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Applying multi-objective linear programming formulation for the solution of portfolio 

optimization in share market, two methods are proposed in this paper. Here the short and long 

term returns as well as annual dividend received are maximized. Further, the associated risk in the 

form of semi-absolute deviation below the expected return is minimized. The proposed methods 

of solution are illustrated by a real life example based on current data collected from Bombay 

Stock Exchange (BSE). 
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I. INTRODUCTION 

A Portfolio in finance means the combination of shares or 

other investments that a particular person or company has. 

When a potential purchaser visits a share market for 

purchasing securities/debentures etc. the first task he/she 

does is to observe the market and gathers experiences and 

believes regarding future performances of available 

securities. Having the relevant believes about future 

performances, the purchaser selects the portfolio of his/her 

choice within the available budget, Markowitz [1]. 

In selecting the portfolio, the investor desires to 

maximize the expected return and at the same time minimize 

the concomitant risk and hence make a balance between the 

return and the risk. Now the share market is unpredictable 

and fluctuation in the prices is a regular phenomenon. Thus 

the cost prices of shares and its return is random in nature. 

So, the selection of portfolios, without proper planning and 

evaluation of the alternatives is a difficult task. 

Naturally, question arises how the investor may select 

portfolio so that his/her expected return is maximized and at 

the same time risk is minimized. Markowitz [1] in 1952 first 

considered these aspects and proposed the mean-variance 

model for portfolio selection and it is considered as one of 

the best methods for addressing such problem. Markowitz’s 

model describes how an investor can select optimum 

portfolio taking into consideration the trade-off between the 

expected return and the market risk. However to remove 

some shortcomings of the said method, Markowitz [2] used 

semi-variance in the place of variance in 1959. Markowitz 

mean variance model may lead to erroneous conclusion, 

particularly when the security returns are asymmetric in 

nature. The existence of such asymmetric security return 

distribution was later indicated in the works of Liu, et.al.[3]; 

Yan and Li [4]; Guo, Q. et.al. [5], Mansini et. al. [6],  Ayub, 

et.al. (2015)[7] and they proposed some models to minimize 

the risk in the way of minimizing semi-variance. Their works 

enriched the process of portfolio selection. 

Now to apply mean-variance or mean semi-variance 

method of optimal portfolio selection, the probability 

distribution of the returns is required. Again for the 

application of the probability theory in the portfolio selection 

process, the decision-maker must be provided with a 

reasonably large size of statistical data pertaining to the 

performance of the securities. 

Many researchers proposed an alternative way of 

selecting portfolios based on expert’s opinion regarding the 

subjective valuation of the security and their prospective 

returns. Their works can be broadly categorized into three 

ways: using Fuzzy set theory Gupta, et.al.[8] ; using 

Possibility theory, Carlsson, et.al.[9] ; Zhang, et.al. [10] and 

using Credibility theory Huang [11]; Qin, et.al.[12] These 

methods are used in a situation where sufficient data 

regarding security returns is lacking. However, these fuzzy 

methods are also subjected to some drawbacks. When a 
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fuzzy variable is used to represent the security returns, a 

paradox appears [Huang and Ying [13]]. Liu [14] proposed 

an alternative way to estimate subjective expert’s valuation 

of the security returns using uncertainty theory. Following 

this theory, many researchers subsequently worked on the 

problem of portfolio optimization. Some of such works are 

Yao [15], You [16] 

Some recent works in this area show that the Multi-

objective Linear Programming technique could be 

successfully used for solving portfolio selection problem. In 

2008 Pankaj Gupta et al. [8] considered asset portfolio 

optimization using Fuzzy mathematical programming. They 

used a semi absolute deviation model for risk calculation by 

transforming the mean-variance model. In the process, they 

considered not only yearly return for maximization but also 

maximized long term returns. Another method for optimum 

portfolio selection using linear programming under a crisp 

and fuzzy environment can be seen in the work of Hong-Wei 

Liu [17]. 

