International Journal of Mathematics and Computer Research

ISSN: 2320-7167

Volume 09 Issue 02 February 2021, Page no. - 2178-2186 **Index Copernicus ICV: 57.55** DOI: 10.47191/ijmcr/v9i2.01

On Conformal Transformation of Lagrange Space with (*γ, β*)-Metric

Lal Chandra¹, Ganga Prasad Yadav², ¹*,*²Department of Mathematics Nehru Gram Bharati (Deemed To Be University) Allahabad-211505, India lal9026153385@gmail.com,ORCID-0000-0002-0251-9856,

Abstract

The present paper is a study of the conformal transformation of the

Lagrange space with (γ, β) -metric. The conformal transformation of the spray coefficient and Riemann curvature are express in Lagrange space with (γ, β) -metric. Further find out the condition that a conformal transformation of Lagrange space with (γ, β) -metric is locally dually flat if and only if the transformation is a homothety.Moreover, the conditions for the transform metrics to be Einstein and isotropic mean Berwald curvature are also find.

Key words: Conformal transformation, Homothety, Lagrange space, Locally dually flat, (*γ, β*)-metric.

2010 Mathematics subject classification: 53B40, 53A40 53C60.

1 Introduction

M. Matsumoto has been studied the non-Riemannian Finsler space with a cubic metric in 1979 [4]. A cubic metric is defined as,[7]

(1.1)
$$
L(x,y) = \left\{ a_{ijk}(x) y^i y^j y^k \right\}^{\frac{1}{3}}.
$$

where $a_{ijk}(x)$ are components of a symmetric tensor field of $(0, 3)$ -type depending on the position *x* alone.

The *β* metric defined as,

$$
(1.2) \qquad \beta(x,y) = b_i(x)y^i,
$$

where $b_i(x)$ are components of a covariant vector in space.

Pandey and Chaubey introduced the concept of (γ, β) -metric In 2011, where *γ* = $\sqrt{ }$ $a_{ijk}(x)y^i y^j y^k$ is cubic metric and $\beta = b_i(x)y^i$ is a one-form. P.N. Pandey and S.K. Shukla studied Lagrange space with (*γ, β*) metric and obtained metric tensor in L^n Lagrange space. In 2006 L. Tamassy studied the relation between Lagrange and Finsler space and established that the Hessians $H_{ij}(x, y)$ are positive definite if and only if the hyper-surface $z^{I(x)}$ are convex.

Matsomoto has been developed the theory of Finsler spaces [9] and the theory of conformal transformation of Finsler spaces has been developed by M. Hashiguchi^[10] based on the theory of Finsler space. Let F and \overline{F} be two Finsler metrics on manifold M^n then we say that Finsler metric \overline{F} conformally transformed Finsler metric^[11] if $\overline{F} = e^{\alpha(x)}F$ where α is a scalar function on M^n . The conformal change is said to be a homothety if α is a constant.

2 Preliminaries

Let *M* be an *n*-dimensional smooth manifold and let *TM* be its tangent bundle. Let (x^i) and (x^i, y^i) be local coordinates on *M* and *TM*, respectively. A Lagrangian is a function $L : TM \rightarrow R$ which is a smooth function on $TM = TM \setminus \{0\}$ and continuous on the null section.

The fundamental metric tensor of Lagrangian $L(x, y)$ is given by $g_{ij}(x, y)$ and define as,

(2.1)
$$
g_{ij}(x,y) = \frac{1}{2} \dot{\partial}_i \dot{\partial}_j L^2,
$$

where $\dot{\partial}_i = \frac{\partial}{\partial i}$ $\frac{\partial}{\partial y^i}$.

Definition 2.1. A Lagrange space is a pair $L^n = (M, L(x, y))$. The metric tensor g_{ij} of Lagrangian $L(x, y)$ being a constant signature on TM is called a regular Lagrangian.

In the present paper, we study a Lagrange space whose Lagrangian *L* is a function of $\gamma(x, y)$ and $\beta(x, y)$ only, where

(2.2)
$$
\begin{cases} a) \ \gamma^3(x,y) = a_{ijk}(x,y)y^i y^j y^k \\ b) \ \beta(x,y) = b_i(x) y^i. \end{cases}
$$

Let us denote the conformal transform Lagrangian by \overline{L} . Thus the conformal transform Lagrange metric given by

(2.3)
$$
\overline{L}(\gamma,\beta) = e^{\alpha(x)}L(x,y).
$$

The space $L^n = (M, L(x, y))$ is called space with (γ, β) -metric [2]. The fundamental metric [1] of $L^n = (M, L(x, y))$ defined as,

