International Journal of Mathematics and Computer Research ISSN: 2320-7167

Volume 08 Issue 09 September 2020, Page no. -2137-2140 Index Copernicus ICV: 57.55 DOI: 10.47191/ijmcr/v8i9.01

A Mathematical study on Q-Fuzzy Normal Subgroups

V. Anithakumari¹, S. Akila²

¹Assistant Professor, Department of Mathematics, Muslim Arts College, Thiruvithancode, Tamilnadu, India ²Research Scholar, Department of Mathematics, Muslim Arts College, Thiruvithancode, Tamilnadu, India

ARTICLE INFO	ABSTRACT
Published Online 17 September 2020	This paper on the basis of fuzzy sets introduced by L.A Zadeh, we first gave the definition of α - fuzzy set and then defined α -fuzzy subgroups and α - fuzzy normal subgroups and finally, defined quotient group of the α - fuzzy cosets of an α -fuzzy normal subgroup. This
Corresponding Author: Dr. V. Anikthakumari	paper, we introduce the concepts of Q-fuzzy normal sub groups and Q-fuzzy cosets and discussed some of its properties.
KEYWORDS: Q-Fuzzy Normal subgroup; Q-Fuzzy Characteristic subgroup; Q-Fuzzy Normalizer; Q-Fuzzy Cosets; Pseudo Q-Fuzzy Cosets.	

I. INTRODUCTION

The concept of fuzzy sets is introduced by Zadeh [10]. Then it has become a strong area of research in engineering, medical science, Social science and Graph Theory etc.,. Solairaju [3] gave the idea of Q-Fuzzy Normal sub Groups. Sunderrajan and Senthilkumar[8] introduce and define a L-Fuzzy normal Sub *l*-groups. Sithar Selvam[7] discussed properties of Anti -Q-Fuzzy Normal Subgroups. In this paper we define a new algebraic structure of Q-Fuzzy normal subgroups and Q-Fuzzy cosets and study some of their properties. This paper contains some definitions and results in Q-fuzzy normal subgroup theory and cosets, which are required in the equel. Some theorems are introduced in this paper which have been used by homomorphism and anti-homomorphism of Qfuzzy normal subgroups.

II. Q-FUZZY NORMAL SUBGROUPS

A. Definition:

Let(G, *) be a group and Q be a non-empty set. A Q-fuzzy subgroup A of G is said to be a Q-fuzzy normal subgroup(QFNSG) of G if A(xy, q) = A(yx, q), for all x and y in G and q in Q.

B. Definition

Let(G, \cdot) be a group and Q be a non-empty set. A Q-fuzzy Subgroup A of G is said to be a Qfuzzy characteristic subgroup (QFCSG) of G if A(x, q) = A(f(x), q), for all x in G and f in AutG and q in Q.

C. Definition

A Q-fuzzy subset A of a set X is said to be normalized if there exists an element x in X such that A(x, q) = 1.

D. Definition

Let A be a Q-fuzzy subgroup of a group (G, \cdot) . For any a in G, a A defined by $(aA)(x, q) = A(a^{-1}x, q)$, for every x in G and q in Q, is called a Q-fuzzy coset of G.

E. Definition

Let A be a Q-fuzzy subgroup of a group (G, \cdot) and H = { $x \in G / A(x, q) = A(e, q)$ }, then O(A), the order of A is defined as O(A) =O(H).

F. Definition

Let A be a Q-fuzzy subgroup of a group (G, \cdot) . Then for any a and b in G, a Q-fuzzy middle coset aAb of G is defined by (aAb)(x, q) = A $(a^{-1}x b^{-1}, q)$, for every x in G and q in Q.

G. Definition

Let A be a Q-fuzzy subgroup of a group (G, *) and a in G. Then the pseudo Q-fuzzy coset $(aA)^P$ is defined by $((aA)^P)(x, q) = p(a)$ A(x, q), for every x in G and for some p in P and q in Q.

H. Definition

A Q-fuzzy subgroup A of a group G is called a generalized characteristic Q-fuzzy subgroup(GCQFSG) if for all x and y in G, O(x) = O(y) implies A(x, q) = A(y, q), for all q in Q.

