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In this paper we review the q-exponential distribution and its properties. Distributions of extreme 

order statistics are obtained. The Marshall-Olkin q-exponential distribution is developed and studied 

in detail. Estimation of parameters is also discussed. AR(1) models and max-min AR(1) models are 

developed and sample path properties are explored. These can be used for modeling time series data 

on river flow, dam levels, finance and exchange rates.   
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1. INTRODUCTION 

Tsallis(1988) introduced the q-exponential distribution in an 

attempt for generalizing Boltzmann-Gibbs statistics in 

statistical mechanics. Picoli et al (2003) considered q-

exponential, Weibull and q-Weibull distributions and an 

empirical analysis is conducted. The family of q-distributions 

are useful in explaining molecular motion in fluid dynamics 

as well as entropy functions in communications engineering. 

Seetha lekshmi and Catherine (2012) developed a new count 

model called q-exponential count model which is a 

generalization of exponential count model. The q-exponential 

count model via the shape parameter,  can capture over 

dispersed as well as equi-dispersed data. 

Marshall and Olkin(1997) introduced a generalized family of 

distributions and applied the results to extend exponential and 

Weibull distributions. Many researchers have recently 

studied Marshall-Olkin family of distributions and applied in 

various contexts such as reliability analysis, time series 

modeling etc. For details see Jayakumar and Thomas (2008), 

Sankaran and Jayakumar (2006), Krishna et al.(2013a,b), 

Jose et al.(2010,2011,2014).These distributions offer wide 

flexibility and can be used to model data from various areas. 

Autoregressive processes with non-Gaussian marginal 

distributions have received much attention  in r ecent years. 

Lewis and McKenzie (1991) introduced minification   

processes  and their general  theory.  

Alice and Jose(2004),  Seetha lekshmi and Jose(2004, 2006),  

Jose and Naik( 2010), Jose and Remya  (2015) etc are some 

recent  works in this respect.      

This paper is organized as follows. In section 2, q-exponential 

distribution is reviewed. In section 3, distributions of  maxima 

and minima are derived and it is shown  that   the  q-

exponential  distribution is a compound mixture. In section 4,  

we   introduce the   Marshall-Olkin q-exponential distribution 

and studied its important properties.   AR(1) models with q-

exponential marginal distribution are introduced in section 5. 

As a further extension, general theory of Max-Min AR(1) 

processes are also developed in section 6 and generalized it 

to the kth order. In section 7, Max-Min process with q-

exponential marginal distribution is introduced and studied. 

Applications are discussed in section 8. 

 

2. q-EXPONENTIAL DISTRIBUTION 

The q-exponential distribution is a generalization of the exponential distribution. The main reason for introducing q-exponential 

model is the switching property of the exponential form to corresponding binomial expansion as follows. 

limq→1 [1 − (1 − q)z]
𝟏

𝟏−𝒒  = 𝒆−𝒛,   0 < q < 1 

limq→1 [1 + (q − 1)z]
−𝟏

𝒒−𝟏  = 𝒆−𝒛, 1 < q < 2 
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 When  0<q<1  the probability density function (pdf) of the q-exponential distribution is given by 

 

f1(x) = u(2-q)[1 − (1 − q)(ux)]
1

1−𝑞 ;q < 1,u>0      (1) 

 

When 1 < q < 2, the pdf of q-exponential distribution is given by 

 

f2(x) = u(2-q)[1 − (q − 1)(ux)]
−(

1 

𝑞−1
)
 ;q < 1,u>0                            (2) 

 

The important properties such as cumulative distribution function (CDF), hazard rate function (HRF), cumulative hazard rate 

function(CHR), mode and moments are tabulated in the Tables 1 and 2 respectively for 0 < q < 1 and 1 < q < 2. 