(2.4)
$$
g_{ij}(x,y) = 2\rho a_{ij} + \rho_{-2}a_i a_j + \rho_{-1}(a_i b_j + b_i a_j) + \rho_0 b_i b_j.
$$

where ρ , ρ_0 and ρ_{-1} , ρ_{-2} given as

(2.5)
\n
$$
\begin{cases}\na) \ \rho = \frac{1}{2} \gamma^{-2} L_{\gamma}, \\
b) \ \rho_{0} = \frac{1}{2} L_{\beta \beta}, \\
c) \ \rho_{-1} = \frac{1}{2} \gamma^{-2} L_{\gamma \beta}, \\
d) \ \rho_{-2} = \frac{1}{2} \gamma^{-4} (L_{\gamma \gamma} - 2 \gamma^{-1} L_{\gamma}).\n\end{cases}
$$

The normalize supporting element l_i and angular metric tensor h_{ij} of L are defined respectively as: $l_i = \frac{\partial L}{\partial u^i}$ $\frac{\partial L}{\partial y^i}$, $h_{ij} = L \frac{\partial^2 L^2}{\partial y^i \partial y}$ *∂yi∂y^j* .

Definition 2.2. A Finsler metric $L(x, y)$ is called a (γ, β) -metric. If *L* is a positive homogeneous function of first degree in two variable γ and β . Where $\gamma^3 = a_{ijk}y^iy^jy^k$ is a cubic metric and $\beta = b_i(x)y^i$ is a one form.

Definition 2.3. The Lagrangian metric $L(\gamma, \beta)$ -metric will be Finsler metric if following conditions hold [8]

(2.6)
$$
p_{-1} + q_{-2}\beta + q_{-1}\gamma^3 = 0,
$$

(2.7)
$$
q_0 \beta + q_{-2} \gamma^3 = 0,
$$

where $p_{-1} = \frac{LL_{\gamma}}{2}$ $\frac{L_{\gamma}}{2},\, q_{0}=LL_{\beta\beta},\, q_{-2}=\frac{LL_{\gamma\beta}}{\gamma^{2}}$ $\frac{L_{\gamma\beta}}{\gamma^2},\, q_{-1}=\frac{L}{\gamma^4}$ $\frac{L}{\gamma^4}(L_{\gamma\gamma}-\frac{2L_\gamma}{\gamma})$ $\frac{L_{\gamma}}{\gamma}).$

The subscripts of coefficient *p−*¹, *q*0, *q−*², *q−*¹ indicate respectively degree of homogeneity.

3 Conformal transformation Lagrange space with (*γ, β*)**-metric**

The fundamental metric tensor g_{ij} of Lagrange space L^n is given by

(3.1)
$$
g_{ij} = \frac{1}{2} \frac{\partial^2 L^2}{\partial y^i \partial y^j} = L L_{y^i y^j} - L_{y^i} L_{y^j}.
$$

From equation (2.4) the metric tensor g_{ij} simplifies as $g_{ij} = 2\rho a_{ij} + c_i c_j$. The conformal transform metric \overline{g}_{ij} is derived as:

(3.2)
$$
\overline{g}_{ij} = \frac{1}{2} \dot{\partial}_i \dot{\partial}_j \overline{L}^2 = e^{2\alpha} g_{ij}.
$$

It is also derived that

$$
\overline{g}^{ij} = e^{-2\alpha} g^{ij}.
$$

Theorem 3.1. *The covariant metric tensor* \overline{g}_{ij} *and contravariant metric tensor* \overline{g}^{ij} *of transformed Lagrange space* L^n *with* (γ, β) -metric are given as

(3.4)
$$
\overline{g}_{ij} = e^{2\alpha} g_{ij} = e^{2\alpha} (2\rho a_{ij} + c_i c_j),
$$

(3.5)
$$
\overline{g}^{ij} = e^{-2\alpha} g^{mh} = e^{-2\alpha} \frac{1}{2\rho} \left(a^{mh} - \frac{1}{2\rho + c^2} c^m c^h \right).
$$

The transformed Christoffel symbols of the first kind written for (*γ, β*)-metric as,

(3.6)
$$
[jk,h] = 2e^{2\alpha} \left\{ \alpha_j g_{kh} + \alpha_k g_{jh} - \alpha_h g_{jk} \right\} + e^{2\alpha} [jk,h],
$$

Hence the conformal transformed Chirstoffel's symbols connected with metric tensor as,

(3.7)
$$
\overline{\begin{Bmatrix} m \\ jk \end{Bmatrix}} = \begin{Bmatrix} m \\ jk \end{Bmatrix} + \left\{ \alpha_j \delta_k^m + \alpha_k \delta_j^m - \alpha_h g^{mh} g_{jk} \right\},
$$

The index $m \to i$ and h is dummy index so take $h = k$. Then the spray coefficient $Gⁱ$ conformal transformed following equation,

$$
\overline{G}^i = \alpha_j + G^i.
$$

If $\alpha_j = 0$, then $\frac{\partial \alpha}{\partial x^j} = 0 \Rightarrow \alpha = constant$.

