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This article concerns the estimation of the mean    of a multivariate normal 

distribution  pp INX 2,~    in which the variance 2  is unknown and estimated by the chi-square 

variable 222 ~ nS  . First, we consider the estimators of Lindley-Type that shrink the components of 

the Maximum Likelihood Estimator (MLE) 𝑋 to the random variable X . Secondly, we consider the 

mean   as a random variable and construct the modal Bayes estimator 
MB  , we then study the 

minimaxity of the estimator 
MB and the asymptotic behavior of risks ratios of 

MB to the MLE 

when the dimension of the parameters space p  and the sample size n  tend simultaneously to 

infinity. 
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1. INTRODUCTION   

One common problem in multivariate statistical analysis and 

Bayesian statistics is the estimation of the mean parameters 

of a multivariate normal distribution. This latter has attracted 

the attention of several researchers. When the dimension of 

the parameter space is greater, the performance of MLE 

method is not satisfactory. For more information in this 

context, we refer readers to Stein (1956), and James and Stein 

(1961), Lindley (1962), Efron and Morris (1972) and Efron 

and Morris (1973). Among several methods, shrinkage 

estimation is one of the widely used for improving the MLE. 

Furthermore a large amount of research have been carried out 

to develop the properties of shrinkage estimators and to 

compare them with MLE, we cite for example  Baranchick 

(1970), Bock (1975), Efron and Morris (1977), Hamdaoui et 

al. (2020). The majority of these authors studied the 

estimation by shrinkage estimators, of the mean   of a 

multivariate normal distribution  pp IN 2,  in
p . In 

these works one estimates the mean   by shrinkage 

estimators deduced from the empirical mean estimator, which 

are better in quadratic loss than the empirical mean estimator.

 

More precisely, if X  represents an observation or a sample of multivariate normal distribution  pp IN 2, , the aim is to estimate 

   by an estimator   relatively at the quadratic loss function: 

2
),(

p
L   ,                                            (1.1) 

where 
p

. is the usual norm in
p . We associate its risk function:  

 2
),(

p
ER     .                                        (1.2) 
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James and Stein (1961), introduced a class of estimators improving X0 , when the dimension of the space of the observations 

p 3 , denoted by :  
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where 
2

n

22 ~ S  is an estimator of 
2 , independent of X . 

Baranchik (1964), proposed the positive-part version of James-Stein estimator, an estimator dominating the James-Stein estimator 

when 3p ,   
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Casella and Hwang (1982), studied the case where 
2  is known  12   and showed that if the limit of the ratio
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tends to infinity is a constant 0c , then 
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 Sun (1995), has considered the following model:    2

j

2 ,~,  Ny jij ; ni ,...,1  , mj ,...,1  where   jijyE   for 

the group j  and var
2)( ijy is unknown. In this case, the risk of the maximum likelihood estimator, denoted 0 , is 
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   and the James-Stein estimator is written: 
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He showed that for any estimator of the form  tm ,...,1 , 

where:   mjyyy jj ,...,1,))T,(S1( 22   . 
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constitutes a lower bound for the ratio
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 He also showed that this bound is attained for a class of estimators defined by:  

  mjyyy
T

S
T jj ,...,1,)),(S1(

2

2
22    , 

where   satisfies certain conditions. This bound is also attained for any estimator dominating the James-Stein estimator, in 

particular the positive-part version of the James-Stein estimator. 
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Finally, we note that if n  tends to infinity then the ratio 

n
q

q
2



  tends to 1, and thus the risk of the James-Stein estimator is that 

of 0  (when n  and m tend simultaneously to infinity). 