III. SOME PROPERTIES OF Q-FUZZY NORMAL SUBGROUPS

A. Theorem

Let (G, *) be a group and Q be a non-empty set. If A and B are two Q-fuzzy normal subgroups of G, then their intersection A \cap B is a Q-fuzzy normal subgroup of G.

Proof:

Let x and y in G and q in Q and $A = \{ \langle (x, q), A(x, q) \rangle \} / x$ in G and q in $Q \}$ and $B = \{ \langle (x, q), B(x, q) \rangle \} / x$ in G and q in $Q \}$ be any two Q-fuzzy normal subgroups of G.

Let $C = A \cap B$ and $C = \{ \langle (x, q), C(x, q) \rangle \} / x$ in G and q in Q }, where $C(x, q) = \min\{A(x, q), B(x, q)\}$, Then, Clearly C is a Q-fuzzy subgroup of G, Since A and B are two Q-fuzzy subgroups of G.

And, $C(xy, q) = \min \{ A(xy, q), B(xy, q) \},\$ = min { $A(yx, q), B(yx, q) \}$ = C(yx, q).Therefore, C(xy, q) = C(yx, q), for all

x and y in G and q in Q.

Hence $A \cap B$ is a Q-fuzzy normal subgroup of the group G.

B. Theorem

Let (G, \cdot) be a group and Q be a nonempty set. The intersection of a family of Q-fuzzy normal subgroups of G is a Q-fuzzy normal subgroup of G.

Proof

Let $\{A_i\}_{i \in I}$ be a family of Q-fuzzy normal subgroups of G and $A = \bigcap_{i \in I} A_i$.

Then for x and y in G and q in Q, clearly the intersection of a family of

Q-fuzzy subgroups of a group G is a Q-fuzzy subgroup of a group G.

Now, A
$$(xy, q) = \inf_{i \in I} A_i(xy, q)$$

= $\inf_{i \in I} A_i(yx, q)$
= A (yx, q) .

Therefore, A
$$(XY, q) = A(YX, q)$$
, for all X and

y in G and q in Q. Hence the intersection of a family of Q-fuzzy normal subgroups of a group G is a Qfuzzy normal subgroup of G.

C. Theorem

If A is a Q-fuzzy characteristic subgroup of a group G, then A is a Q-fuzzy normal subgroup of the group G.

Proof

Let A be a Q-fuzzy characteristic subgroup of a group G, x and y in G and q in Q. Consider the map $f: G \rightarrow G$ defined by $f(x)=yxy^{-1}$. Clearly, f in Aut G.

Now,
$$A(xy,q) = A(f(xy),q)$$

 $= A (y(xy)y^{-1},q)$ = A (yx,q).

Therefore, A(xy, q) = A(yx, q), for all x and y in G and q in Q. Hence A is a Q-fuzzy normal subgroup of the group G.

D. Theorem

A Q-fuzzy subgroup A of a group G is a Q-fuzzy normal subgroup of G if and only if A is constant on the conjugate classes of G. *Proof*

Suppose that A is a Q-fuzzy normal subgroup of a group G.

Let x and y in G and q in Q.

Now, A
$$(y^{-1} xy, q) = A(xyy^{-1}, q)$$

A(**x, q**).

Therefore, A $(y^{-1}xy,q) = A(x,q)$, for all x and y in G and in Q. We note that, $(x)=\{y^{-1}xy/y\in G\}$ is called the conjugate class of x in G. Hence A is constant on the conjugate classes of G.

Conversely, suppose that A is constant on the conjugate classes of G.

Then, A $(xy, q) = A(x^{-1}(xy)x, q)$

 $A((x^{-1} x)yx,q)$

Therefore, A(xy,q) = A(yx,q), for all x and y in G and q in Q.

Hence A is a Q-fuzzy normal subgroup of a group G.

E. Theorem

Let A and B be Q-fuzzy subgroups of the groups G and H, respectively. If A and B are Q-fuzzy normal subgroups, then $A \times B$ is a Q-fuzzy normal subgroup

of G×H.

