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I. INTERODUCTION 

Nonlinear eigenvalue problems arise in various scientific 

and technical fields. Over the last years, significant 

achievements have been made in the development of 

numerical methods for addressing such problems. 

Additional information on possible applications of nonlinear 

eigenvalue problems and numerical methods for solving 

them can be obtained, in particular, from [1]. 

For the problems which only have real eigenvalues it would 

be desirable to have not only a simple approximation (for 

example, monotony at one side) and an asymptotic error of 

calculation, but also obtain the upper and lower bounds of 

eigenvalues in the calculation process. In many cases this 

allows to evaluate the reliability of the iterative 

approximation. It is meaning at each step of the iterative 

process a convenient aposteriori estimation of the 

calculation error can be obtained. 

For linear spectral problems, there are several general 

approaches to constructing the lower bounds of eigenvalues, 

but they cannot be generalized on nonlinear problems. The 

exception is spectral problems for polynomial operator 

bundles of self-adjoint operators, on which can be 

generalized the methods based on inclusion theorems . 

This work is a continuation of the study proposed by the 

author of the approach to construct the methods and 

algorithms of bilateral approximations to the eigenvalues of 

spectral problems, nonlinear with respect to the spectral 

parameter [2, 3, 4]. 

Here, to calculate a simple isolated eigenvalue, a one - 

parameter family of bilateral methods of Newton 's type is 

constructed. Their convergence is substantiated. 

. 

II. PRELIMINARIES 

We consider the nonlinear eigenvalue problem  

                      ( ) 0y D ,       (1) 

where ( )D  is a square matrix of order n , all elements of which are sufficiently smooth (at least three times continuously 

differentiable) functions of the parameter R , 
ny R . The eigenvalues is sought as solutions of determinant equation  

                 ( ) det ( ) 0f    D .                 (2) 

To determine the isolated eigenvalue of matrix ( )D  we proposed and justify the Newton-type iterative processes which give the 

alternate approximations to the eigenvalue 
 of the equation (2), i.e. 

0 2 2 2 1 3 1... ... ... ...m m



                  
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or               (3) 

1 3 2 1 2 2 0... ... ... ...m m



                  

and the included monotonous bilateral approximations to the eigenvalue, i.e. 

                       
0 1 2 2 1 0... ... ... ...m m

                              (4) 

without unfolding the determinant det ( )D . This means that the left hand side of equation (2) is not set in explicit form, but the 

algorithm of finding the functions ( )f   and their derivatives ( )f    and ( )f    at a fixed value of the parameter. Therefore, 

for calculation ( )mf  , ( )mf    and ( )mf    it is necessary compute, for a fixed m   , decompositions 

,

D = LU ,

B = MU + LV ,

C = NU + 2MV + LW

     (5) 

whence we obtain 

1

( )
n

m ii

i

f u


  ,    

1 1,

( )
nn

m k k ii

k i i k

f v u
  

    , 

1 1,

( )
nn

m k k ii

k i i k

f w u
  

    
1 1, 1, ,

nn n

k k j j i i

k j j k i i k i j

v v u
     

 
 
 

   . (6) 

The matrix elements in the decompositions (5) can be calculated using the corresponding recurrence relations written in [3]. 

Consequently, in order to calculate the derivatives in N  points m   , 1,2,..,m N  it is necessary to calculate N  times the 

decomposition (6) and derivatives for each fixed m   , 1,2,..,m N  using formulas (6). 

Next, by 
  we denote a precise simple root of equation (2) ( ( ) 0f   ), in some neighborhood of which the following 

behavior of function ( )f   is possible. 

(A). Function ( )f   is convex ( ( ) 0f    ) and its derivative is ( ) 0f    . 

(B). Function ( )f   is concave ( ( ) 0f    ) and its derivative is ( ) 0f    . 

(C). Function ( )f   is convex ( ( ) 0f    ) and its derivative is ( ) 0f    . 

(D). Function ( )f   is concave ( ( ) 0f    ) and its derivative is ( ) 0f    . 

Along with ( )f   we consider one-parametric family of functions  

( )
( )

sgn | ( ) |

f
z

f f
 


  

  
,     0  , 

which obviously has the same zeros as the function ( )f  , that is , ( ) 0z 

    . It is easy to verify that , ( )z    is twice 

continuously differentiable at the point of 
  for which the relation 

1

1
( )

| ( ) |
z

f



  
   

 
,  

(2 1) sgn ( )
( )

| ( ) |

f f
z

f




  

     
  

 
. 

is satisfied and which has the following properties. 