Hamdaoui and Benmansour (2015), considered the same model given by Casella and Hwang (2891),   namely  pp INX 2,~   

but in this time the parameter 
2 is unknown and estimated by the statistic

2S :
222 ~ nS   independent to variable X . The authors 

studied the following class of shrinkage estimators   ,, 22 XXSlJS    they showed that, if )0(lim
2

2
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pp 


 and 

the shrinkage function ψ satisfies some conditions, the risks ratio 
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tends to constant 
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 (<1) when n and p tend 

simultaneously to infinity. Finally, they deduced that, when n  and p tend simultaneously to infinity and under the same condition

)0(lim
2
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, the risks ratio of any shrinkage estimator   dominating the James-Stein estimator

JS , to the maximum 

likelihood estimator X , tends to constant 
c

c

1
 (<1), in particularly the risks ratios 

 
 



,

,

XR

R JS

 and
 
 



,

,

XR

R JS

. 

      When the dimension p is finite, Brandwein and Strawderman (2012) considered the following model

   22
~, UXfUX  , where pX  dimdim  and kU dim . The classical example of this model is of course, the 

normal model of density 2

2
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e . They showed that, if the function g  satisfies certain conditions, the estimator 
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  dominate X , so that g is minimax. 

 Maruyama (2014), has also studied the minimaxity of shrinkage estimator when the dimension of parameter’s space is finite. Then 

he considered the following model ),(~ dd INz   and the so called 
pl  -norm given by: 

pdi
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p
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, 0p . He studied 

the minimaxity of shrinkage estimators defined as follows: )ˆ,...,ˆ(ˆ
1   d  with :   iippi zzzz
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)(1ˆ  where

)1()2(0  dd and 0p . 

Note that the risk functions of these estimators are calculated relatively to the usual quadratic loss function defined above. 

       In this work we adopt the model  pp INX 2,~   where the parameter
2 is unknown and estimated by the statistic

2S :

222 ~ nS  independent of the observations X .  Note that   2;  pXR  is the risk of the MLE. Our aim is to estimate the mean 

  by the shrinkage estimators of the form     XXX
X

S
XS 
















2

2
22 ,1   , that shrink the components of the MLE 

X  to the random variable X .  This paper is organized as follows, In Section 1, we recall some results obtained in Benkhaled and 

Hamdaoui (2019). Under the usual quadratic loss function defined in (1.1), the authors showed that if the shrinkage function 𝜓  

satisfies some conditions, the estimator 𝛿𝜓 is minimax. They also proved that if the condition )0(lim
2

2




c
pp 


) is satisfies, 

the limit of risks ratio of shrinkage estimators 𝛿𝜓 to the MLE X , equal to  
c

c

1
  when n  and p tend simultaneously to infinity, 

thus they assured the  minimaxity property of this estimator when the the parameters space p  and the sample size n are large. In 

Section 2, we trait the Bayesian case, then we suppose that the mean   is a random variable and construct the modal Bayes estimator. 

We study the minimaxity of this estimator when the dimension of the parameters space is finite, and the asymptotic behavior of 
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risks ratio of this estimator to the MLE when the dimension of the parameters space p  and the sample size n  tend simultaneously 

to infinity. 

 

2. PRELIMINAIRIES.  

We recall that if X  is a multivariate Gaussian random  pp IN 2,  in 
p  then  



2

p2

2

~
X

 where  2

p   denotes the non-

central chi-square distribution with p degrees of freedom and non-centrality parameter

2

22


  . We also recall the following 

results that we will use in the next.  

       Let the model:  pp INX 22 ,~,/  , where  the parameters   and 
2  are unknown and 

2  is estimated by the statistic 

2S :
222 ~ nS   independent to the random variable X . The aim is to estimate the mean  t

p ,...,, 21  by the shrinkage 

estimators of the form: 

    ,,1 22 XXXTS jj   
   pj ,...,1 ,                (2.1) 

where: �̅� =
1
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𝑝
𝑖=1 , 𝑇2 = ∑ (𝑋𝑖 − �̅�)2𝑝

𝑖=1  and the two random variables 
2S and 

2T are independent.                                 

Lemma 2.1. (Benkhaled and Hamdaoui (2019))  Assume ~K   
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Proposition 2.2. (Benkhaled and Hamdaoui (2019))  Let 
  is given in (2.1), then for any 4p  we have 
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The proof of this Proposition is based to the Lemma 2.1. 