Proof:

Let A and B be Q-fuzzy normal subgroups of the groups G and H respectively. Clearly $A \times B$ is a Q-fuzzy subgroup of $G \times H$, since A and B are Q-fuzzy subgroups G and H.

Let x_1 and x_2 be in G, y_1 and y_2 be in H and q in Q.

Then
$$({}^{x_1, y_1})$$
 and $({}^{x_2, y_2})_{are}$ in G×H.
Now,A×B[$(x_1, y_1)(x_2, y_2), q$] = A×B($(x_1x_2, y_1y_2), q$)
= min {A (x_1x_2, q), B (y_1y_2, q)

$$= \min \{ A (x_2 x_1, q) B(y_2 y_1, q) \}, = AxB ((x_2 x_1, y_2 y_1), q) = AxB. [(x_2, y_2)(x_1, y_1), q] Therefore, AxB$$

 $[(x_1, y_1)(x_2, y_2), q] = AxB [(x_2, y_2)(x_1, y_1), q].$ Hence AxB is a Q-fuzzy normal subgroup of GxH.

IV. PROPERTIES OF Q-FUZZY COSETS

In P.Pandiammal, R. Natarajan and N.Palaniappan have proved some results on Properties of Anti L-Fuzzy M-cosets of M-groups. This motivated us to examine the results for Q-fuzzy cosets. We have found out that the results perfectly fit with Q-fuzzy cosets. Here we prove the analogue of the Lagrange's theorem.

A. Theorem

Let A be a Q-fuzzy subgroup of a finite group G, then O(A) / O(G).

Proof

Let A be a Q-fuzzy subgroup of a finite group G with e as its identity element. Clearly $H = \{x \in G \mid A (x, q) = A(e, q)\}$ is a subgroup of G for H is a Q-level subset of G. By Lagrange's theorem O(H) / O(G). Hence by the definition of the order of the Q-fuzzy subgroup of G, we have O(A) / O(G).

B. Theorem

Let A and B be two Q-fuzzy subsets of an abelian group G. Then A and B are conjugate Q-fuzzy subsets of the abelian group G if and only if A = B.

Proof

Let A and B be conjugate Q-fuzzy subsets of abelian group G, then for some y in G, we have $A(x, q) = B(y^{-1}xy, q)$, for every x in

G and q in Q

 $= B(yy^{-1}x, q), \text{ since } G \text{ is an abelian group}$ = B(ex, q)= B(x, q).

Therefore, A(x, q) = B(x, q), for every x in G an q in Q.

Hence A = B. Conversely, if A = B, then for the identity element e of G, we have, $A(x, q) = B(e^{-1} xe, q)$, for every x in G and q in Q. Hence A and B are conjugate Q-fuzzy subsets of G.

C. Theorem

If A and B are conjugate Q-fuzzy subgroups of the normal group G, then O(A)=O(B).

Proof

Let A and B be conjugate Q-fuzzy subgroups of G.

Hence, O(A) = O(B).

D. Theorem

If A is a Q-fuzzy subgroup of a group G, then for any a in G the Q-fuzzy middle coset aAa^{-1}) of G is also a Q-fuzzy subgroup of G.

Proof

Let A be a Q-fuzzy subgroup of G and a in G. To prove aAa^{-1} is a Q-fuzzy subgroup of G. Let x and y in G and q in Q. Then, $(aAa^{-1})(xy^{-1}, q) = A(a^{-1}xy^{-1}a, q),$ $= A(a^{-1}xaa^{-1}y^{-1}a, q),$ $= A((a^{-1}xa)(a^{-1}ya)^{-1}, q)$ $\ge \min\{A(a^{-1}xa, q), A(a^{-1}ya)^{-1}, q)$ $\ge \min\{A(a^{-1}xa, q), A(a^{-1}ya, q), q\}$ Since A is a Q-fuzzy subgroup of G $= \min\{(aAa^{-1})(x, q), (aAa^{-1})(y, q)\}$ Therefore, $(aAa^{-1}(xy^{-1}, q), q)$ $\ge \min\{(aAa^{-1})(x, q), (aAa^{-1})(y, q)\}$ Hence aAa^{-1} is a Q-fuzzy subgroup of the group G.