Theorem 1. Let 
  be the simple real root of equation (2), in some neighborhood U  of which for function ( )f   holds one of 

conditions (A) - (D). Then there is such neighborhood U U   of the root, in which for 1   : 

i) if conditions (A) or (D) is satisfied then the function ( ) ( ) / sgn | ( ) |z f f f 


        is a concave monotonically 

decreasing function, its derivative ( ) 0z    and monotonically decreasing; 

ii) if conditions (B) or (C) is satisfied then the function ( ) ( ) / sgn | ( ) |z f f f 


        is a convex monotonically 

decreasing function, its derivative ( ) 0z    and monotonically increasing. 
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III. A FAMILY OF BILATERAL APPROXIMATION METHODS 

Using the properties of the function ( )z  , we can construct a family of iterative processes of Newton type methods that give 

bilateral approximations in the form (3). For example, for cases (A) or (D), the iterative process can be written in the form 

2
2 1 2 1

2 2

2 1 2 1
2 2 2 1 2

2 1 2 1 2 1

( )
,

( ) | ( ) |

( ) ( )
,

( ) ( ) ( )

m
m m

m m

m m
m m

m m m

f

f f

f f

f f f

 

 
 

  


      


    
     

   (7) 

* *

00,1,2, ... , ( , )m       , 

Similarly, an iterative process can be constructed for other cases. 

The following theorem serves to justify the bilateral convergence of the iterative process (7). 

Theorem 2. Let 
  be a simple real root of equation (2) and let us suppose that in some neighborhood of the root 

( ) { : | | }U  

       , 

where the following relation fulfills 

2

( ) ( )
1

( )

f f
q

f

 
  

 
 

for a three times continuously differentiable function ( )f   that describes the equation (2) the condition (A) or (D) is satisfied, 

and for the function ( ) ( ) / sgn | ( ) |z f f f 


        the inequalities 

0

1

( )
N

z
 

 
       for   0 ( , )      , 

1

1

( ) 2

( )

z

z M








 
        for   

1 ( , )      , 

are hold, where 

( )
max | ( ) |
U

M z





 

  ,     
2

( , )

( ) ( )
max 1

( )

z z
N

z 

 

   


 
 

 
. 

Then the iterative process (7) starting with 0 ( , )       converges to the root 
  on both sides 

1 3 2 1 2 2 0... ... ... ...m m



                 . 

The theorem is proved by the method of mathematical induction, relying on Theorem 1. 

It should be noted that an iterative process (7), which provides the bilateral approximations to the eigenvalue, with respect to (6), 

will be presented in the form 

1 1

2 1 2

1 1 1

1/ ,  
nn n

kk kk
m m ii

k k ikk kk

v v
u

u u

 



  

 
      

 
                    (8) 

2

2 2 2 1

1 1 1,

/ (1 )
n n n

kk kk kk kk ii
m m

k k i i kkk kk kk kk ii

v v w v v

u u u u u
 

   

     
                 

   , 

0,1,2, ...m   

where ,kk kku v  are the elements of the matrices U, V  in the decompositions (5) for the fixed 2m   , and , ,kk kk kku v w  are 

the elements of the matrices U, V  and W in the decompositions (5) for the  fixed 2 1m   . 

So, the algorithm can be written as: 

Algorithm 1. Iterative process of alternate approximations 

1. We set the initial approximation 0  to the s -th eigenvalue of the problem (1) 

2. for 0,1,2,m   until the accuracy is achieved do 
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3. if m  is even 

4. than calculate the values ,kk kku v from the decomposition (5) for 2m    

5. calculate approximation to the eigenvalue 2 1m  by (8) 

6. else calculate the values , ,kk kk kku v w  from the decomposition (5) for 2 1m    

7. calculate approximation to the eigenvalue 2 2m  by (8) 

8. end for m . 

The algorithm shows that in order to obtain the alternate approximations, on each step of the algorithm, one must refer to the 

algorithm of calculating the decomposition (5). 

In some cases, the algorithm constructed based on the iterative process of including approximations is more optimal with respect 

to the number of calls to the calculation of decomposition (5) [3]: 

                     
1

( )

( )

m
m m

m

f

f



   

 
,                                     (9) 

                           1 2

( ) ( )
,

( ) ( ) ( )

m m
m m

m m m

f f

f f f


 
   

    
   0,1,2,...m  . 

With this algorithm we get the including approximations to the eigenvalue in the form 

0 0 1 2 1... ... ... ...m m                , 

using one initial approximation, for example, to the left hand of  . 

If we now replace the values of the function and its derivatives at the desired points by the relations (A.4), then the iterative 

process (9) will have the form 

1

1

1/ ,  
n

kk
m m

k kk

v

u




 
     

 
                                  (10) 

2

2 2 2 1

1 1 1,

/ (1 )
n n n

kk kk kk kk ii
m m

k k i i kkk kk kk kk ii

v v w v v

u u u u u
 

   

     
                 

   , 

0,1,2, ...m   

where , ,kk kk kku v w  are the elements of the matrices U, V  and W  in the decompositions (5) for the fixed m   . 

