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In this article, a three-parameter continuous distribution is introduced called Logistic inverse Lomax 

distribution. We have discussed some mathematical and statistical properties of the distribution such 

as the probability density function, cumulative distribution function and hazard rate function, 

survival function, quantile function, the skewness, and kurtosis measures. The model parameters of 

the proposed distribution are estimated using three well-known estimation methods namely 

maximum likelihood estimation (MLE), least-square estimation (LSE), and Cramer-Von-Mises 

estimation (CVME) methods. The goodness of fit of the proposed distribution is also evaluated by 

fitting it in comparison with some other existing distributions using a real data set. 
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I. INTRODUCTION 

Life-time models are generally used to study the length of the 

life of components of a system, a device, and in general, 

reliability and survival analysis. Lifetime distributions are 

frequently used in areas like life science, medicine, biology, 

engineering, insurance, etc. Many continuous probability 

distributions such as Cauchy, exponential, gamma, Weibull 

have been frequently used in statistical literature to analyze 

lifetime data. For a few years, most of the researchers are 

attracted towards one parameter logistic distribution for its 

potential in modeling life-time data, and it has been observed 

that this distribution has performed excellently in many 

applications. 

The logistic distribution is a univariate continuous 

distribution and both its PDF and CDF functions have been 

used in many different areas like logistic regression, logit 

models and neural networks. The logistic distribution has 

wider tails than a Gaussian distribution so it is more 

consistent with the underlying data and provides better 

insight into the likelihood of extreme events. Let T be a non 

negative random variable follows the logistic distribution 

with shape parameter   δ > 0, and its cumulative distribution 

function is given by  
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and its corresponding PDF is 
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Tahir et al. (2016) has defined a new generating family of 

continuous distributions generated from a logistic random 

variable called the logistic-X family. Its density function can 

be symmetrical, left-skewed, right-skewed and reversed-J 

shaped, and can have increasing, decreasing, bathtub and 

upside-down bathtub hazard rates shaped. Joshi et al. (2020) 

has introduced logistic exponential power and its hazard 

function can exhibit increasing, decreasing, bathtub and 

upside-down bathtub shaped. Mandouh (2018) has 

introduced Logistic-modified Weibull distribution which is 

flexible for survival analysis as compared to modified 

Weibull distribution. Joshi and Kumar (2020) have created 

half-logistic NHE distribution and studied its various 

mathematical and statistical properties. Joshi and Kumar 

(2020) has introduced Lindely exponential power, Chaudhary 

& Kumar (2020) have presented the half logistic exponential 

extension distribution using the parent distribution as 

exponential extension distribution. Kumar (2010) have 

presented the Bayesian analysis of exponential extension 

distribution. Lan and Leemis (2008) has presented an 

approach to define the logistic compounded model and 
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introduced the logistic–exponential survival distribution. 

This has several useful probabilistic properties for lifetime 

modeling. Unlike most distributions in the bathtub and upside 

down bathtub classes, the logistic–exponential distribution 

exhibit closed-form density, hazard, cumulative hazard, and 

survival functions. The survival function of the logistic–

exponential distribution is 

  
 

1
; ;   >0, 0, 0

1 1y
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e
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Where   and   are shape and scale parameters of LE 

distribution. Applying the similar approach used by (Lan & 

Leemis, 2008) we have introduced the new distribution called 

logistic inverse Lomax distribution. In this study we have 

taken inverse Lomax distribution as parent distribution. The 

Lomax distribution can also be called Pareto Type-II 

distribution and it can be used in many areas like life science, 

medicine, engineering, and many more.  

 

The distribution was defined by Lomax (1954) having a 

heavy-tailed shaped distribution. It can also be used in 

reliability and life testing problems in engineering and in 

reliability analysis as an alternative distribution (Hassan & 

Al-Ghamdi, 2009). The inverse Lomax (IL) distribution is 

one of important life-time distribution. The inverse Lomax 

distribution was introduced by (Kleiber, 2004) and used it to 

get Lorenz ordering relationship among ordered statistics. 