Theorem 3.2. *Let L and L conformally related metrics in Lagrange space with* (*γ, β*)*-metric. Then the geodesic curves are identical if and only if a conformal change is a homothety.*

Proof. The geodesic equation in Lagrange space is given by

(3.9)
$$
\frac{d^2x^i}{ds^2} + \begin{Bmatrix} i \\ jk \end{Bmatrix} \frac{dx^j}{ds} \frac{dx^k}{ds} = 0.
$$

Let conformal change is homothety, then $\alpha = constant$, hence $\frac{\partial \alpha}{\partial x^j} = 0$. The equation (3.8) gives that the spray coefficient $\overline{G}^i = G^i$, so Geodesic equation (3.9) is identical after transformation. So the geodesic curve also will be identical. \Box

The conformal transform spray *G* expression is given by

(3.10)
$$
\overline{G} = G - 2\alpha_j e^{\alpha} \left(L_{\gamma} \gamma y^i + L_{\beta} b_i \right).
$$

4 Locally dually flat conformally transformed in Lagrange space with (γ, β) -metric

In the study of information geometry on Riemannian manifolds, Amari-Nagaoka developed the notion of dually flat Riemannian metrics[12]. Locally dually flatness for Finsler metrics notion developed by Shen [13].

A transform Finsler metric \overline{F} on a manifold M^n is said to be locally dually flat if $\left[\overline{F}^2\right]$ $x^{k}y^{l}$ $y^{k} = 2\left[\overline{F}\right]_{x^{l}}$ at any point with the coordinate system (x^{i}, y^{i}) in *TM*.

Let the conformal transformation $\overline{L} = e^{\alpha}L$, where L is Lagrange metric with (γ, β) -metric.Since $\overline{L}_{x^k}^2 = e^{2\alpha} \left[L_{x^k}^2 + 2L^2 \alpha_k\right]$, where $\alpha_k = \frac{\partial \alpha}{\partial x^k}$, we have \overline{L}^2_x $\int_{x^k y^l}^{2} y^k = e^{2\alpha} \left[L_{x^k y^l}^2 y^k + 2Ll_l \alpha_k y^k \right].$ Hence

$$
L_{x^kyl}^2 y^k = 2L_{\gamma}^2 \frac{a_{ij}(y^i y^j y^k)^2}{3\gamma^2} A_k + 2L_{\gamma} L_{\beta} b_l A_k y^i y^j (y^k)^2 + 2LL_{\gamma\gamma}
$$

\n
$$
\times \frac{a_{ij}(y^i y^j y^k)^2}{3\gamma^2} A_k + 2LL_{\gamma\beta} b_l A_k y^i y^j (y^k)^2 - \frac{4}{3\gamma^3} A_k (y^i y^j y^k)^2 y^k
$$

\n
$$
+ 2L_{\gamma} L_{\beta} \frac{a_{ij}(y^i y^j y^k)^2}{3\gamma^2} + 2L_{\beta}^2 b_l B_k (y^k)^2 + 2LL_{\beta} \frac{a_{ij} y^i y^j (y^k)^2}{3\gamma^2} B_k
$$

\n
$$
+ 2LL_{\beta\beta} b_l B_k (y^k)^2 + 2LL_{\beta} B_l y^k,
$$

(4.2)
$$
2L_{x}^{2} = 4LL_{\gamma}y^{i}y^{j}y^{k}A_{l} + 4LL_{\beta}B_{l}y^{l},
$$

(4.3)
$$
2LL_{y^l}\alpha_k y^k = \left(\frac{2}{3\gamma^2}LL_{\gamma}a_{ij}y^iy^jy^k + 2LL_{\beta}b_{l}y^k\right)\alpha_k.
$$

We have

(4.4)
$$
2\overline{L}_{x}^{2} - \overline{L}_{x^{k}y^{l}}^{2}y^{k} = e^{2\alpha} \left[2L_{x^{l}}^{2} + 4L^{2}\alpha_{l} - L_{x^{k}y^{l}}^{2}y^{k} - 2Ll_{l}\alpha_{k}y^{k} \right].
$$

