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In this study, we have established a new three-parameter Poisson Exponential Power distribution 

using the Poisson-G family of distribution. We have presented the mathematical and statistical 

properties of the proposed distribution including probability density function, cumulative 

distribution function, reliability function, hazard rate function, quantile, the measure of skewness, 

and kurtosis. The parameters of the new distribution are estimated using the maximum likelihood 

estimation (MLE) method, and constructed the asymptotic confidence intervals also the Fisher 

information matrix is derived analytically to obtain the variance-covariance matrix for MLEs. All 

the computations are performed in R software. The potentiality of the proposed distribution is 

revealed by using some graphical methods and statistical tests taking a real dataset. We have 

empirically proven that the proposed distribution provided a better fit and more flexible in 

comparison with some other lifetime distributions.  
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I. INTRODUCTION 

The exponential distribution is the most frequently used 

distribution due to the existence of simple elegant closed-

form solutions to many survival analysis problems. The 

failure rate of the exponential distribution is constant but in 

real practice, the failure rates are not always constant. Hence 

in some situations, it seems to be inadequacy and unrealistic. 

For this, some modifications are desirable to make 

exponential distribution more flexible. In recent, a new class 

of models has been introduced based on the adjustment of 

exponential distribution.  

Gupta and Kundu (1999) introduced the 

generalized exponential (GE) distribution, this extended 

family can accommodate data with increasing and 

decreasing failure rate functions, Nadarajah and Kotz (2006) 

have introduced a generalization referred to as the beta 

exponential distribution generated from the logit of a beta 

random variable. There are lots of lifetime models which are 

obtained by compounding with Zero truncated Poisson 

distribution some of them are as follows, 

 Kus (2007) has introduced the two-parameter 

exponential Poisson (EP) distribution by compounding 

exponential distribution with zero truncated Poisson 

distribution with a decreasing failure rate. The CDF of PE 

distribution is,   

 
 

  
 

11
; , 1 ; 0, , 0

1

te
F t e t

e


   



   
      

 

 (1) 

While Barreto-Souza and Cribari-Neto (2009) have 

introduced generalized EP distribution having the 

decreasing or increasing or upside-down bathtub shaped 

failure rate. This is the generalization of the distribution 

proposed by Kus (2007) adding a power parameter to this 

distribution.  

Following a similar approach, Percontini et al. 

(2013) have proposed the five-parameter beta Weibull 

Poisson distribution, which is obtained by compounding the 

Weibull Poisson and beta distributions. Following the same 

trend, Cancho (2011) has developed a new distribution 

family also based on the exponential distribution with an 

increasing failure rate function known as Poisson 

exponential (PE) distribution. The cumulative distribution 

function of PE distribution can be expressed as 
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A two-parameter Poisson-exponential with increasing 

failure rate has been defined by (Louzada-Neto et al., 2011) 
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by using the same approach as used by (Cancho, 2011) 

under the Bayesian approach. Alkarni and Oraby (2012) 

have introduced a new lifetime family of distribution with a 

decreasing failure rate which is obtained by compounding 

truncated Poisson distribution and a lifetime model. The 

cumulative distribution function of the Poisson generating 

family is given by,  
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Where  the parameter is space and  ,G y   is the 

cumulative distribution function of any distribution. Using a 

parallel approach the Weibull power series class of 

distributions with Poisson has presented by (Morais & 

Barreto-Souza, 2011). Mahmoudi and Sepahdar (2013) have 

defined a new four-parameter distribution with increasing, 

decreasing, bathtub-shaped, and unimodal failure rate called 

as the exponentiated Weibull–Poisson (EWP) distribution 

which has obtained by compounding exponentiated Weibull 

(EW) and Poisson distributions. Similarly, Lu and Shi 

(2012) have created the new compounding distribution 

named the Weibull–Poisson distribution having the shape of 

decreasing, increasing, upside-down bathtub-shaped, or 

unimodal failure rate function. Furthur Kaviayarasu and 

Fawaz (2017) have made an extensive study on Weibull–

Poisson distribution through a reliability sampling plan. 