The  IL  is  related  to  the  family  of  generalized  beta  

distribution. Kleiber and Kotz (2003) showed that the  IL  

distribution  can  be  used  in  economics  and  actuarial  

sciences.  The IL distribution has a lot of applications in 

stochastic modeling of decreasing failure rate life 

components, and life   testing. The CDF and PDF of two-

parameter inverse Lomax can be expressed as
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The main objective of this study is to introduce a more 

flexible distribution by inserting just one extra parameter to 

the inverse Lomax distribution to attain a better fit to the life-

time data sets. We have illustrated some distributional 

properties and its applicability. The remaining parts of the 

proposed study are organized as follows. In Section 2 we 

present the Logistic inverse Lomax distribution and its 

various mathematical and statistical properties. We have 

employing some estimation methods to estimate the model 

parameters namely the maximum likelihood estimation 

(MLE), least-square estimation (LSE) and Cramer-Von-

Mises estimation (CVME) methods. For the maximum 

likelihood (ML) estimate, we have constructed the 

asymptotic confidence intervals using the observed 

information matrix are presented in Section 3. In Section 4, a 

real data set has been analyzed to explore the applications and 

capability of the proposed distribution. In this section, we 

present the estimated value of the parameters and log-

likelihood, AIC, BIC, AICC and HQIC criterion for ML, 

LSE, and CVME also the goodness of fit of the proposed 

distribution is also evaluated by fitting it in comparison with 

some other existing distributions using a real data set. Finally, 

in Section 5 we present some concluding remarks. 

 

II. THE LOGISTIC INVERSE LOMAX (LIL) 

DISTRIBUTION 

In this section we have put forward a new distribution called 

logistic inverse Lomax (LIL) distribution. We have taken the 

inverse Lomax as baseline distribution defined by (Kleiber & 

Kotz, 2003).  Let X be a non-negative random variable with a 

positive shape parameters α and λ and a positive scale 

parameter β then CDF of logistic Lomax distribution can be 

defined as 
1
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The corresponding PDF of LIL distribution is  
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This CDF function is alike to the log logistic CDF function 

with the second term of the denominator being changed in its 

base to IL function, and hence we named it logistic inverse 

Lomax distribution. 

 

Reliability function  

The reliability function of LIL distribution is  

( ) 1 ( )R x F x   
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(2.3) 

 

Hazard function  

The failure rate function of LIL distribution can be defined 

as, 
( )
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In Figure 1, we have displayed the plots of the PDF of LIL 

distribution for different values of α, β and λ. 
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Figure 1. Graph of PDF of LIL distribution 

 

In Figure 2, we have displayed the plots hazard rate function 

of LIL distribution for different values of α, β and λ. 

 
Figure 2. Plots of hazard function for different values of α 

and λ. 

 

Quantile function 

The Quantile function of Logistic Lomax distribution can be 

expressed as  

1 1/ 1/ 1( ) [{1 (p 1) } 1]  ; 0< 1Q p p        (2.5)

  

Random deviate generation: 
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Skewness and Kurtosis:   

The measures of Skewness based on quantiles is Bowley’s 

coefficient of skewness and it can be expressed as
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Coefficient of kurtosis based on octiles which was defined by 

(Moors, 1988) is 
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III. METHODS OF ESTIMATION 

In this section, the parameters of the LIL distribution are 

estimated by using maximum likelihood estimation method. 

Let, 1 2, ,..., nx x x  is a random sample from  , ,LIL     

and the likelihood function,  , ,L     is given by, 
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Now log-likelihood density is 
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(3.1) 

Differentiating (3.1) with respect to α, β and λ we get, 
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Equating above three nonlinear equations to zero and solving 

simultaneously for α, β and λ, we get the maximum likelihood 

estimate ˆ ˆˆ ,    and    of the parameters α, β and λ. By using 

computer software like R, Matlab, Mathematica etc for 

maximization of (3.1) we can obtain the estimated value of α, 

β and λ. For the confidence interval estimation of α, β and λ 

and testing of the hypothesis, we have to calculate the 

observed information matrix. The observed information 

matrix for α, β and λ can be obtained as, 
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Let ( , , )     denote the parameter space and the 

corresponding MLE of   as ˆ ˆˆ ˆ( , , )    , then 
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 where  U   is the 