In the present paper a multi-objective linear programming 

model for portfolio selection has been considered. In the 

constructed model four objectives (three maximizing and one 

minimizing) have been set up. It is then solved by two 

methods viz. Zimmermann [18] technique under fuzzy 

environment and Min-max Goal programming which is akin 

to fuzzy method. To illustrate the proposed methods of 

solution, a real life example has been given. For construction 

of the problem, current data regarding monthly return, annual 

dividend etc. offered to the shareholders by twenty renowned 

companies have been collected from BSE. The parameters 

relevant to the problem are calculated from the collected data 

pertaining to the selected twenty companies and are placed in 

table (2). The real life portfolio selection problem is finally 

solved by the said methods using Lingo 18 software and the 

solutions are compared. With these objectives in mind the 

paper has been arranged as follows: 

In section II, the portfolio selection problem has been 

modelled as a Multi-objective Linear Programming Problem 

(MOLPP). In section III two methods of solution for the 

constructed MOLPP model have been proposed. The first 

one is a fuzzy method using Zimmermann technique 

discussed under section III (A). The second one is based on 

Min-max Goal Programming technique for solving MOLPP 

involving both maximizing and minimizing objectives and is 

placed in section III (B). Section IV deals with the solution 

of the real life portfolio selection problem based on real data 

obtained from BSE on monthly closing values, annual 

dividend etc. per share declared by twenty selected 

companies over a period of ten years. Section IV (A) and IV 

(B) contain respectively the solution obtained by 

Zimmermann fuzzy method and Min-max G.P method of the 

real life problem undertaken. The solutions obtained are also 

compared. Section V contains the conclusions about the 

findings of the present paper and finally some relevant 

references are placed. 

 

II. PORTFOLIO OPTIMIZATION PROBLEM AS A MULTI-OBJECTIVE LINEAR PROGRAMING PROBLEM 

In this section we propose a multi-objective linear programming model for portfolio selection problem. 

 

Let a potential buyer intends to invest his/her wealth amounting  B in share market among n assets. Let, xi be the proportion 

of wealth invested in ith asset, i = 1, 2, ..., n. 

Then, x1 + x2 + ... + xn = 1, also Bi = xi B is the amount (in rupees) invested in the ith  asset. 

For formulation of portfolio selection model as in [8] we consider three types of monthly average return per unit of each asset 

purchased and propose here a modified model. 

ri = Expected monthly rate of return per unit of the ith asset (estimated as the average monthly return over a period of 10 years)    

   =  

ri
1  = Average monthly return per unit of the ith asset (calculated over a period of 1 year) =  

ri
2  = Average long term monthly return per unit of the ith asset (calculated over a period of 3 years) =  

di = Annual dividend received from per unit of the ith asset. 

Where rit denotes the return of the ith asset for the tth month of the period considered. 

We set the following objectives in respect of the portfolio x = (x1, x2, ..., xn) 

 

,    where      (maximizing the annual return), 

    

     where      (maximizing three-yearly return). 

 

   [maximizing the annual dividend for all the assets purchased] 

 , where   
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measures the absolute semi deviation of the returns for the tth month below the expected return comprising of all the assets. The 

objective f4(x) stands for the average absolute semi deviation of the returns for the time period T. For a fixed month t, let us 

partition the set {1, 2,...n} in two disjoint subsets A and B such that i ∈ A implies rit ≥ ri  i.e. the return for the tth month of ith asset 

is at least equal to the expected return for the asset and i ∈ B implies rit < ri  i.e. the return for the tth month of the ith asset is less 

than its expected return. Then wt (x) = ,)(
1





n

i

iti rr i ∈ B and wt (x) = 0 for i ∈ A. 