Kyurkchiev et al. (2018) has used the exponentiated 

exponential-Poisson as the software reliability model. Joshi 

& Kumar (2020) has developed Lindley exponential power 

distribution having variety of shape of failure rate function. 

Louzada et al. (2020) has used different estimation methods 

to estimate the parameter of exponential-Poisson 

distribution using rainfall and aircraft data.  

  In this study, we propose a new distribution based 

on the exponential power distribution has introduced by 

(Srivastava & Kumar, 2011) to analyze the software 

reliability data having the shape of decreasing, increasing, j-

shaped, and bathtub-shaped failure rate function for 

different values of the parameters. The CDF and PDF of the 

exponential power distribution are respectively as  
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The different sections of this study are arranged as follows; 

in Section 2 we present the new distribution Poisson 

exponential power (PEP) with its mathematical and 

statistical properties. We comprehensively discuss the 

maximum likelihood estimation method in Section 3. In 

Section 4 using a real dataset, we present the estimated 

values of the model parameters and their corresponding 

asymptotic confidence intervals and fisher information 

matrix. Besides, we have illustrated the different test criteria 

to assess the goodness of fit of the proposed model. Some 

concluding remarks are presented in Section 5. 

 

II. THE POISSON EXPONENTIAL POWER (PEP) 

DISTRIBUTION 

 Alkarni and Oraby (2012) have introduced a new lifetime 

class with a decreasing failure rate which is obtained by 

compounding truncated Poisson distribution and a lifetime 

distribution, where the compounding procedure follows the 

same way that was previously carried out by (Adamidis & 

Loukas, 1998). Let ( )G x  and ( )g x  be the baseline 

cumulative distribution function and probability density 

function respectively then the Poisson family with CDF and 

PDF may be expressed as, 
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Substituting (4) and (5) in (6) and (7) then the Poisson 

exponential power distribution can be defined as, Let X be a 

nonnegative random variable representing the survival time 

of an item or component or a system of some population. 

The random variable X is said to follow the PEP distribution 

with parameters  , , 0     if its cumulative 

distribution function is given by 
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And its corresponding probability density function is 
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(9) 

Reliability function: 

The reliability function  R t , which is the probability of an 

item not failing up to time t, is defined by    1R t F t  . 

The survival /reliability function of the Poisson exponential 

power distribution is given by 
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The hazard rate function (HRF)  

The hazard rate function for the PEP distribution can be 

defined as, 
 
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where R(x) is a reliability function. 

Hence let,  X ~ , ,  PEP    then its hazard rate function 

is  
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In Figure 1 we have presented the graph for PDF and hazard 

function for PEP distribution for different values of the 

parameters. From Figure 1 (left panel), the density function 

of the PEP distribution can bear different shapes according 

to the values of the parameters. Figure 1 (right panel) 

demonstrates the increasing, decreasing, the j-shaped, and 

constant shape of the hazard rate. 

 

 
Figure 1. Graph of PDF (upper panel) and hazard function 

(lower panel) for different values of the parameters. 

 

The quantile function of PEP distribution  

According to Hyndman and Fan (1996), the value of the pth 

quantile can be obtained by solving the following equation,  

   1Q p F p  

And we get the quantile function by inverting CDF of PEP 

as 
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For the generation of the random numbers of the PEP 

distribution, we suppose simulating values of random 

variable X with the CDF (8). Let U denote a uniform 

random variable in (0, 1), then the simulated values of X can 

be obtained by  
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  (13) 

Median of PEP distribution 

The median of X from the PEP distribution is simply 

obtained by replacing p = 0.5 in equation (12) which gives 
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Skewness and Kurtosis:  

The Bowley’s measure of skewness based on quartiles was 

defined by (Kennedy & Keeping, 1962) as, 
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and the coefficient of Moor’s kurtosis measures based on 

octiles was defined by (Moors, 1988) is given by 
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III. MAXIMUM LIKELIHOOD ESTIMATION  

Let 
1 2, ,..., nX X X  be a sample of size 'n' independently and 

identically distributed random variables from the PEP with 

unknown parameters,  , and  
defined previously.  