Fisher’s information matrix. Using the Newton-Raphson 

algorithm to maximize the likelihood creates the observed 

information matrix and hence the variance-covariance matrix 

is obtained as,
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 (3.2) 

Hence from the asymptotic normality of MLEs, approximate 

100(1-α) % confidence intervals for α, β and λ can be 

constructed as, 

/2
ˆ ˆ( )Z SE   , ˆ ˆ( )/2Z SE   and, 

/2
ˆ ˆ( )Z SE   

where /2Z is the upper percentile of standard normal variate 

 

IV. APPLICATIONS TO REAL DATASET 

In this section, we illustrate the applicability of logistic 

inverse Lomax distribution using two real datasets used by 

earlier researchers.  

Dataset-I 

This is a real data set represents the remission times (in 

months) of a random sample of 128 bladder cancer patients 

(Lee & Wang, 2003): sorted data  

 

0.08, 0.20, 0.40, 0.50, 0.51, 0.81, 0.90, 1.05, 1.19, 1.26, 1.35, 

1.40, 1.46, 1.76, 2.02, 2.02, 2.07, 2.09, 2.23, 2.26, 2.46, 2.54, 

2.62, 2.64, 2.69, 2.69, 2.75, 2.83, 2.87, 3.02, 3.25, 3.31, 3.36, 

3.36, 3.48, 3.52, 3.57, 3.64, 3.70, 3.82, 3.88, 4.18, 4.23, 4.26, 

4.33, 4.34, 4.40, 4.50, 4.51, 4.87, 4.98, 5.06, 5.09, 5.17, 5.32, 

5.32, 5.34, 5.41, 5.41, 5.49, 5.62, 5.71, 5.85, 6.25, 6.54, 6.76, 

6.93, 6.94, 6.97, 7.09, 7.26, 7.28, 7.32, 7.39, 7.59, 7.62, 7.63, 

7.66, 7.87, 7.93, 8.26, 8.37, 8.53, 8.65, 8.66, 9.02, 9.22, 9.47, 

9.74, 10.06, 10.34, 10.66, 10.75, 11.25, 11.64, 11.79, 11.98, 

12.02, 12.03, 12.07, 12.63, 13.11, 13.29, 13.80, 14.24, 14.76, 

14.77, 14.83, 15.96, 16.62, 17.12, 17.14, 17.36, 18.10, 19.13, 

20.28, 21.73, 22.69, 23.63, 25.74, 25.82, 26.31, 32.15, 34.26, 

36.66, 43.01, 46.12, 79.05 

 

The MLEs are calculated by utilizing the optim() function in 

R software (R Core Team, 2020) and (Mailund, 2017) by 

maximizing the likelihood function (3.1). We have obtained 

Log-Likelihood value is l = -409.4909 and the MLE’s with 

their standard errors (SE) and 95% confidence interval for α, 

β, and λ  are presented in Table 1. 

Table 1. MLE and SE and 95% confidence interval for α, β 

and λ 

Parameter MLE SE 95% ACI 

alpha 2.87951     0.25522   (2.3793, 3.3797) 

beta 38.51405     6.56328    (25.6500, 51.3781) 

lambda 0.35313     0.02929 (0.2957, 0.4105) 

.  

We have displayed the graph of the profile log-likelihood 

function of α, β, and λ in Figure 3 (Kumar & Ligges, 2011) 

and observed that the MLEs are unique. 

 

 
 

 
 

 
 

Figure 3. Graph of profile log-likelihood function of α, β, and 

λ. 

 
 



“The Logistic Inverse Lomax Distribution with Properties and Applications” 

2173 Ramesh Kumar Joshi1, IJMCR Volume 09 Issue 01 January 2021 

 

 
 

Figure 4. The Q-Q plot (left panel) and P-P plot (right 

panel) of LIL distribution 

 

Dataset-II 

The data given below represents the fatigue life of 6061-T6 

aluminum coupons cut parallel to the direction of rolling and 

oscillated at 18 cycles per seconds (cps) which consists of 101 

observations with maximum stress per cycle 31,000 psi. This 

data set was originally analyzed by (Birnbaum & Saunders, 

1969). 