Therefore, we propose the following algorithm to find the eigenvalues of the nonlinear spectral problem: 

Algorithm 2. Iterative process of included approximations 

1. We set the initial approximation 0 0    to the s-th eigenvalue of the problem (1) 

2. for 0,1,2,m   until the accuracy is achieved do 

3. calculate the values , ,kk kk kku v w from the decomposition (5) at the m    

4. calculate approximations to the eigenvalue 1m and 1m  by the formula (10) 

5. end for m . 

Thus, we see that with the algorithm 2, unlike the algorithm 1, two approximations (from left and right hand sides of the root) are 

calculated performing only one call to the calculation of decomposition (5). 

 

IV. NUMERICAL RESULTS 

In the study of the stability of systems of ordinary differential equations with delay, the eigenvalue problems in which the spectral 

parameter enters nonlinearly are arisen. Thus, the process of propagation of weak perturbations in multi-connected systems (such 

as electric and acoustic fields) is described by a system of linear differential-algebraic equations of the form 

1

( )
( ) ( ) 0

N

k k

k

du t
u t u t

dt 

    B A C ,    (11) 
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where , , kA B C  are the square matrix, 0k  , 1, 2, ... ,k N  are the given numbers. When investigation of the stability 

consider that the elements of the matrices , , kA B C  do not depend on t  and on the delay parameters 
1 2, , ... , N   . 

We consider the partial case of such system with one delay parameter and also assume that the coefficients of the equations and 

the parameter are independent of the time variable. Then the system of equations will take the form 

( )
( ) ( ) 0

du t
u t u t

dt
    B A C ,      (12) 

where ( )u t  is the vector of perturbations, , ,A B C  are square real matrices whose coefficients are independent of t . Then the 

solutions of system (12) can be found in the form 

( ) tu t xe ,                                 (13) 

where x  is the desired vector,   is the number. Substituting (13) into system (12), we obtain the eigenvalue problem 

( ) 0e x  A B C .    (14) 

Since (14) is a homogeneous system of linear algebraic equations, then its non-trivial solution exists if and only if 

                                                                   det( ) 0e  A B C . 

Next, we consider problem (14) in which the matrix  B C E . This choice of the problem is dictated by the fact that for it it is 

possible to compare the results of work of the proposed algorithms 1 - 2 with some other algorithms that were tested on a such 

problem. 

Therefore, we consider a nonlinear spectral problem ( ) 0x D  with matrix  

( ) e   D A E E ,  (15) 

where E  is a unit matrix, A  is a tridiagonal matrix with nonzero elements: 1, , 1 1, 2i i i i iia a a     . 

For such matrices, all the eigenvalues of problem (15) were calculated by each of algorithms 1 - 2. They completely coincided 

with the numbers obtained in [5] by another algorithm, which is only applicable if the matrices in problem (14) are related by the 

relation  C B . The results of the numerical experiments for the three eigenvalues are given in Table. 1. The calculations were 

performed with accuracy 
610  .  

 

Table 1. Bilateral Approximation 

  Algorithm 1 Algorithm 2 

0  m m  m  m  

4.0 1 3.941742 3.843018 3.941742 

 2 3.885413 3.885413 3.909833 

 3 3.900572 3.897677 3.899646 

 4 3.898688 3.898710 3.898726 

 5 3.898718 3.898718 3.898718 

 6 3.898718 - - 

3.4 1 3.324599 3.242099 3.324599 

 2 3.271814 3.270297 3.272956 

 3 3.271783 3.271782 3.271784 

 4 3.272783 3.271783 3.271783 

0.5 1 0.620603 0.620603 0.663037 

 2 0.644214 0.643877 0.644074 

 3 0.643963 0.643963 0.643963 

 4 0.643963 - - 

 

V. CONCLUSIONS 

Approbation of the constructed algorithms on model and 

physical problems shows their reliability and efficiency, as 

well as advantages over the usual Newton's method in the 

sense that at each step of the iterative process we obtain 

bilateral estimates of the desired solution, and therefore at 

each step we get a convenient a posteriori estimation of 

calculation error. 

As for the choice of the   parameter, this is the subject of a 

separate study. Here we note only next. When 1/ 2   is 

selected, the convergence rate increases and becomes cubic. 

When 1  , we can obtain the rate of convergence not less 

than cubic, using algorithm 2, in which for each subsequent 
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approximation to take the middle of the interval, ie 

1 ( ) / 2k k k    . 

Partial cases of this family of methods have been used to 

find the points of branching solutions of nonlinear integral 

equations arising in the theory of the synthesis of radiating 

systems and are used in the design of radiating devices 

(different types of antenna systems), 
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