 

Table 1. Properties of q-exponential distribution when 0 < q < 1 

Characteristics Functional Form 

Pdf 
f1(x) = u(2-q)[1 − (1 − q)(ux)]

1

1−𝑞 ;q < 1,u>0,x>0  

CDF 
F1(x) = 1-[1 − (1 − q)(ux)]

2−𝑞

1−𝑞 

 

 

HRF h(x) =
𝑢(2−𝑞)

1−(1−𝑞)(𝑢𝑥)
 

CHR 
H(x)=(2-q)(ux)∑

(1−𝑞)𝑢𝑥]𝑗+1

𝑗+1

∞[
𝑗=0 ,lxl<

1

𝑢(1−𝑞)
 

𝑠𝑡ℎmoment 
E(𝑋𝑠)=

2−𝑞

𝑢𝑠(1−𝑞)𝑠+1

ᴦ(𝑠+1)ᴦ
1

(1−𝑞)
+1

ᴦ(
1

1−𝑞
)+𝑠+2

 

Mean E(x) = 
1

𝑢(3−2𝑞)
 

              

Variance V(x)=
2−𝑞

𝑢2(3−2𝑞)2
 

1

(4−3𝑞)
   

Mode 0 

 

Table 2. Properties of q-exponential distribution when 1 < q < 2 

Characteristics Functional Form 

Pdf 
f2(x) = u(2-q)[1 + (ux)(q − 1)

−1

1−𝑞 ; x∈ (0,∞) 

CDF 
F2(x) = 1-[1 + (q − 1)(ux)]

𝑞−2

𝑞−1 

HRF h(x) =
𝑢(2−𝑞)

1+(𝑞−1)(𝑢𝑥)
 

CHR H(x)=(
2−𝑞

𝑞−1
) In[1+(q-1)(ux)] 

𝑠𝑡ℎmoment 
E(𝑋𝑠)=

2−𝑞

𝑢𝑠(𝑞−1)𝑠+1

ᴦ(𝑠+1)ᴦ
1

(𝑞−1)
+𝑠−1

ᴦ(
1

𝑞−1
)

 

Mean E(x) = 
1

𝑢(3−2𝑞)
 

              

Variance V(x)=
𝑞−2

𝑢2(2𝑞−3)2
 

1

(3𝑞−4)
   

Mode 0 

 

 

3. DISTRIBUTION OF MAXIMUM AND MINIMUM 

In this section, the distribution of maximum and minimum of a sequence of independent and identically distributed random 

variables(iid rvs) are considered. 
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Lemma 3.1 Let (Zi; i = 1;2;……n) be iid rvs which follows q-exponential distribution with parameter u then the distribution of the 

min(Z1;Z2; …Zn) is again a q-exponential distribution. 

 

Proof: For 0 < q < 1, the survival function 

 

F1(z) = 1-[1 − (1 − q)(uz)]
2−𝑞

1−𝑞 

      𝐹3(𝑧) = P[min(Z1; Z2; . . Zn)  >  z] 

= ∏ 𝑃(𝑍𝑖
𝑛
𝑖=1 > 𝑧) 

 

=[1 − (1 − 𝑞)(𝑢𝑧)]
𝑛(2−𝑞)

1−𝑞  →𝑒−𝑛(𝑢𝑧)  as    q→ 1 

                                                                                             

   For 1 < q < 2, the survival function is 

 

�̅�2(z)=[1 + (𝑞 − 1)(𝑢𝑧)]
−(2−𝑞)

𝑞−1  

 

𝐹4̅(𝑧) = [1 + (𝑞 − 1)(𝑢𝑧)]
−𝑛(2−𝑞)

𝑞−1 → 𝑒−𝑛(𝑢𝑧)  as q→ 1 

 

It is not in the q-exponential form, but nth power of the survival function of q-exponential distribution. So this is invariabily a  case 

of q exponential distribution. 

Lemma 3.2 Let     Zi, i=1,2…,n  be iid rvs which follows the q-exponential distribution, then max (Z1;Z2; :::Zn) is distributed as 

exponentiated q-exponential distribution. 