  

70,   90,   96,   97,   99, 100, 103, 104, 104, 105, 107, 108, 

108, 108, 109, 109, 112, 112, 113, 114, 114, 114, 116, 119, 

120, 120, 120, 121, 121, 123, 124, 124, 124, 124, 124, 128, 

128, 129, 129, 130, 130, 130, 131, 131, 131, 131, 131, 132, 

132, 132, 133, 134, 134, 134, 134, 134, 136, 136, 137, 138, 

138, 138, 139, 139, 141, 141, 142, 142, 142, 142, 142, 142, 

144, 144, 145, 146, 148, 148, 149, 151, 151, 152, 155, 156, 

157, 157, 157, 157, 158, 159, 162, 163, 163, 164, 166, 166, 

168, 170, 174, 196, 212  

 

We have obtained Log-Likelihood value is l = -455.9934 and 

the MLE’s with their standard errors (SE) and 95% 

confidence interval for α, β, and λ  are presented in Table 2. 

 

Table 2. MLE and SE and 95% confidence interval for α, β 

and λ 

Parameter MLE SE 95% ACI 

alpha 9.0749      0.7225    (7.6588, 10.491) 

beta 55.5687      3.6024    (48.508, 62.6294) 

lambda 1.9797      0.1114 (1.7614, 2.1980) 

 

We have displayed the graph of the profile log-likelihood 

function of α, β, and λ in Fig. 4 (Kumar & Ligges, 2011) and 

observed that the MLEs are unique. 

 

In Figure 5 we have presented the Q-Q plot (empirical 

quantile against theoretical quantile) and P-P plot of LIL 

distribution. 

 
Figure 5. Graph of profile log-likelihood function of α, β, 

and λ. 

 

In Figure 6 we have presented the Q-Q plot (empirical 

quantile against theoretical quantile) and P-P plot of LIL 

distribution. 
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Figure 6. The Q-Q plot (left panel) and P-P plot (right 

panel) of LIL distribution 

 

To illustrate the goodness of fit of the LIL distribution, we 

have select some well-known distribution for comparison 

purpose which are listed blew, 

A. Inverted Lomax (IL) distribution: 

The cumulative probability distribution function of IL 

introduced by (Lan & Leemis, 2008) having upside down 

bathtub-shaped hazard function distribution with parameters 

  and   is

 

  ( ) 1 ; 0, 0, 0.ILF x x x


  


      

B. Exponentiated Lomax (EL) distribution: 

The CDF of exponentiated lomax introduced by (Lan & 

Leemis, 2008) can be written as 

 ( ) 1 (1 ) ; 0, 0, 0, 0.F x x x


         

 

C. Generalized Exponential Extension (GEE) 

distribution: 

The probability density function of GEE introduced by 

(Lemonte, 2013) having upside down bathtub-shaped hazard 

function distribution with parameters ,  and   is 

      

  

1

1

1 1 1

1 1 1 0

GEEf x; , , x exp x

exp x ; x .

 




     







   

    
  

 

 

D. Generalized Exponential (GE) distribution: 

The probability density function of generalized exponential 

distribution (Gupta & Kundu, 1999) is. 

     
1

1 ; 0 0x x
GEf x; , e e , , x


      


    

 
 

E. Exponential power (EP) distribution: 

The probability density function Exponential power (EP) 

distribution (Smith & Bain, 1975) is 

   1( ) exp 1 ; 0
x x

EPf x x e e x
 

      
   

 

. 

where α and λ are the shape and scale parameters, 

respectively. 

For the assessment of potentiality of the proposed model we 

have calculated the Akaike information criterion (AIC), 

Bayesian information criterion (BIC), Corrected Akaike 

information criterion (CAIC) and Hannan-Quinn information 

criterion (HQIC) which are presented in Table 3 and Table 4 

for date set I and II.  