If Lagrange space is locally dually flat then $2L_{x}^{2} - L_{x}^{2}$ _{*ky*}*l*^{*k*} = 0. Using equation (4*.*1),(4*.*2) and (4*.*3) in equation (4*.*4) we find out that,

(4.5)
$$
2\overline{L}_{x}^{2} - \overline{L}_{x}^{2}y^{}y^{k} = 4L^{2}\alpha_{l} - \left(\frac{2}{3\gamma^{2}}LL_{\gamma}a_{ij}y^{i}y^{j} + 2LL_{\beta}b_{l}\right)\alpha_{k}y^{k}.
$$

Where terms used in equation (4*.*1) to (4*.*4) are defined in the following way,

1. $\frac{\partial \gamma}{\partial x^k} = A_k y^i y^j y^k$, 2. $\frac{\partial \beta}{\partial x^k} = B_k y^k$, 3. $\frac{\partial^2 \beta}{\partial y^l \partial x^l} = B_l$

4.
$$
\frac{\partial \gamma}{\partial y^l} = \frac{1}{3\gamma^2} a_{ij} y^i y^j.
$$

Theorem 4.1. *If* \overline{L} *be a conformal transformed metric with* (γ, β) *-metric on a manifolds* M^n *in Lagrange space. Then,* \overline{L} *is locally dually flat metric if and only if* $2L\alpha_l - \left(\frac{1}{3\gamma_l}\right)$ $\frac{1}{3\gamma^2} L_{\gamma} a_{ij} y^i y^j + L_{\beta} b_l \right] \alpha_k y^k = 0.$

Corollary 4.1. *If L is locally dually flat metric then the conformally transformed Lagrangian metric L is also locally dually flat if and only if conformal transformation homothetic.*

Proof. Form equation (4.5) the *L* is locally dually flat if and only $2L\alpha$ ^{*l*} *−* $\begin{pmatrix} 1 \end{pmatrix}$ $\frac{1}{3\gamma^2}L_\gamma a_{ij}y^iy^j+L_\beta b_l\bigg)\alpha_ky^k=0.$ Hence \overline{L} is locally dually flat if and only if

(4.6)
$$
\alpha_l L - \left(\frac{1}{3\gamma^2} L_{\gamma} a_{ij} y^i y^j + L_{\beta} b_l\right) \alpha_0 = 0
$$

Contracting equation (4.6) with y^l , We have

$$
\alpha_0 L - \left(\frac{1}{3}\gamma L_\gamma + L_\beta \beta\right)\alpha_0 = 0
$$

This gives $\alpha_0 = 0$. Hence from equation (4.6), $\alpha_l = 0$, i.e. $\frac{\partial \alpha}{\partial x^l} = 0$. So α is constant. Therefore the transformation is homothetc. The converse is also \Box true.

5 Conformally transformed Lagrangian (*γ, β*) **metric with isotropic** *E***-curvature**

The Berwald curvature of \overline{L} is defined as

(5.1)
$$
\overline{B}_{jkl}^i = \frac{\partial^3 \overline{G}^i}{\partial y^j \partial y^k \partial y^l}.
$$

Where \overline{G}^i are spray coefficients of a Lagrange space \overline{L} . The trace of the Berwald curvature is called the *E*-curvature. So $\overline{E}_{ij} = \frac{1}{2} \overline{B}_{mij}^m$. Let \overline{L} is the Lagrangian metric on an *n*-dimensional manifold *Mⁿ* . Then The isotropic mean Berwald curvature or of isotropic *E*-curvature defined as

(5.2)
$$
\overline{E}_{ij} = \frac{c(n+1)}{2\overline{L}} \overline{h}_{ij}.
$$

where $h_{ij} = \overline{g}_{ij} - l_i l_j$ is the angular metric and $c = c(x)$ is a scalar function on M^n . Now \overline{L} will be weakly Berwald metric if scalar function $c = 0$. In view of equation (3*.*4) the angular metric is given by

(5.3)
\n
$$
\overline{h}_{ij} = e^{2\alpha} \left\{ \rho a_{ij} + \rho_{-2} a_i a_j + \rho_{-1} (a_i b_j + a_j b_i) + \rho_0 b_i b_j - \frac{L_\gamma^2}{9\gamma^4} a_i a_j - \frac{L_\gamma L_\beta}{3\gamma^2} (a_i b_j + a_j b_i) - L_\beta^2 b_i b_j \right\}.
$$