 

Proof: For q < 1 the CDF is 

F1(z) = 1-[1 − (1 − q)(uz)]
2−𝑞

1−𝑞 

Then F5(z) = P[max(Z1;Z2 …,Zn)   ≤ z] 

                  =∏ [1 − (1 − 𝑞)(𝑢𝑧)]
2−𝑞

1−𝑞𝑛
𝑖=1  

                                                    =[1 − (1 − 𝑞)(𝑢𝑧)]
2−𝑞

1−𝑞]𝑛 → [1 − 𝑒−𝑢𝑧]𝑛 as q→1 

 

3.1. The q-exponential distribution as a compound mixture 

Definition 3.1. Let �̅�(𝑧/𝜃),−∞ < 𝑧 < ∞,−∞ < 𝜃 < ∞,be the conditional survive function of z given 𝜃 and let 𝜃 be a random 

variable  with probability density function m(𝜃). Then a distribution with survival function �̅�(z) =∫  �̅�
+∞

−∞
(z/𝜃) m(𝜃)d𝜃, 

,−∞ < 𝑧 < ∞, is called a compound distribution with mixing density m(𝜃). 

 

Theorem 3.1 

                 �̅�(z) is a compound exponential mixture. 

Case (i) 

For q<1 let the conditional survival function be 

 

𝐺1̅̅̅̅ (𝑧/𝜃)=exp(−θ)[[1 − (1 − q)(ux)]
(2−𝑞)

(1−𝑞) −-1] 

 

M(𝜃)=𝑒−𝜃. Then the unconditional survival function is 

�̅�1(z)=∫ 𝑒−𝜃
∞

0
[[1 − (1 − q)(ux)]

(2−𝑞)

(1−𝑞) −- 1]d𝜃 

 

=[1 − [[1 − 𝑞](𝑢𝑧)]
2−𝑞

1−𝑞 

 

Which is the survival function of q-exponential distribution �̅�1(z) for q<1 
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Case(ii) 

For 1<q<2,  let the conditional survival function be 

 

�̅�2(𝑧/𝜃)=  exp(−θ)[1+[(q-1)(𝑢𝑧)
𝑞−2

𝑞−1]d𝜃 

=1 + (𝑞 − 1)(𝑢𝑧)
𝑞−2

𝑞−1 

Which is the survival function of q-exponential distribution 𝐹2̅̅̅̅ (z) for 1<q<2. 

 

The above conditional survival functions are survival functions of the extreme value distributions mixed with the exponential 

distributions. 

 

4.  MARSHALL-OLKIN Q-EXPONENTIAL DISTRIBUTION AND ITS PROPERTIES 

In this section a new probability model known as Marshall-Olkin q-exonential distribution is developed. Various properties of the 

distribution and hazard rate functions are considered. The corresponding time series models are developed to illustrate its application 

in time series modelling. 

Let  

�̅�(𝑥) =
𝑝�̅�(𝑥)

1 − (1 − 𝑝)�̅�(𝑥)
 , 𝑥𝜀𝑅, 𝑝 > 0 

Clearly when p=1, we get the standard form of the  survival function. 

 

The pdf of MO distribution is given by, 

𝑔(𝑥) =
𝑝𝑓(𝑥)

(1 − (1 − 𝑝)�̅�(𝑥))
2 , 𝑥𝜀𝑅, 𝑝 > 0 

 

The hazard rate of Marshall -Olkin distribution is given by , 

 

ℎ(𝑡) =
𝑟(𝑡)

1 − (1 − 𝑝)�̅�(𝑡)
, 

 

where,     𝑟(𝑡) =
𝑓(𝑡)

𝐹(𝑡)
 

The Survival function of the MOQE distribution is given by 

�̅�(𝑥) =
𝑝[1 − [[1 − 𝑞](𝑢𝑧)]

2−𝑞
1−𝑞

1 − (1 − p)[1 − [[1 − 𝑞](𝑢𝑧)]
2−𝑞
1−𝑞

                                              (4) 

The density of the MOQE distribution is given by, 

g(x)=
𝑝𝑢(2−𝑞)[1−(1−𝑞)(𝑢𝑥)]