Table 3. Log-likelihood (LL), AIC, BIC, CAIC and HQIC (dataset-I) 

Distribution -LL AIC BIC CAIC HQIC 

LIL 409.4909 824.9818 833.5379 825.1753 828.4582 

GEE 410.6013 827.2026 835.7586 827.3961 830.6789 

IEL 409.9542 825.9084 834.4645 826.1020 829.3848 

EL 410.0718 826.1436 834.6997 826.3372 829.6200 

GE 413.0776 830.1552 835.8592 830.2512 832.4728 

EP 426.6474 857.2948 862.9989 857.3893 859.6124 

 

Table 4. Log-likelihood (LL), AIC, BIC, CAIC and HQIC (dataset-II)   

Distribution -LL AIC BIC CAIC HQIC 

LIL 455.9934 917.9869 925.8322 918.2343 921.1629 

GEE 456.4468 918.8935 926.7389 919.1409 922.0696 

IEL 457.0925 920.1850 928.0304 920.4324 923.3610 

EL 462.9163 931.8327 939.6780 932.0801 935.0087 

GE 463.7324 931.4648 936.6951 931.5873 933.5822 

EP 476.7897 957.5794 962.8096 957.6994 959.6967 
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For the both datasets we have presented the Histogram and 

the density function of fitted distributions and Empirical 

distribution function with the estimated distribution function 

of LIL and some selected distributions are presented in Figure 

7. 

 

 
Figure 7. The Histogram and the density function of fitted distributions for data-I and data-II (first row) and Empirical 

distribution function with estimated distribution function for data-I and data-II (second row) 

 

To compare the goodness-of-fit of the LIL distribution with 

other competing distributions we have presented the value of 

Kolmogorov-Simnorov (KS), the Anderson-Darling (W) and 

the Cramer-Von Mises (A2) statistics in Table 5 and Table 6. 

It is observed that the LIL distribution has the minimum value 

of the test statistic and higher p-value thus we conclude that 

the LIL distribution gets quite better fit and more consistent 

and reliable results from others taken for comparison. 

 

Table 5. The goodness-of-fit statistics and their corresponding p-value (dataset-I) 

Distribution KS(p-value) W(p-value) A2(p-value) 

LIL  0.0297(0.9998)  0.0137(0.9998)  0.0898(0.9999)  

GEE  0.0442(0.9636)  0.0394(0.9367)  0.2630(0.9631)  

IEL  0.03888(0.9903)  0.0233(0.9929)  0.1607(0.9977) 

EL  0.0405(0.9846 )  0.0262(0.9871)  0.1798(0.9950)  

GE  0.0725(0.5115)  0.1279(0.4652)  0.7137(0.5472)  

EP  0.1199(0.0503)  0.5993(0.0223)  3.6745(0.0126)  

 

Table 6. The goodness-of-fit statistics and their corresponding p-value (dataset-II)  

Distribution KS(p-value) W(p-value) A2(p-value) 

LIL  0.0626(0.8241)  0.0527(0.8606)  0.3776(0.8703)  

GEE 0.0755(0.6132) 0.0682(0.7640) 0.4132(0.8352)  

IEL  0.0690(0.7224)  0.0858(0.6601)  0.5809(0.6658)  
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EL  0.1077(0.1916)  0.2341(0.2102)  1.4750(0.1826)  

GE 0.1066(0.2014) 0.3112(0.1257) 2.0724(0.0840)  

EP 0.1378(0.0433) 0.6942(0.0130) 4.5057(0.0050)  

 

V. CONCLUSIONS 

In this article, we have generated a three-parameter 

continuous distribution named Logistic inverse Lomax 

distribution. Some mathematical and statistical properties of 

the proposed distribution are presented such as the shapes of 

the probability density, cumulative density and hazard rate 

functions, survival function, quantile function, the skewness, 

and kurtosis measures are derived and established and found 

that the proposed model is flexible and increasing and j-

shaped shaped hazard function. The model parameters are 

estimated by using maximum likelihood estimation (MLE) 

method. Two real datasets is considered to explore the 

applicability and suitability of the proposed distribution and 

found that the proposed model is quite better than other 

lifetime model taken into consideration. We hope this model 

may be an alternative in the field of survival analysis, 

probability theory and applied statistics.  

 

REFERENCES 

1. Birnbaum, Z.W., & Saunders, S.C. (1969). 

Estimation for a family of life distributions with 

applications to fatigue, Journal of Applied 

Probability, 6, 328 -347. 

2. Chaudhary, A. K. & Kumar, V. (2020). Half logistic 

exponential extension distribution with Properties 

and Applications. International Journal of Recent 

Technology and Engineering (IJRTE), 8(3), 506-

512. 