Here T is the period over which the semi absolute deviation below the expected return is considered. For our purpose T = 36 

months has been taken. The objective f4(x) gives a measure of risk in selecting the portfolio x (for a long term i.e. 3 years). Hence 

this objective aims at minimizing the risk of getting a return below the expected return for a long term (3 years). If rit  ≥ ri for some 

i, i=1,2, ... n, then wt (x) = 0 . On the other hand if rit < ri  for some i, i=1, 2, ... n , then  

 

Thus for the tth month of the period T, the sum of the risk associated with the portfolio x = (x1, x2,..., xn) is given by 

. For the whole period T, the average risk is represented by     
i

t i

iti xrrf )(
36

1
)(

36

1

20

1

4 
 

x
 

Our aim is to optimize the above mentioned four objectives subject to the following constraints. 

                                                      x1 + x2 + ... + xn  = 1  [Budget constraint, xi ≥ 0] 

xi  ≤  uiyi     [upper bound constraint for investment in ith asset ] 

    xi  ≥  liyi      [lower bound constraint for investment in ith asset ] 

 

where ui, li respectively denote the highest and lowest proportion of investment in the ith asset and yi is a binary variable defined by 

 

                                     (1) 

 

                                [constraint representing the highest number assets included in the list.] 

 

In the solution process l will be automatically determined. 

 

Thus the portfolio selection problem as a multi-objective L.P.P is given by 

                                                                         

 Where                                                

                                                        subject to, 

                                                                             x1 + x2 + ... + xn = 1  

            xi ≥ liyi  

    xi ≤ uiyi  

    ui ∈ [0,1] 

                                                                        li ∈ [0,1]     (2) 

                                                                            y1 + y2 + ... + yn = l  

    l ∈ [1,20]  

   yi ∈{0,1} 

   xi  ≥ 0 

                                                                      i = 1, 2,...n 
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In [8], for solving the model (2) the authors kept it open for the decision makers about the choice of ‘l’, the number of non-zero 

entries in the portfolio. However in our proposed modified model the constant ‘l’ will be automatically determined by the system. 

The benefit of this small but significant change is discussed in section 4 while solving a real life problem. 

 

III. SOLUTION OF THE PORTFOLIO SELECTION PROBLEM UNDER FUZZY ENVIRONMENT 

Here we solve the portfolio selection problem modelled in (2) by two methods. The first one is a fuzzy method due to 

Zimmermann and the second one is Min-max Goal Programming [GP] which is akin to fuzzy method 

A. Solution Using Zimmermann Technique 

 We use Zimmermann’s [18] technique for solving multi-objective linear programming problem under fuzzy environment. The 

same is used for the solution of the multi-objective portfolio selection problem (2). For this we first calculate the max/min values 

of the objectives separately subject to the given constraints and also note the corresponding solution in each case. 

This is done by solving four single objective LPPs taking one objective at a time from fk (x), k = 1, 2, 3, 4 and subject to the 

constraints of (2) using Lingo (18.0). 

Let the optimal values and the optimal solutions of the individual objectives be given by 

 

),()( *

111

*

1 max xx ffz
Xx




     
),()( *

222

*

2 max xx ffz
Xx




    
),()( *

333

*

3 max xx ffz
Xx




 

Xxffw
Xx




),()( *

444

*

max xx            (3) 

Here *

3

*

2

*

1 ,, xxx and x∗4 are their respective optimal solutions. These max/min values of the maximizing / minimizing objectives 

are respectively used as their optimistic values. Where X is the feasible space defined by the constraints of (2). Next we fuzzify 

the objectives of the problem (2) as follows 

 

where the symbols ( ) and ( ) respectively represents essentially greater than or equal to and essentially smaller than or equal 

to , which are respectively the fuzzified version of  ≥ and  ≤  respectively [19]. 

To construct membership function of the fuzzy objectives defined above with the corresponding ideal values as their fuzzy goals, 

another set of objective values (pessimistic values) is required. This is obtained by using Luhandjula’s [20] comparison technique. 

The technique is discussed as follows. 

