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Queueing system is one of the real applications which is used to establishing the relationship between 

customers and server for providing service facility. In Wang and zhang [9], The equilibrium threshold 

balking strategies are analyzed for fully observable and partially observable m/m/1 queue with server 

breakdown and delayed repair. By the observation and state of server, when customer arrive in the 

system, he/she decide whether to join or balk the queue. In this paper we consider equilibrium strategy 

markovian   queue with presence of redundant server for condition of balking and delayed repair. By 

the redundant server, system can improve service quality. Customers may not lose their time for 

service. In this paper, we calculate the stationary distribution of queue size of queueing system. With 

the help of markove chain approach and system cast analysis. We calculated equilibrium threshold 

strategy and equilibrium social benefit for fully observable and partially observable with redundant 

server for server breakdown and delayed repair. 
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INTRODUCTION  

The study of customer's behavior in  queueing theory is a very 

active research area for new research in many different 

direction. There are unlimited possibilities between 

customers and service providers for determine stretegic 

behavior. Economou and Kanta [3] studied the equilibrium 

balking strategies in the observable M/M/1 queue with an 

unreliable server and repairs. They considered the system 

with two different levels of information: (1) fully observable 

case. The customers can observe both the queue length and 

the state of the server upon arrival; (2) almost observable 

case. The customers can observe only the queue length and 

the state of the server is unobservable. Based on the available 

information, the customers decide whether to balk the system. 

In system, breakdown of server is require repair process, are 

very common in practice, especially in manufacturing 

industries, communication networks, any among others. 

However, in many real-life situations due to non-availability 

of the repair facility it may not be easy to start the repair 

process immediately   and therefore the system may delay the 

repair time 

 Wang and zhang [9] studied the equilibrium analysis of the 

observable queues with balking and delayed repair. In this 

paper, we investigate such a queueing system based on Wang 

ang zhang [9] but there are some difference in the modal here 

we use redundant server in markovian queue. Under this 

assumption, we study the equilibrium threshold balking 

strategies for both of the fully and almost observable 

markovian queue with redundant server for condition of 

balking and delayed repair. In our model we minimize the 

waiting time of customer with help of the redundant server in 

M/M/1. If main server goes in breakdown state then working 

process is not affected because of the redundant server. 

Customers moves the redundant server and customer is 

served without any delay. In the case, when each server fails, 

service facility stops and system enters in repair state. Since 

repair process also takes some time, it also constitutes some 

delay. In this situation customers face delay in service. But 

with the help of redundant server overall reliability of the 

system increases so customers do not balk from the system. 

Redundant server is an extra server used in our model so that 

the system provides a reliable working facility to the 

customer. 

https://doi.org/10.47191/ijmcr/v9i4.01
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Brief Review 

In The literature Naor [18]is the  first who study  the effect of 

information on the  strategy of customer behavior in queueing 

systems. Naor [18] studied an M/M/1 queueing model with a 

linear reword-cost structure in the fully observable case. It is 

assumed that an arriving customer observes the number of 

customers and then decided  whether to join or balk the queue. 

Edelson and Hildebrand [15] investigated Naor’s model by 

assuming that there is no information on the queue length for 

an arriving customer.  

Burnetas and Economou [1] first presented several 

Markovian queues with setup times and four precision levels 

of system information and analyzed the customers’ 

equilibrium strategies. Economou and Kanta [3] studied the 

equilibrium balking strategies in the observable M / M /1 

queueing system with an unreliable server and repairs. Some 

works have incorporated server vacation policies, such as 

Guo and Hassin [17] and Sun et al. [27]. Moreover, there are 

many papers that deal with the economic analysis of the 

balking behavior of customers in variants of the M / M /1 

queue in [2], Economou and Manou discussed a Markovian 

clearing queueing system that operates in an alternating 

environment. 