    Now, we consider the special case when  
2

2
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dTS  , where d is a constant, then the estimator given in (3.1) is written 
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    We note that when ,0d  the estimator 
0  becomes the maximum likelihood estimator ,X  its risk equal .2p  

    In this case, the James-Stein estimator is obtained by minimizing the risk ),,(  dR  thus the James-Stein estimator is given by: 
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its risk function is 
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Proposition 2.3.  ( Benkhaled and Hamdaoui (2019)) 

a) If 4p , the James-Stein estimator 
JS  given in (2.3) is minimax. 

b) If   )0(/lim
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Remark 2.4. From Propositions 2.2 and 2.3, we note that the risks ratios of any shrinkage estimator 
  of the form (2.1) 

dominating the James-Stein estimator 
JS , to the maximum likelihood estimator attains the limiting lower bound 
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when n  and p tend simultaneously to infinity. 

         Next, we consider the general form of shrinkage estimators of Lindley-type, defined by : 
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For the next, we recall the result of minimaxity of the estimator of Lindley-type given in (2.5) and the limit of risks ratio of this 

estimator to the MLE  𝑋. 

 

2.1. Minimaxity 

 Proposition 2.5. ( Benkhaled and Hamdaoui (2019))  Assume that 
  is given in (2.5), such that 4p and   satisfies: 

 a)  22 ,TS  is monotone non-decreasing in 
2T , 

b)    
 2

32
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 A sufficient condition so that the estimator 
  is minimax is, for any k (k=0, 1, 2,…), 
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Remark 2.6. It is clear that the James-Stein estimator given in (2.3) satisfies the conditions of Proposition 2.5, thus the James-Stein 

estimator is minimax. 

 

2.2. Limit of risks ratios 

Proposition 2.7. ( Benkhaled and Hamdaoui (2019))  Assume that 
  is given in (2.5), such that 4p and   satisfies : 
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3. MAIN RESULTS 

3.1. The Modal Bayes Estimator 

We recall that, if  pp INX 22 ,~,/  , where the parameter 
2 is known and the prior distribution  22 ,~,/  Nj

 (

pj ,...,1 ), with the hyper parameters   and 
2 are known. Then the Bayes estimator is given by: 
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Thus, the modal Bayes estimator is, 
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It is clear that the estimator defined in (3.2) is of the form (2.5) with   
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that if 6p , the estimator 
MB satisfies conditions of Proposition 2.5, hence 

MB  is minimax. We also note that the estimator 

MB satisfies conditions of Proposition 2.7, it suffices to take  
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CONCLUSION  

In this work, we considered the model  pp INX 2,~   

where the parameter
2 is unknown and estimated by the 

statistic
2S :

222 ~ nS   independent of the observations X

. Note that   2;  pXR  is the risk of the MLE. Our aim 

is to estimate the mean   by the shrinkage estimators of the 

form     XXX
X

S
XS 
















2

2
22 ,1   , that 

shrink the components of the MLE      

X  to the random variable X . Under the usual quadratic loss 

function, we studied the minimaxity of these estimators when 

the dimension of the parameter's space p  is finite. We also 

studied the limit of risks ratios of estimator 𝛿𝜓, to the 

maximum likelihood estimator, when n  and p  tend 

simultaneously to infinity. Finaly, we considered that the 

mean   is a random variable and constructed the modal Bayes 

estimators 
MB . We showed that if the dimension of the 

parameters space p ,  the estimator 
MB  is minimax and we 

prove that the limit of risks ratio of this estimator to the 

maximum likelihood estimator when the dimension of the 

parameters space p  and the sample size n  tend to infinity 

tends to the value 
c

c

1
(<1) thus, we assured that the modal 

Bayes estimators 
MB  is minimax even if n  and p  tend 

simultaneously to infinity . An idea would be to see whether 

one can obtain similar results in the general case of the 

symmetrical spherical model. 
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