3. Chaudhary, A. K. & Kumar, V. (2020). Lindley half 

Cauchy distribution: Properties and Applications. 

International Journal for Research in Applied 

Science & Engineering Technology (IJRASET), 

8(9), 1233-1242. 

4. Gupta, R. D., & Kundu, D. (2007). Generalized 

exponential distribution: Existing results and some 

recent developments. Journal of Statistical Planning 

and Inference, 137(11), 3537-3547. 

5. Hassan, A. and Al-Ghamdi, A. (2009). Optimum 

step stress accelerated life testing for Lomax 

distribution.  Journal of Applied Sciences Research, 

5, 2153–2164. 

6. Joshi, R. K. & Kumar, V. (2020). Lindley 

exponential power distribution with Properties and 

Applications. International Journal for Research in 

Applied Science & Engineering Technology 

(IJRASET), 8(10), 22-30. 

7. Joshi, R. K. & Kumar, V. (2020). Half Logistic 

NHE: Properties and Application. International 

Journal for Research in Applied Science & 

Engineering Technology (IJRASET), 8(9), 742-753. 

8. Joshi, R. K., Sapkota, L.P. & Kumar, V. (2020). The 

Logistic-Exponential Power Distribution with 

Statistical Properties and Applications, 

International Journal of Emerging Technologies 

and Innovative Research, 7(12), 629-641 

9. Kleiber, C. (2004). Lorenz ordering of order 

statistics from log-Logistic and related distributions. 

Journal of Statistical Planning and Inference, 120, 

13-19. 

10. Kleiber, C., & Kotz, S. (2003). Statistical size 

distributions in economics and actuarial sciences. 

John Wiley and Sons, Inc., Hoboken, New Jersey.  

11. Kumar, V. (2010). Bayesian analysis of exponential 

extension model. J. Nat. Acad. Math, 24, 109-128. 

12. Kumar, V. and Ligges, U. (2011). reliaR: A package 

for some probability distributions, http://cran.r-

project.org/web/packages/reliaR/index.html. 

13. Lan, Y., & Leemis, L. M. (2008). The logistic–

exponential survival distribution. Naval Research 

Logistics (NRL), 55(3), 252-264. 

14. Lee, E. T. & Wang, J. (2003). Statistical methods for 

survival data analysis (Vol. 476). John Wiley & 

Sons. 

15. Lemonte, A. J. (2013). A new exponential-type 

distribution with constant, decreasing, increasing, 

upside-down bathtub and bathtub-shaped failure rate 

function. Computational Statistics & Data Analysis, 

62, 149-170. 

16. Lomax, K. S. (1954). Business failures: Another 

example of the analysis of failure data. Journal of 

the American Statistical Association, 49(268), 847-

852. 

17. Mailund, T. (2017). Functional Programming in R: 

Advanced Statistical Programming for Data 

Science, Analysis and Finance. Apress, Aarhus N, 

Denmark ISBN-13 (pbk): 978-1-4842-2745-9 

ISBN-13 (electronic): 978-1-4842-2746-6 DOI 

10.1007/978-1-4842-2746-6  

18. Mandouh, R. M. (2018). Logistic-modified weibull 

distribution and parameter estimation. International 

Journal of Contemporary Mathematical 

Sciences, 13(1), 11-23. 

19. Moors, J. (1988). A quantile alternative for kurtosis. 

The Statistician, 37, 25-32. 

20. R Core Team (2020). R: A language and environme

nt for statistical computing. R Foundation for Statis

tical Computing, Vienna, Austria. URL https://www

.R-project.org/. 



“The Logistic Inverse Lomax Distribution with Properties and Applications” 

2177 Ramesh Kumar Joshi1, IJMCR Volume 09 Issue 01 January 2021 

 

21. Smith, R.M. and Bain, L.J. (1975).   An exponential 

power life-test distribution, Communications in 

Statistics, 4, 469-481 

22. Tahir, M. H., Cordeiro, G. M., Alzaatreh, A., 

Mansoor, M., & Zubair, M. (2016). The logistic-X 

family of distributions and its  

applications. Communications in Statistics-Theory 

and Methods, 45(24), 7326-7349.

 