Guo and Zipkin [16] considered a queue with balking under 

three levels of delayed information: no information, system 

occupancy, and exact waiting time. They showed how to 

compute the key performance measures in the three systems 

and compare them. Hassin [21] analyzed the effect of 

information and uncertainty on profits in an unobservable 

single server queueing system. He obtained explicit answers 

to the effect of information about the system’s parameters on 

the server profits and system’s overall welfare. Hassin and 

Haviv [22] dealed with the economic analysis of a queueing 

model with priorities in which two priority levels can be 

purchased and obtain all of the Nash equilibrium strategies 

(pure or mixed) of the threshold type. The fundamental 

results about various observable models can be found in the 

comprehensive monographs of Hassin and Haviv [23] and 

Stidham [25] with extensive bibliographical references. 

 the aim of this paper is  to study the equilibrium behavior of 

customers in the context of both fully observable and partially 

observable markovian  queue with redundant server  an 

unreliable server and delayed repairs. 

The paper is organized as follows. Descriptions of the model 

and price structure are given in Section 2. In Section 3, the 

equilibrium strategies for fully observable and partially 

observable queues are identified and the equilibrium social 

benefit for partially observable case are derived. Finally, in 

Section 5, some conclusions are given. 

 

2.  MODAL DESCRIPTION 

We investigate the same model discussed in Wang and Zhang 

[9] but there is some difference in our model here we use 

redundant sever.  We consider the fully observable and 

partialy observable M / M /1 queueing system with an infinite 

waiting room where customers arrive according to a Poisson 

process with intensity λ and customers are served at a rate of 

μ.  The server has an exponential lifetime with failure rate 2ξ 

when he is working.  Once the server fails it will not 

experience an exponential delayed time to activate the repair 

process. Because all customers load of system is transfer on 

the   redundant server. Working process is continuing. In this 

situation fail server is going to repair process. But in this 

interval of time redundant server fails. Then   delayed time is 

exponentially distributed with parameter δ.  During the delay 

time, the server stops providing service to arriving customers 

and waits for repair facility to begin the repair process.  The 

repair time is assumed to be exponentially distributed with 

parameter θ.  In other words, the repair process may not be 

started immediately when the server fails due to non-

availability of the repair facility.  The repair delayed time is 

introduced as the time interval between the epoch of server 

breakdown and the beginning of repair process. We realize 

that the repair time has two stages and hence it is not 

memoryless. We describe the state of the system at time t by 

a pair (N(t), I(t)), where L (t) records the number of customers 

in the system and I (t) denotes the state of the server (s1: 

working state s2: working state (redundant server); d:  delayed 

period; r:  under repair).  The stochastic process {(N(t), I(t)), 

t ≥ 0} is a two-dimensional continuous-time Markov chain 

 
 

As in Economou and Kanta [3], we assume that the customers 

are allowed to decide whether to join or balk upon their 

arrival based on the information they have. After service, 

every customer receives a reward of R units. This may reflect 

his satisfaction or the added value of being served. On the 

other hand, there exists a waiting cost of C units per time unit 

when the customers remains in the system including the time 

of waiting in queue and being served. Customers are risk 

neutral and maximize their expected net benefit. Their 

decisions are irrevocable that retrials of balking customers 

and reneging of entering customers are not allowed. Each 

customer can observe the number of customers ahead of him 

upon his arrival. In this paper, we consider two information 

cases regarding whether the customers observe also the state 

of the server or not, which are called fully observable and 

partially observable cases in the literature. 
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3. EQUILIBRIUM THRESHOLD STRATEGIES  

In this section, we shall obtain the threshold equilibrium 

strategy in two cases mentioned above. In the fully 

observable case where customers are known  both the state of 

the server I(t) and the number of the present customer N(t) at 

arrival time t, a pure threshold strategy is specified by a  

(𝑛𝑒(r), 𝑛𝑒(𝑠1), 𝑛𝑒(𝑠2), 𝑛𝑒(d))  and the balking strategy has 

the form ‘While arriving at time t, observe (N(t), I(t)); enter 

if N(t)  ≤ 𝑛𝑒(I(t)) – 1  and balk otherwise’. In the partially 

observable case, a pure threshold strategy is specified by a 

single number ne and has the form ‘While arriving at time t, 

observe N(t); enter if such that a customer who observes the 

system at state (N(t), I(t)) upon his arrival enters if N(t)  ≤ 𝑛𝑒 

– 1  and balks otherwise.