From equation (5*.*2) and (5*.*3), we have

(5.4)
\n
$$
\overline{E}_{ij} = \frac{(n+1)c}{2\overline{L}} e^{2\alpha} \left\{ \rho a_{ij} + \rho_{-2} a_i a_j + \rho_{-1} (a_i b_j + a_j b_i) + \rho_0 b_i b_j \right. \\ \left. - \frac{L_{\gamma}^2}{9\gamma^4} a_i a_j - \frac{L_{\gamma} L_{\beta}}{3\gamma^2} (a_i b_j + a_j b_i) - L_{\beta}^2 b_i b_j \right\},
$$

After simplification the equation (5*.*4) we have

(5.5)

$$
\overline{E}_{ij} = \frac{(n+1)c}{2L} e^{\alpha} \left\{ \rho a_{ij} + \left(\rho_{-2} - \frac{L_{\gamma}^2}{9\gamma^4} \right) a_i a_j + \left(\rho_{-1} - \frac{L_{\gamma} L_{\beta}}{3\gamma^2} \right) \right.
$$

$$
(a_i b_j + a_j b_i) + \left(\rho_0 - L_{\beta}^2 \right) b_i b_j \left\}.
$$

The equation (5.5) shows that $c = 0$, because neither $e^{\alpha} = 0$ nor ρa_{ij} + $\left(\rho_{-2} - \frac{L_{\gamma}^2}{9\gamma^4}\right) a_i a_j + \left(\rho_{-1} - \frac{L_{\gamma}L_{\beta}}{3\gamma^2}\right)$ $\left(\frac{\partial^2 \mathcal{L}_\beta}{\partial \gamma^2}\right) (a_i b_j + a_j b_i) + \left(\rho_0 - L_\beta^2\right) b_i b_j = 0$, i.e. $h_{ij} \neq 0$. Hence the isotropic *E*-curvature $\overline{E}_{ii} = 0$.

Theorem 5.1. If $\overline{L} = e^c L$ be the conformal change of Lagrangian metric *L.Suppose* \overline{L} *has isotropic mean Berwald curvature. Then it reduced to a weakly Berwald metric.*

6 Conclusion

The article starts with a basic definition of cubic and *β* metrics with the formulation of Lagrange space with (γ, β) -metrics. The next part of the article gives a conformal change of Lagrangian metrics and locally dually flat change in Lagrange space. There are some results on isotropic *E*-curvature.

References

- [1] S. K. Shukla and P. N. Pandey,(2013), Lagrange Spaces with (*γ, β*)-Metric, *Hindawi Publishing Corporation.*, 1-7,https://doi.org/10.1155/2013/106393.
- [2] V. K. Tripathi,(2014), Finslerian hypersurface of a finsler space with (γ, β) metric, *Journal of dynamical systems and geometric theories.*,12(1), 19-27.
- [3] T. N. Pandey and V. K. Chaubey,(2011) ,The variational problem in Lagrange space endowed with (*γ, β*)-metric, *International journal of pure and applied mathematics.*,71(4), 633-638,https://doi.org/10.1080/1726037X.2014.917829,
- [4] M. M. Numata,(1979), On Finsler space with (*γ, β*) -metric, *Tensor N. S.*,153-162.
- [5] D. Bao, S. S.(2000) , *An introduction to Riemannian-Fisler geometry*,Vergal New York: Springer, DOI 10.1007/978-1-4612-1268-3.
- [6] T. N. Pandey and V. K. Chaubey,(2013), On Finsler space with (γ, β) -metric Geodesic connection and scalar curvature, *Tensor N. S.*, 74, 126-134.
- [7] M. Matsumoto and S. Numata,(1979), On Finsler space with cubic metric, *Tensor N. S.*, 33, 153-162.
- [8] T. N. Pandey and V. K. Chaubey,(2011), Theory of Finsler space with (γ, β) metrics, *Bulletin of the Transilvania University of Brasova*, 4(53),43-56.
- [9] M.Matsumoto,(1986).,Foundation of Finsler Geometry and Spacial Finsler Spaces, *Kaiseisha Press Saikawa, Otsu,Japan*,https://catalog.hathitrust.org/Record/000839756.
- [10] M. Hashiguchi,(1976), On conformal transformation of Finsler metrics, *J. Math. Kyoto University*,16, 25-50.
- [11] A. Tayebi, M. Shahbazi Nai,(2019), On conformally flat fourth root (*α, β*) metrics, *Diffr. Geom. Appl.*, 62, 253-266.
- [12] S. I. Amari, H. Nagaoka,(2000), Methods of Information Geometry,*AMS Transformation of Math. Monographs, Oxford University Press,*.

[13] Z. Shen,(2006), Riemannian-Finsler geometry with applications to information geometry, *Chin. Ann. Math.* 27, 73-94.