We prepare the following Table [1] calculating the values of the objectives at each of the points *

3

*

2

*

1 ,, xxx and x∗4  which are 

respectively the optimal solutions of the individual objectives. 

 

Table 1: Calculation of Pessimistic values of the Objectives 

Solution Objectives 

   
w  

    )( *

1xw  

    )( *

2xw  

    )( *

3xw  

    
**

4)( ww x  

         

       From this table we calculate the pessimistic values of the objectives as follows 

1ẑ  = Min {z1
∗, z1 (x∗2), z1(x∗3) , z1(x∗4)} 

2ẑ  = Min {z2 (x∗1), z2
∗, z2(x∗3), z2(x∗4)} 

3ẑ  = Min {z3 (x∗1), z3 (x∗2), z3
∗, z3(x∗4)} 

ŵ  = Max {w(x∗1), w(x∗2), w(x∗3), w∗} 

The method explained above is capable of extension in more involved cases. 

Now, returning to the solution of the problem (2), let 1ẑ  , 2ẑ , 3ẑ and ŵ are respectively the pessimistic values of the objectives 

z1 ≡ f1(x),  z2 ≡ f2(x),  z3 ≡ f3(x) and w ≡ f4(x) obtained by using Luhandjula’s technique explained above. Using these ideals 
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(optimistic) and pessimistic values of the objectives, their linear membership functions with the ideal values as their respective 

fuzzy goals are constructed as follows. 

 

  (4) 

and 

  (5) 

                                                       

  (6) 

and 

 

  (7) 

 

Now we use optimality principal of Bellman and Zadeh [21]. It states that the fuzzy set “decision” is a confluence of its fuzzy 

objectives and constraints. Thus using the linear membership values of the fuzzy objectives given in (4) to (7), the Zimmerman 

fuzzy model, for solving the portfolio selection problem based on the multi-objective linear program (2) is given by 

 

                                                                                   max λ  

                                                           subject to, 

       (8) 

which is a confluence of the fuzzy goals and constraints [21].  

 

Here λ = 
x

min {µz1(x), µz2(x), µz3(x), µw(x), 1}, 

and 1 stands for the constant function having the value 1. It represents the common membership function of each of the crisp 

constraints in (8). Here li and ui are respectively the lower and upper bounds of xi ∈ [0, 1] and yi is a binary variable defined   
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B.  Solution Using Min-max Goal Programming  

 We next solve the portfolio selection problem (2) using Min-max Goal Programming [GP] [22] technique. Min-max GP is an 

important method to solve MOLPP involving both maximizing and minimizing objectives. This method is akin to the fuzzy 

method of solution of an MOLPP. Now for solving MOLPP (2) using Min-max GP, we consider the following system 

 

min d 

subject to, 

                                                                                                  fk (x) + nk − pk = ωk     k = 1,2,3,4         (9) 

                                                                                                 βk nk + γk pk ≤ d  

x ∈ X 

Where X is the feasible space defined by the constraints of (2). Here d is the maximum deviation between the achievement of the 

goals and their aspiration levels; ωk is the specified aspiration level for the kth objective function fk(x); nk (resp.pk) is the negative 

(resp. positive) deviation from the aspiration level of the objective fk (x); and βk, γk are the non-negative weights attached to the 

deviation variables as per decision makers choice such that 


3

1k

βk + γ4 = 1. For the maximizing objectives fk (x), k = 1, 2, 3. 

ωk = 
Xx

max  fk (x) = zk
∗  and ω4 = w* = 

Xx
max f4(x). The values  and w∗ are the ideal values of the objectives. Since the 

ideal values have been used as aspiration levels for the maximizing objectives, we must have fk(x) ≤  zk
∗, and hence pk = 0 for k = 

1, 2, 3. Similarly for the minimizing objective fk (x) ≥ w∗, and so nk = 0 for k = 4. 