 

 
Fig.1. Transition rate diagram for the  (𝑛𝑒(r), 𝑛𝑒(𝑠1), 𝑛𝑒(𝑠2), 𝑛𝑒(d))  equilibrium strategy in fully observable queue with 

redundant  server with breakdown and delayed  repair 

 

3.1 Fully observable queue 

Fig 1  illustrates the dynamics of the queueing system in the fully observable case, where customers are informed both the state of 

the server I(t) and the number of the present customer N(t) at arrival time t. And we have the following result. 

 

Theorem 1. In the fully observable M/M/1 queue with breakdowns and delayed repairs there exist a thresholds: 

(𝑛𝑒(r), 𝑛𝑒(𝑠1), 𝑛𝑒(𝑠2), 𝑛𝑒(d)) =([
(𝑅𝜃−𝐶)𝜇𝛼

𝐶(𝛼𝜃+𝛼𝜉+𝜉𝜃)
] , [

𝑅𝜃𝜇𝛼

𝐶(𝛼𝜃+𝛼𝜉+𝜉𝜃)
] , [

𝑅𝜃𝜇𝛼

𝐶(𝛼𝜃+𝛼𝜉+𝜉𝜃)
] , [

(𝑅𝛼𝜃−𝐶𝜃−𝐶𝛼)𝜇

𝐶(𝛼𝜃+𝛼𝜉+𝜉𝜃)
])                                     (1) 

 

such that a customer who observes the system at state (N(t), I(t)) upon his arrival enters if  N(t)  ≤ 𝑛𝑒(I(t)) – 1 and balks otherwise. 

 Proof. It is obvious that for an arriving customer, his expected net reward if he enters is: 

S(n, i) = R - CT(n, i)                                                                                                                                                               (2) 

where T(n, i) denotes his expected mean sojourn time given that he finds the system at state ((N(t), I(t)) upon his arrival. 

Here we assume that time taken by both server to serve a customer is same i.e. both servers are identical.  so  T(n, s1) = T(n, s2) 

we have the following equations: 

T(n, r) = 
1

𝜃
 +T(n, s1)                   n=0,1,2,3…….                                                                                                                            (3) 

 

T(0, s1) = 
𝜇

𝜇+𝜉

1

𝜇
 + 

𝜉

𝜇+𝜉
 T(0, d)                                                                                                                                                         (4) 

 

T(n, s1) = 
𝜇

𝜇+𝜉

1

𝜇
 + 

𝜇

𝜇+𝜉
 T(n-1, s1)  + 

𝜉

𝜇+𝜉
 T(n, d)      n=1,2,3……                                                                                                   (5) 

    

T(n, d) = 
1

𝛼
 +T(n, r)                   n=0,1,2,3…….                                                                                                                            (6) 

Solving the system of (3) and (6) for n = 0 along with (4) we obtain T(0, r), T(0, s) and T(0,d). 

T(0, s1) = 
𝜇

𝜇+𝜉

1

𝜇
 + 

𝜉

𝜇+𝜉
 [ 

1

𝛼
 + 

1

𝜃
 +T(0, s1)] 

T(0, s1) =   (1 +
𝜉

𝛼
 +

𝜉

𝜃
 )

1

𝜇
                                                                                                                                                             (7)                                                                                                                                                          

 From Eqs. (3) and (6) we can obtain: 

T(n, d) = 
1

𝛼
  +  

1

𝜃
 +T(n, s1)          n=0,1,2,3…….                                                                                                                          (8)                 

By plugging (8) in (5)we have  

 T(n, s1) =  T(n-1 , s1)+ (1 +
𝜉

𝛼
 +

𝜉

𝜃
 )

