
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Average queue length over different values of λ if  µ1 =14, µ2 = 16, µ3 = 18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Average queue length over different values of λ if  µ1 =15, µ2 = 17, µ3 = 19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Average queue length over different values of λ if  µ1 =16, µ2 = 18, µ3 = 21. 

 

6. Conclusion 

This paper is a study of M/M/3 queueing system. This study 

is the extension of single server queueing system to multi – 

server queueing system. Matrix – geometric analytical 

method is used for derive the steady state probability and 

transition rate matrix. The distribution of stationary queue 

length and waiting time of a customer is derive by QBD and 

Matrix Geometric method. There were three objectives of this 

paper. Firstly, to understand the nature of queueing models 

and use in particle life. Secondly, to develop a more 

appropriate analysis of queueing models and methodology for 

design and management, and, finally, to create a tool that 
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allows others to understand the nature, problems and 

necessary components of queueing models of rate matrix.  
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