 

Next we restrict the goal deviations to unit-less numbers, for this normalization of the deviation variables is necessary. This is 

done by dividing the deviation constraints (9) respectively by  and by t4 = ŵ  − w∗. Here zk
∗ (k = 1, 2, 3) 

and w∗ are the ideal values (optimistic values) of the objectives. Also kẑ  (k = 1, 2, 3) and ŵ are their pessimistic values. 

Thus we have the following modified system. 

 

    min d  

subject to, 

   (10) 

     x∈ X 

Where X is the feasible space defined by the constraints of (2). The weights of βk, k = 1, 2, 3 and γk, k = 4 are chosen by the 

decision maker such that 


3

1k

βk + γ4 = 1. 

Here d is the maximum normalized weighted deviation between the achievements of the goals and their aspiration levels. The 

linear program (10) can now be solved by using Lingo software 18. 

 

IV. REAL LIFE EXAMPLE TO ILLUSTRATE THE METHOD OF SOLUTION  

Here we construct a real life example to illustrate the proposed techniques (8) and (10) discussed in previous sections for the 

solution of portfolio selection problem. For this secondary data pertaining to the monthly closing values and annual dividend 

announced by twenty renowned companies over a period of last ten years (2009-2019) has been collected from the BSE, India (cf. 

http://in.finance.yahoo.com ; http://www.moneycontrol. com). 

 

The data collected are then used to calculate the parameters viz. monthly return (percent) (rit); average monthly return over a 

period of 1 year ( ri
1) ; and over a period of 3 years (ri

2 ) ; expected return over a period of 10 years(ri) . 
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 100
month previous of  valueClosing

month  previous of  valueclosing -month present  of  valueclosing
itr average monthly return percent 

 
 

 
 

 
 

Also for the calculation of semi-absolute deviation of rit below the expected return ri, the expression 

   is needed to be evaluated using the parameters defined above. 

 All these parameters evaluated using the collected data are presented in Table 2 

 

Table 2: Calculation of Parameters Involved 

Sl. No. Name of the 

Company 

1

ir  2

ir  ir  di 

 





36

1

),(
t

iitiit rrrr
 

1 ABB 0.04 0.9 0.94 4.8 117.29 

2 ACC -0.16 0.48 0.72 14 110.26 

3 ALBK -6.48 -2.47 -0.71 0 207.34 

4 ASHOK LEY -1.36 0.52 1.71 3.1 140.39 

5 BAJAJ AUTO 1.57 0.69 0.69 60 71.23 

6 BEL 1.6 -0.05 1.03 1.7 172.22 

7 BHEL -3.59 -1.13 -0.99 1.2 159.12 

8 BPCL 3.2 1.2 1.78 8 173.37 

9 CIPLA -0.5 -0.26 0.95 3 115.29 

10 DR REDDY 0.89 0.08 0.97 20 120.19 

11 INFOSYSTCH 1.1 1.22 0.98 8 81.52 

12 ITC -1.3 0.12 1.05 5.75 104.05 

13 MTNL -3.18 -1.32 -0.59 0 187.4 

14 SIEMENS 3.51 1.14 1.24 7 114.61 

15 TATAPOWER -2.27 -0.55 -0.33 1.3 111.55 

16 TITAN 2.54 4.06 2.84 5 99.28 

17 VOLTAS 1.69 2.26 1.84 4 106.09 

18 VSNL -1.65 -0.97 0.99 4.5 147.93 

19 HINDMOTOR -2.07 0.16 1.91 0 188.57 

20 WIPRO 0.22 1.09 0.64 1 88.59 

 

Therefore using the values of the parameters displayed in table-2, the objectives of our stated model are respectively given by 

Max f1(x) =  


20

1i
ri

1xi = (0.04x1 − 0.16x2 − 6.48x3 − 1.36x4 + 1.57x5 + 1.6x6 − 3.59x7 + 3.2x8 − 0.5x9 + 0.89x10 + 1.1x11 − 1.3x12 − 