V. CONCLUSION

In this paper we have discussed Q-Fuzzy Normal Subgroups, Q-Fuzzy Normaliser and Q-fuzzy subgroups under homomorphism, Interestingly, It has been observed that Q-Fuzzy concepts add an another dimension to the defined fuzzy normal subgroups. This concept can further be extended for new results.

VI. REFERENCES

- Akram .M, Shum .K.P,(2010), Fuzzy Lie Ideals over a Fuzzy Field, *Italian Journal of Pure and Applied Mathematics* – n. Vol 2, No :27, pp.281–292.
- [2] Biswas. R, (1960), Fuzzy subgroups and anti-fuzzy subgroups, Fuzzy sets and systems, 35, pp.121-124.
- [3] Choudhury.F.P. et al (1988), A note on fuzzy subgroups and Fuzzy homomorphism .Journal of mathematical analysis and applications 131,pp. 537 -553.
- [4] Das. P.S,(1981), Fuzzy groups and level subgroups, J.Math.Anal. Appl, Vol.84, pp. 264-269.
- [5] Dixit.V.N., Rajesh Kumar et al (1990),Level subgroups and union of fuzzy subgroups, Fuzzy Sets and Systems, 37, pp.359-371.
- [6] Fareeha Dilawar et al (2020), Algebraic Properties of W-Q Fuzzy Subgroups, International Journal of Mathematics and Computer Science Vol 1,No:1, PP.25-274.
- [7] Jahir Hussain et al (2019), A Review on Q- Fuzzy subgroups in Algebra, International journal of Applied *Mathematics*, Vol 14, N0:3 ISSn:0973-4562, pp.60-63.

- [8] Mohamed Asaad, et al (2015), Groups and Fuzzy Subgroups, Fuzzy Sets and Systems 39 (1991), 323-328.
- [9] Priya and Ramachandran (2013), On Q- fuzzy Normal Subgroups, *International journal of Computer of organization Trends*, Vol 3, Issue 6, pp. 45-47.
- [10] Rethinakumar et al (2016), Intuitionistic Q-Fuzzy Normal Subgroups, International Journal of Innovative Research in Science Engineering and Technology, Vol 5, Issue 6, ISSN 2317-8753, pp.9254-921.
- [11] Sahaya Arockia Selvi(2014), Homomorphism on Bipolar Valued Q-Fuzzy Subgroup of a group, Applied Mathematical Science, Vol:8mNi.61,pp.3043-3049.
- [12] Gopi kantaBarhakur et al (2013), On Q- Fuzzy N-Subgroups and Q-Fuzzy ideal of An N-groups, *International journal of Fuzzy Mathematics and System*, Vol 3 No:2 ISSn:2248-9940,pp.153-161.
- [13] Mary Jensi Rani etal(2017), On N-Generated Q-Fuzzy Normal Subgroups, *Journal of Mathematics*, Vol 29 ,Issue:2, ISSN:2394-9309,pp.1-8.
- [14] Vethamanikam.A and Balasubramaniam S(2014), A Study on fuzzy normal subgroups and cosets, *Journal of Applied Mathematics*, Vol 25, Issu: 1, pp. 34-19.
- [15] Saleem Abdullag et al (2013), A New type of fuzzy normal subgroups and fuzzy cosets, *Journal of Intelligent and Fuzzy Mathematics*, Vol 25,Issue 1,pp.23151-23153.
- [16] Muhammad Gulzar et al (2020), Algebraic properties of W-Q Fuzzy Subgroups, *International Journal of Mathematics and computer Science*, Vol 15(1), pp. 25-274.
- [17]Palaniappan N and Muthuraj R.(2004), Anti Fuzzy group and Lower Level Subgroups, Antarctica J.Math. Vol 1 ,No:(1), pp.71-76.
- [18] Priya T., Ramachandran T. and Nagalakshmi K.T(2018), Q-fuzzy normal subgroup, International Journal of Computer & Organization Trends – Volume 3, pp.462-465.