−1
𝑞−1

1−(1−𝑝)(1−(1−𝑞)(𝑢𝑥))
2−𝑞
1−𝑞)2

                                                  (5) 

The hazard rate function of MOQE distribution is given by, 

ℎ(𝑡) =

u(2 − q)
1 − (1 − q)(ut)

[1 − (1 − 𝑝)]1 − (q − 1)(ut)]
q−2
q−1

                                                                 

The graphs of the pdf (probability density function)  and HRF(Hazard Rate Function) of MO q-e distribution are given below.  
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Figure1                                         Figure2 

 

Theorem 4.1 Let {𝑋𝑖 , 𝑖 ≥ 1}be a sequence of i.i.d.(independent and identically distributed ) random variables with common survival 

function �̅�(𝑥)and let N be a geometric random variable independently distributed of {𝑋𝑖}such that P[N = n] = 𝜃(1 − 𝜃)𝑛−1, 𝑛 =

1,2, … 0 < 𝜃 < 1, for all 𝑖 ≥ 1. Let UN = 𝑚𝑖𝑛(𝑋1, 𝑋2, …𝑋𝑛). Then {𝑈𝑁} is distributed as MOq-e  iff  {𝑋𝑖}follows q-e distribution . 

 

Proof: The survival function of the random variable UN is  

𝐻(𝑥) = 𝑃(𝑈𝑁 > 𝑥) = 𝜃∑ [�̅�(𝑥)]𝑛(1 − 𝜃)𝑛−1 =∞
𝑛=1

𝜃𝐹(𝑥)̅̅ ̅̅ ̅̅ ̅

1−(1−𝜃)𝐹(𝑥)̅̅ ̅̅ ̅̅ ̅) 

 

If Xi has the survival function of the q-e distribution then UN has the survival function of the MOq-e  distribution. The converse 

easily follows from(5) that 

�̅�(x) = [1 − (1 − q)(ux)]
2−𝑞

1−𝑞 

 

Theorem 4.2 Let {𝑋𝑖 , 𝑖 ≥ 1}be a sequence of i.i.d. random  variables   with common survival function �̅�(𝑥)and let N be a geometric 

random variable independently distributed of {𝑋𝑖} such that  P[N = n] = 𝜃(1 − 𝜃)𝑛−1, 𝑛 = 1,2, … 0 < 𝜃 < 1, for all 𝑖 ≥ 1.. Let 𝑉𝑁 =

𝑚𝑎𝑥(𝑋1, 𝑋2, … 𝑋𝑛). Then {𝑉𝑁} is distributed as MOqe iff {𝑋𝑖} followsq-e distribution.. 
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Proof: The distribution function of the random variable VN is 

 𝑀(𝑥) = 𝑃(𝑉𝑁 < 𝑥) = 𝜃∑[𝐹(𝑥)]𝑛
∞

𝑛=1

(1 − 𝜃)𝑛−1

=
𝜃𝐹𝑋(𝑥)

1 − (1 − 𝜃)𝐹𝑋(𝑥)
                                                                                                        (6) 

�̅�(𝑥) = 1 − 𝑀(𝑥) =

1
𝜃
𝐹𝑋(𝑥)

1 − (1 −
1
𝜃
𝐹𝑋(𝑥))

 

If Xi has the survival function of the q-e distribution then VN has the survival function of the MOq-e distribution. The converse 

easily follows from (6) that 

𝐹(𝑥) = 1 −F1(x) = 1-[1 − (1 − q)(ux)]
2−𝑞

1−𝑞 

 

5.  AR(1) MODELS WITH MOQ-EXPONENTIAL MARGINAL DISTRIBUTION  

Two stationary Markov processes with similar structural forms which had found useful in hydrological applications was introduced 

by Tavares(1977,1980).The various aspects on first order auto regressive minification processes was discussed by Lewis and Mc 

Kenze(1991). 

       In this section we develop autoregressive minification processes of order one and order k with minification structures where 

MOq-e distribution is the stationary marginal distribution. We call the process as MOq-e AR(1) process. Now we have the following 

theorem. 