3.18x13 + 3.51x14 − 2.27x15 + 2.54x16 + 1.69x17 − 1.65x18 − 2.07x19 + 0.22x20) 

 

Max f2(x) =  


20

1i
 ri

2xi = (0.9x1 + 0.48x2 − 2.47x3 + 0.52x4 + 0.69x5 - 0.05x6 − 1.13x7 + 1.2x8 − 0.26x9 + 0.08x10 + 1.22x11 + 0.12x12 − 

1.32x13 + 1.14x14 – 0.55x15 + 4.06x16 + 2.26x17 − 0.97x18 + 0.16x19 + 1.09x20)       (11) 

 

Max f3(x) =  


20

1i
xidi = (4.8x1 + 14x2 + 0x3 + 3.1x4 + 60x5 + 1.7x6 + 1.2x7 + 8x8 + 3x9 + 20x10 + 8x11 + 5.75x12 + 0x13 + 7x14 + 1.3x15 + 

5x16 + 4x17 + 4.5x18 + 0x19 + 1x20 
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A. Solution of the Portfolio Selection Problem 

Here we solve the portfolio selection problem as a MOLPP modelled in (2) and the objectives are explicitly represented in (11). 

We do it in two methods viz. Zimmermann fuzzy method and min-max GP method [22]. 

 

Solution of the Portfolio Selection Problem using Zimmerman Fuzzy Method 

For the solution of the portfolio selection problem modelled in (2) using Zimmerman fuzzy technique detailed in section III(A), 

we consider the system (8) and solve it by Lingo software 18. 

The four objectives z1 ≡ f1(x), z2 ≡ f2(x), z3 ≡ f3(x) and w ≡ f4(x) in (8) are explicitly given in (11). Now, to affect the solution, we 

need the optimistic and pessimistic values of the objectives. Considering the objectives of model (2), given in (11), one by one 

together with the constraints of (2) four LPPs are formed. We solve these four LPPs separately by Lingo software and obtain the 

following four solutions: 

z1
∗ = max z1 = 3.51,  xi = 0,  i = 1,2,....,20;  i ≠ 14;   x14 = 1 

z2
∗ = max z2 = 4.06,  xi = 0,  i = 1,2,....,20;  i ≠ 16;  x16 = 1 

z3
∗ = max z3 = 60,     xi = 0,  i = 1,2,....,20;  i ≠ 5;     x5 = 1 

w∗ = min w  = 1.98,  xi = 0,  i = 1,2,....,20;  i ≠ 5;    x5 = 1 

 

These optimal solution of the individual objective are respectively denoted by *

4

*

3

*

2

*

1 ,,, xxxx . 

Next we calculate the pessimistic values 
321

ˆ,ˆ,ˆ zzz and ŵ of the objectives using Luhandjula’s comparison technique. For this we 

compute all the objective values at each of these four individual optimal solution *

4

*

3

*

2

*

1 ,,, xxxx . The calculations are placed in 

Table (3). Thus from the table, by Luhandjula’s comparison technique the pessimistic values of the objectives are given by 
1ẑ  = 

min {3.51, 2.54, 1.57, 1.57} = 1.57, similarly 
2ẑ  = 0.69, 

3ẑ  = 5, ŵ  = 3.18. 

Now substituting the values of *

4

*

3

*

2

*

1 ,,, zzzz  and 
321

ˆ,ˆ,ˆ zzz and ŵ in system (8) we get the following Zimmermann fuzzy model for 

the solution of portfolio selection problem. 

max λ  

                                                    subject to, 

 (12) 

 

}1,
2.1

18.3
,

55

5
,

37.3

69.0
,

94.1

57.1
{ 321

min
wzzz

x


  
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Solving the model (12) by Lingo 18 software the solution obtained is 

λ = 0.4090404 

z1 = 2.363538 

z2 = 2.068466 

z3 = 27.49722 

w = 2.538599 

x5 = 0.4010712 

x14 = 0.2191520 

x16 = 0.3797768 

xi = 0,for other values of i = 1, 2,...20 

 

The obtained solution shows that for an investor, it is beneficial to purchase the shares of the three companies corresponding to the 

non-zero values of the decision variables for overall satisfaction of his objectives. The solution actually trade-offs among the 

interests of the objectives. This can be seen by comparing the individual optimal values of the objectives and their values obtained 

by the proposed methods. 