The likelihood function of the PEP using the PDF in 

equation (9) is given by: 
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It is easy to deals with natural logarithm, hence let 

 , ,  l     be log-likelihood function, 
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To estimate the unknown parameters of the  , ,PEP    , 

we have to solve the following nonlinear equations equating 

to zero. 
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it is difficult to solve the above non-linear equation 

manually, so by using the computer software R, 

Mathematica, Matlab, or any other suitable programs and 

Newton-Raphson’s iteration method one can solve these 

equations. Let us denote the parameter vector by 

( , , )    and the corresponding MLE of   as

ˆ ˆˆˆ ( , , )    , then the asymptotic normality results in, 
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 where  I   is the Fisher’s 

information matrix given by, 
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 Further differentiating (16) we get, 
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In practice, it is useless that the MLE has asymptotic 

variance   
1

I 


because we don’t know . Hence we 

approximate the asymptotic variance by plugging in the 

estimated value of the parameters. The common procedure 

is to use the observed Fisher information matrix ˆ( ) as an 

estimate of the information matrix  I   given by 
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where H is the Hessian matrix. 

The Newton-Raphson algorithm to maximize the likelihood 

produces the observed information matrix. Therefore, the 

variance-covariance matrix is given by, 
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ˆ ˆ ˆ ˆ ˆˆcov( , ) cov( , ) var( )

H

    

     

      

 
 
 
 
 
 
  

  
 

   
   
 

 

Hence from the asymptotic normality of MLEs, approximate 

100(1-α) % confidence intervals for ,  and  can be 

constructed as, 

/2
ˆ ˆvar( )Z   , ˆ ˆvar( )

/ 2
Z 


  and 

/2
ˆ ˆvar( )Z   where 

/2Z
is the upper percentile of 

standard normal variate. 

IV. APPLICATION WITH A REAL DATASET 

In this section, we illustrate the applicability of the PEP 

model using a real dataset used by former researchers. We 

have taken 100 observations on breaking the stress of carbon 

fibers (in Gba) used by (Nichols & Padgett, 2006). 

 

3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 

4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 

3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 

3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 

3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 

1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 

3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12, 1.71, 

2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 4.38, 

1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 

1.57, 1.08, 2.03, 1.61, 2.12, 1.89, 2.88, 2.82, 2.05, 3.65 

 

The plots of profile log-likelihood function for the 

parameters α, β, and λ have been displayed in Figure 2 and 

noticed that the ML estimates can be uniquely determined.  

 

 
Figure 2. Graph of Profile log-likelihood function for the 

parameters α, β and λ of PEP distribution. 

 

The maximum likelihood estimates are calculated directly 

by using optim() function in  R software (R Core Team, 

2020) and (Rizzo, 2008) by maximizing the likelihood 



“Poisson Exponential Power Distribution: Properties and Application” 

2156 Ramesh Kumar Joshi1, IJMCR Volume 08 Issue 11 November 2020 

 

function (3.1). We have obtained ̂ = 0.6976, ̂ = 0.6395, 

̂ = 7.8045 and corresponding Log-Likelihood value is -

141.4625. In Table 1 we have demonstrated the MLE's with 

their standard errors (SE) and 95% confidence interval for α, 

β, and  . 

 

Table 1. MLE, SE and 95% confidence interval 

Parameter MLE SE 95% ACI 

alpha 0.6976 0.1663 (0.3717, 1.0235) 

beta 0.6395 0.1717 (0.3030, 0.9760) 

lambda 7.8045 3.3750 (1.1895, 14.4195) 

 

Hence the Hessian variance-covariance matrix is obtained 

as, 

 
 

1 0.02765481  -0.02828359  -0.5288098

-0.02828359  0.02947504   0.5595579
|

ˆ -0.52880981  0.55955793  11.3908809

H 

 

 
 
 
 
 
 
  


 
 

   
   

 

 

The Q-Q plots and P-P plot of PEP distribution are 

displayed in Figure 3. It is observed that the distribution fits 

the data excellently.  