 

Theorem 5.1 Consider an AR(1) structure given by 

𝑋𝑛 = {
𝜀𝑛, 𝑤. 𝑝 𝑝1

   𝑚𝑖𝑛(𝑋𝑛−1, 𝜀𝑛) 𝑤. 𝑝 1 − 𝑝1
 

 

 

where w:p. denotes ‘with probability’, 0 < p1 < 1 and {𝜀𝑛} is a sequence of i.i.d. random variables independently distributed of Xn. 

Then {𝑋𝑛} is a stationary Markovian AR(1) process with MOq-e marginal if and only if {𝜀𝑛} is distributed as q-e distribution. 

 

 Proof: From the given structure it follows that 

 

�̅�𝑋𝑛(𝑥) = 𝑝1�̅�𝜖𝑛(𝑥) + (1 − 𝑝1)�̅�𝑋𝑛−1(𝑥)�̅�𝜖𝑛(𝑥) 

 

Under stationary equilibrium, it reduces to 

𝐹(𝑥) =
𝑝1𝐹𝜀𝑛(𝑥)

1−(1−𝑝1)𝐹𝜀𝑛(𝑥)
                                                                                      (7) 

which is the MOq-e distribution. Conversely on substituting the survival function of the innovations 𝜀𝑛, we get 

�̅�𝜀𝑛(𝑥) =     [1 − (1 − q)(ux)]
2−𝑞

1−𝑞                                                                  (8) 

which is the survival function of q-e distribution. 

 

The following are the sample paths for the above structure. 
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Figure3 

 

Now we consider another AR(1) structure having three components. 

 

Theorem 5.2 Consider an AR(1) structure given by 

𝑋𝑛 = {

𝑋𝑛−1, 𝑤. 𝑝. 𝑝2
𝜀𝑛, 𝑤. 𝑝. 𝑝1(1 − 𝑝2)

𝑚𝑖𝑛(𝑋𝑛−1, 𝜀𝑛), 𝑤. 𝑝. (1 − 𝑝1)(1 − 𝑝2)
 

 

where {𝜀𝑛} is a sequence of i.i.d. random variables independently distributed of Xn. Then {𝑋𝑛} is a stationary Markovian AR(1) 

process with MOq-e marginal if and only if {𝜀𝑛} is distributed as  

q-e distribution. 

 

Proof: From the given structure it follows that 

       

�̅�𝑋𝑛(𝑥) = 𝑝2�̅�𝑋𝑛−1(𝑥) + 𝑝1(1 − 𝑝2)�̅�𝜀𝑛(𝑥) + (1 − 𝑝1)(1 − 𝑝2)�̅�𝑋𝑛−1(𝑥)�̅�𝜀𝑛(𝑥). 

On simplification we get, the same expression as in equation (8)                under      stationarity.  Then the result is obvious. 

The following theorem generalizes the results to a kth order autoregressive structure 

. 

Theorem 5.3 Consider an AR(k) structure given by 

𝑋𝑛 =

{
 
 

 
 

𝜀𝑛, 𝑤. 𝑝. 𝑝0
𝑚𝑖𝑛(𝑋𝑛−1, 𝜀𝑛), 𝑤. 𝑝. 𝑝1
𝑚𝑖𝑛(𝑋𝑛−2, 𝜀𝑛), 𝑤. 𝑝. 𝑝2

⋮ ⋮ ⋮
𝑚𝑖𝑛(𝑋𝑛−𝑘 , 𝜀𝑛), 𝑤. 𝑝. 𝑝𝑘
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where{𝜀𝑛}  is a sequence of i.i.d. random variables independently distributed of Xn, 0 < pi < 1, 𝑝1 + 𝑝2 +⋯+ 𝑝𝑘 = 1 − 𝑝0. Then 

the stationary marginal distribution of{𝑋𝑛}  is MOq-e if and only if {𝜀𝑛}  is distributed as q-e distribution. 