 

Solution of the Portfolio Selection Problem using Min-max GP method 

For the solution of the portfolio selection problem modelled in (2) using Min-max GP technique detailed in section III(B) we 

consider the system (10) and solve it by Lingo software 18. 

 

Table 3: Calculation of Pessimistic values of the Objectives 

Solution Values of the Objectives 

    

 3.51 1.14 7 3.18 

 2.54 4.06 5 2.76 

 1.57 0.69 60 1.98 

 1.57 0.69 60 1.98 

 

In section IV(A) the calculated optimistic and pessimistic values of the four objectives are as follows: 

 

 

1ẑ = 1.57, 2ẑ = 0.69, 3ẑ = 5, ŵ = 3.18 

 

Now substituting the values of  and k = 1, 2, 3; and t4 = *ˆ ww   in system (10) we get the following 

Min-max GP model for the solution of portfolio selection problem. 

 

 

min d¯ 

              subject to, 

 

                                                                            

d
t

n

d
t

n

d
t

n







3

3
3

2

2
2

1

1
1






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                      (13) 

 

The explicit expressions for fk (x) are given in (11). The weights nk ≥ 0, k = 1, 2, 3 and p4 ≥ 0 are chosen so that β1 +β2 +β3 +γ4 = 1. 

These weights are chosen by the decision maker according to his/her priority for the objectives. We can also take the null 

hypothesis of equality of all the weights. The solution obtained by Lingo software for some typical choice of the weights is 

displayed in Table [4]. From the table we see that for the choice of equal weights, the solution obtained is exactly the same as 

obtained by the Zimmermann fuzzy technique. 

In [8], as mentioned earlier, the constant ’l’ is to be decided by the decision maker. In the present paper it has been left for the 

system to determine ’l’, so that λ in model (8) and  in model (10) are respectively maximized and minimized. It is also observed 

that the system is capable of determining such ’l’ optimally. The benefits of this change can be seen from the solution of the real 

life problem undertaken in section 4. 

 

Table 4: Solution obtained in Min-max GP method by varying weights 

Weights Chosen Solution obtained 

β1 β2 β3 γ4 xi  z1 z2 z3 w 

0.25 

0.25 0.25 0.25 

x5 = 

0.4010 

0.1477 2.3635 2.0684 27.4972 

2.5385 

 x14 = 

0.2190 

 

 x16 = 

0.3798 

0.1 

0.5 0.25 0.15 

x 5 = 

0.3333 
0.1667 2.2167 2.9367 23.3333 

2.4980 

 x16 = 

0.6667 

 

0.2 

0.1 0.4 0.3 

x 5 = 

0.6584 
0.1317 2.2327 0.8437 41.8944 

2.3902 

 x14 = 

0.3416 

 

0.4 

0.1 0.2 0.3 

x5 = 

0.4291 
0.1716 2.6775 0.9469 29.7400 

2.6665 

 x14 = 

0.5709 

 

0.1 

0.15 0.25 0.5 

x5 = 

0.6828 
0.1024 1.8778 1.7591 42.5518 

2.2257 

 x16 = 

0.3172 

 

 

A synopsis of the system generated solutions for models (12) and (13) (for equal weightage case) is placed in table 5 . 
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Table 5: Abridged solutions of the models (12) and (13) 

Solution of model (12) Solution of model (13) for equal 

weightage 

λ = 0.4090 d = 0.1477 

x5 = 0.4010 x5 = 0.4010 

x14 = 0.2191 x14 = 0.2191 

x16 = 0.3797 x16 = 0.3798 

 