 

We have fitted the PEP distribution and some selected 

distributions which are as follows,  

 

A. Weibull extension (WE) distribution 

 

The probability density function of Weibull extension (WE) 

distribution (Tang et al., 2003) with three parameters 

 , ,     is 

1

( ; , , ) exp exp exp 1 ; 0WE
x x x

f x x

  

    
  

         
                   

 

0, 0 and 0      

  

B. Weighted Lindley distribution: 

Ghitany et al. (2011) has introduced a two-parameter 

weighted Lindley distribution and its PDF can be written as, 

 
 

1
1( ) 1 ; 0, 0, 0.

( )

x
WLf x x x e x


 

 
  


     

 

 

C. Poisson–exponential distribution (PE) 

The probability density function of Poisson–exponential 

distribution was defined by (Louzada-Neto et al., 2011) also 

it was used by (Rodrigues et al., 2018) is 

 
 ( ) exp ;   0, 0, 0

1

x xf x e e x
e

 




   


    


  

D. Exponential power (EP) distribution: 

The probability density function Exponential power (EP) 

distribution (Smith & Bain, 1975) is 

   1( ) exp 1 ; ( , ) 0, 0
x x

EPf x x e e x
 

       
    

 

. 

where α and λ are the shape and scale parameters 

respectively.  

E. Generalized Exponential (GE) distribution: 

The probability density function of generalized exponential 

distribution (Gupta & Kundu, 1999) is. 

     
1

1 ; 0 0x x
GEf x; , e e , , x


      


    

. 

The negative log-likelihood value and the value of AIC, 

BIC, CAIC and HQIC are presented in Table 2. We 

conclude that the proposed model produces a better fit to the 

data taken than other models.

 

        Figure 3. The Q-Q plot (upper panel) and P-P plot  

                       (lower panel) of PEP distribution 

 

Table 2. Log-likelihood, AIC, BIC, CAIC and HQIC 

Model -LL AIC BIC CAIC HQIC 

PEE 141.4625 288.9251 296.7406 289.1751 292.0882 

WE 141.5577 289.1153 296.9309 289.3653 292.2784 
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The histogram and the fitted density functions are displayed 

in Figure 4 which compares the distribution function for the 

different models with the empirical distribution function that 

produces the same. Therefore, the given data sets illustrate 

the proposed distribution gets better fit and more reliable 

results from other alternatives. 

 
Figure  4. The Histogram and the PDF of fitted distributions 

(upper panel) and Empirical CDF with estimated CDF 

(lower panel). 

 

In Table 3 we have displayed the value of the test statistics 

the Kolmogorov-Simnorov (KS), the Anderson-Darling 

(AD) and the Cramer-Von Mises (CVM) statistics and their 

corresponding p-value of different models. The result 

verifies that the proposed model has the minimum value of 

the test statistic and higher p-value hence we conclude that 

the Poisson exponential power distribution is better in the 

view of goodness-of-fit.  

 

 

 

 

 

Table 3. The goodness-of-fit statistics and their 

corresponding p-value 

Model KS(p-value) AD(p-value) CVM(p-value) 

PEE 0.0688(0.7309) 0.0749(0.7232) 0.4199(0.8284) 

WE 0.0607(0.8542) 0.0635(0.7932) 0.4212(0.8268) 

WL 0.0922(0.3637) 0.1449(0.4061) 0.7314(0.5328) 

PE 0.0954(0.3229) 0.1724(0.3284) 0.9157(0.4044) 

EP 0.0993(0.2771) 0.1861(0.2963) 1.3081(0.2297) 

GE 0.1078(0.1959) 0.2293(0.2174) 1.2250(0.2581) 

 

V. CONCLUSION 

In this study, we have presented a new expansion of the 

exponential power model called Poisson exponential power 

(PEP) distribution. Some statistical and mathematical 

properties of the PEP model have been discussed. From the 

graphical analysis of PDF and HRF, the proposed model is 

versatile and increasing, decreasing and upside bathtub 

hazard function. We have calculated the maximum 

likelihood estimates of the model parameters and the 

corresponding confidence intervals and information matrix 

of the MLE’s. We have also illustrated the application of 

PEP distribution using a real data set and found quite useful 

and behaves better in terms of fitting as compared to some 

selected models. It may be an alternative model for 

practitioners in the area of theory and applied statistics.   
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