 

Proof: From the given structure the survival function is given as follows: 

 

�̅�𝑋𝑛(𝑥) = 𝑝0�̅�𝜀𝑛(𝑥) + 𝑝1�̅�𝑋𝑛−1(𝑥)�̅�𝜀𝑛(𝑥) + ⋯+ 𝑝𝑘�̅�𝑋𝑛−1(𝑥)�̅�𝜀𝑛(𝑥). 

 

Under stationary equilibrium, this yields 

 

�̅�𝑋(𝑥) = 𝑝0�̅�𝜀(𝑥) + 𝑝1�̅�𝑋(𝑥)�̅�𝜀(𝑥) + ⋯+ 𝑝𝑘�̅�𝑋(𝑥)�̅�𝜀(𝑥). 

This reduces to 

�̅�𝑋(𝑥) =
𝑝0[1−(1−q)(ux)

2−q
1−q

1−(1−𝑝0)1−(1−q)(ux)
q−2
1−q

.   for  q<1 

The converse follows easily. 

Then the theorem easily follows by similar arguments as in Theorem 4.2. 

 

6. THE MAX-MIN AR(1) PROCESSES  

Next we introduce a new model called the max-min process which incorporates both maximum and minimum values of the process. 

This has wide applications in atmospheric and oceanographic studies. The structure is given as follows. 

 

Theorem 6.1 Consider an AR(1) structure given by 

𝑋𝑛 = {

𝑚𝑎𝑥(𝑋𝑛−1, 𝜀𝑛), 𝑤. 𝑝. 𝑝1
𝑚𝑖𝑛(𝑋𝑛−1, 𝜀𝑛), 𝑤. 𝑝. 𝑝1

𝑋𝑛−1 , 𝑤. 𝑝. 1 − 𝑝1 − 𝑝2

 

 

subject to the conditions 0 < p1,p2 < 1,p2 < p1 and p1 + p2 < 1, where{𝜀𝑛}   is a sequence of i.i.d. random variables independently 

distributed of  Xn . Then{𝑋𝑛}  is a stationary Markovian AR(1) max-min process with stationary marginal distribution �̅�𝑋(𝑥) if and 

only if {𝜀𝑛}  follows Marshall-Olkin distribution. 

 

Proof: From the given structure it follows that 

𝑃(𝑋𝑛 > 𝑥) = 𝑝1𝑃(𝑚𝑎𝑥(𝑋𝑛−1, 𝜀𝑛) > 𝑥) + 𝑝2𝑃(𝑚𝑖𝑛(𝑋𝑛−1, 𝜀𝑛) > 𝑥) 

 

+(1 − 𝑝1 − 𝑝2)𝑃(𝑋𝑛−1 > 𝑥) 

 

= 𝑝1 [1 − (1 − �̅�𝑋𝑛−1(𝑥)) (1 − �̅�𝜀𝑛(𝑥))] + 𝑝2�̅�𝑋𝑛−1(𝑥)�̅�𝜀𝑛(𝑥) 

 

                   +(1 − 𝑝1 − 𝑝2)�̅�𝑋𝑛−1(𝑥).                                         

 

Under stationary equilibrium, we get 

𝐹�̅�(𝑥) =
𝑝2�̅�𝑋(𝑥)

𝑝1 + (𝑝2 − 𝑝1)�̅�𝑋(𝑥)
=

𝑝′�̅�𝑋(𝑥)

1 − (1 − 𝑝′)�̅�𝑋(𝑥)
                             (8) 

 

Where 𝑝′ =
𝑝2

𝑝1
 . This has same functional form of Marshall-Olkin survival function. The converse can be proved by mathematical induction, 

assuming that �̅�𝑋𝑛−1(𝑥) = �̅�𝑋(𝑥). 

 

7. THE MAX-MIN PROCESS WITHQ-E MARGINAL DISTRIBUTION  

 To obtain the Q-Exponential max-min process, consider the above structure and substitute the survival function of QE xponential 

in equation (8). Then we get 

�̅�𝜀(𝑥) =
𝑝′[1−(1−q)(ux)]

2−q
1−q

1−(1−𝑝′)(1−(1−q)(ux)
2−q
1−q

  ,                  0<q<1 
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which is the survival function of the Marshall-Olkin QExponential distribution where  𝑝′ =
𝑝2

𝑝1
 , 𝑝2 < 𝑝1 and p1 + p2 < 1.  