On the other hand choosing the constant ’l’, as was proposed in [8], we get the solution displayed in Table-6 for l = 3 

 

Table 6: Abridged solutions of the models (12) and (13) choosing ‘l’= 3 

Solution of model (12) Solution of model (13) for equal 

weightage 

λ = 0.1323 

x5 = 0.1471 

d  = 0.2430 

x14 = 0.8436 

x8 = 0.3131 x17 = 0.1564 

x11 = 0.5399 - 

 

Comparing the Table-5 and Table-6 we see that for the system generated solutions the values of the parameters λ and d are 

respectively greater and smaller than their corresponding values obtained by choosing the constant ’l’. Now λ denotes the overall 

satisfaction of the decision maker towards the achievement of the objective goals. Also, d stands for the maximum normalized 

weighted deviation between the achievements of the goals and their aspiration levels. This indicates that, keeping ‘l’ to be 

determining by the system we get better result. This is because the overall satisfaction of the decision maker is maximized and the 

deviation between the aspiration level and the achievement of the objectives are minimized in this case. Similar findings could be 

observed by choosing l = 2, 4, 5 etc. 

 

V. CONCLUSION 

A modified method for solving portfolio optimization 

problem using multi-objective linear programming 

technique under fuzzy environment has been proposed and 

solved in this paper. The modification lies in the 

determination of number of non-zero entries in the optimal 

portfolio. Here instead of deciding in advance the number of 

such non-zero entries, it has been obtained from the 

optimum solution of the system. The benefits of such 

change have been elaborated in section IV. The method of 

solution has been illustrated with the help of a real life 

problem of investing wealth among twenty prospective 

shares of companies listed in table 2. Four objectives are 

considered, viz., maximizing short and long term returns and 

annual dividend received; and also minimizing the risk of 

investment. For the construction of short and long term 

return objectives, average monthly return over a period of 

12 months and 36 months have been considered 

respectively. Actual annual dividend offered by the 

companies to shareholders is taken for the construction of 

annual dividend objective. The risk has been measured as 

the absolute semi-deviation of the return earned below the 

expected return. Here the expected return is taken as an 

average of monthly return over a period of 10 years. With 

these objectives a modified MOLPP (2) is constructed for 

the solution of the portfolio selection problem. 

Now solving an MOLPP we get some compromised or trade 

off solution. For an MOLPP involving both maximizing and 

minimizing type of objectives, Zimmermann fuzzy and Min-

max GP are two important methods of eliciting efficient 

solutions. In the present paper the constructed MOLPP has 

been solved by both of these methods and the solution 

obtained are compared. For Min-max GP method of 

solution, it is manifested from table 4, that the more we 

attach importance to the objective f4(x) (minimizing risk), 

the dividend received increases and risk diminishes. Also, 

with the increase in the sum of the weights attached to f3(x) 

and f4(x), the dividend also increases, and is independent of 

the weightage attached to the objective f3(x) (maximizing 

dividend). It has been seen that both the methods of solution 

yielded the same portfolio where 40%, 22% and 38% of the 

investment are to be made respectively to the shares of Bajaj 

Auto, Simens and Titan. The nobility of the proposed 

methods of solution of the modified MOLPP is to convert 

the same into a single objective fuzzy linear programming 

problem. For the first method the overall satisfaction of the 

decision maker is moderate (λ = 41%) and for the second 

method the maximum of the deviations between 

achievement of the goals and their respective aspiration 

levels is d = 0.148 which is very small. 

As a future scope of study more number of relevant 

objectives could be annexed (e.g. Capital growth, Liquidity, 

Security of principal amount invested, market availability 

etc.) to make the construction more realistic. Another aspect 

which can be looked into is to consider the objectives as 

fuzzy. They may be represented by triangular, trapezoidal 

fuzzy numbers. 
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