 

Now consider a more general autoregressive structure which includes maximum, minimum as well as the innovations and the process 

values. 

 

Theorem 7.1 Consider an AR(1) structure given by 

 

𝑋𝑛 = {

𝑚𝑎𝑥(𝑋𝑛−1, 𝜀𝑛), 𝑤. 𝑝 𝑝1
𝑚𝑖𝑛(𝑋𝑛−1, 𝜀𝑛), 𝑤. 𝑝 𝑝2

𝜀𝑛 ,
𝑋𝑛−1,

𝑤. 𝑝
𝑤. 𝑝

𝑝3
1 − 𝑝1 − 𝑝2 − 𝑝3

 

 

With the condition that 0 < 𝑝1 , 𝑝2 , 𝑝3 < 1, 𝑝2 < 𝑝1  𝑎𝑛𝑑 0 < 𝑝1 + 𝑝2 + 𝑝3 < 1, where {𝜀𝑛}   is a sequence of i.i.d. random variables 

independently distributed of 𝑋𝑛. Then {𝑋𝑛}  is a stationary Markovian AR(1) max-min process with stationary marginal distribution 

�̅�𝑋(𝑥) if and only if {𝜀𝑛}   follows Marshall-Olkin distribution. 

Proof: From the given structure it follows that 

𝑃(𝑋𝑛 > 𝑥) = 𝑝1𝑃(𝑚𝑎𝑥(𝑋𝑛−1, 𝜀𝑛) > 𝑥) + 𝑝2𝑃(𝑚𝑖𝑛(𝑋𝑛−1, 𝜀𝑛) > 𝑥) 

 

+𝑝3𝑃(𝜀𝑛 > 𝑥) + (1 − 𝑝1 − 𝑝2 − 𝑝3)𝑃(𝑋𝑛−1 > 𝑥). 

 

This simplifies to 

�̅�𝑋𝑛(𝑥)  = 𝑝1 [1 − (1 − �̅�𝑋𝑛−1(𝑥)) (1 − �̅�𝜀𝑛(𝑥))] + 𝑝2�̅�𝑋𝑛−1(𝑥)�̅�𝜀𝑛(𝑥) 

                                      +𝑝3�̅�𝜀𝑛(𝑥)  + (1 − 𝑝1 − 𝑝2 − 𝑝3)�̅�𝑋𝑛−1(𝑥).                              

 

Under stationary equilibrium, this reduces to 

 

𝐹�̅�(𝑥) =
(𝑝2 + 𝑝3)�̅�𝑋(𝑥)

𝑝1 + 𝑝3 + (𝑝2 − 𝑝1)�̅�𝑋(𝑥)
=

𝛽�̅�𝑋(𝑥)

1 − (1 − 𝛽)�̅�𝑋(𝑥)
                            (9) 

 

where =
𝑝2+𝑝3

𝑝1+𝑝3
 . This has the same functional form of the Marshall-Olkin survival function. The converse follows as before. 

 

Remark: By substituting the survival function of the QE distribution in equation(9) we obtain 

 

�̅�𝜀(𝑥) =
𝛽[1−(1−q)(ux)]

2−q
1−q

1−(1−𝛽)(1−(1−q)(ux)
2−q
1−q

  ,                  0<q<1 

 ,                   

The above model is a more generalized form having four components. Hence it can be used to model a variety of situations. 

 

8. APPLICATIONS 

The MOq-e distribution studied in this paper can be used for modeling data from various areas such as statistical mechanics, financial 

contexts, communications engineering, entropy studies etc. The max-min autoregressive processes can be used for modeling time 

series data from hydrological, financial and reliability contexts. They accommodate four components with respect to innovations, 

processes, minimum as well as maximum of the process values and offers wide flexibility in modeling real data sets 
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