1

𝜇
                                                                                                                                        (9)                                                                                                                                                          



“The Study of Equilibrium Strategies of the Observable Markovian Queue with Redundant Server for Balking and 

Delayed Repair” 

2217 Dr. R. K. Shrivastava1, IJMCR Volume 09 Issue 04 April 2021 

 

 using T(0,1) and Eq (7) we get: 

T(n, s1) =  (n+1) (1 +
𝜉

𝛼
 +

𝜉

𝜃
 )

1

𝜇
           n=0,1,2……..                                                                                                                 (10) 

By plugging (10) in (3) we have: 

T(n,r) =  (n+1) (1 +
𝜉

𝛼
 +

𝜉

𝜃
 )

1

𝜇
  + 

1

𝜃
          n=0,1,2……..                                                                                                             (11) 

Solving Eq. (6) by using (11), we obtain: 

T(n,d) =  (n+1) (1 +
𝜉

𝛼
 +

𝜉

𝜃
 )

1

𝜇
  + 

1

𝜃
  +

1

𝛼
                  n=0,1,2……..                                                                                              (12)                                                                              

If S(n, i) > 0, i.e. if the reward for service greater then  the expected cost for waiting, the customer prefers to enter. 

 And if S(n, i) = 0, 

i.e., if the reward is equal to the cost he is indifferent between entering and balking. 

 By solving S(n, i) ≥ 0 for n, using Eqs. (2) and (10), (11), (12), we obtain that the customer arriving at time t decides to enter if and 

only if n ≤ 𝑛𝑒(I(t)) – 1 

 where  (𝑛𝑒(r), 𝑛𝑒(𝑠1), 𝑛𝑒(𝑠2), 𝑛𝑒(d)) is given by (1).  

This strategy is preferable, independently of what the other customers do, i.e. it is a weakly dominant strategy 

 

For the stationary analysis of the system, note that if all customers follow the threshold strategy in (1) the system follows a Markov 

chain with state space restricted to Qfo = {(n, i)j0 6 n 6 ne(s), i = r, s,d} and identical transition rates. The corresponding stationary 

distribution {p(n, i): (n, i) 2 Qfo} is obtained as the unique positive normalized solution of the following system of balance equations: 

(𝜆+𝜃)P(0, r) = 𝛼P(0, d)                                        n=0                                                                                                                 (13) 

(𝜆+𝜃)P(n, r) = 𝜆P(n-1, r) + 𝛼P(n, d)                 n=1,2,….. ne(r)-1                                                                                                 (14) 

𝜃P(ne(r), r) = 𝜆P(ne(r)-1, r) + 𝛼P(ne(r), d)         n= ne(r)                                                                                                                (15)                                                                                                                        

𝜃P(n, r) =  𝛼P(n, d)                                           n= ne(r)+1,…. ne(s1) or ne(s2)                                                                               (16) 

(𝜆+2𝜉)P(0, s1) = 𝜇P(1, s1) + 𝜃P(0, r)                                                                                                                                              (17) 

(𝜆+2𝜉+𝜇)P(n, s1) = 𝜇P(n+1, s1) + 𝜃P(n, r) + 𝜆P(n-1, s1)                   n=1,2,….. ne(s1)-1                                                               (18) 

(𝜇+2𝜉)P(ne(s1), s1) = 𝜆P(ne(s1)-1, s1) + 𝜃P(ne(s1), r)                                                                                                                      (19) 

(𝜆+𝜉)P(0, s2) = 𝜇P(1, s2) + 2𝜉P(0, s1)                                                                                                                                            (20) 

(𝜆+𝜉+𝜇)P(n, s2) = 𝜇P(n+1, s2) + 2𝜉P(n, s1) + 𝜆P(n-1, s2)                 n=1,2,….. ne(s2)-1                                                                (21) 

(𝜇+𝜉)P(ne(s2), s2) = 𝜆P(ne(s2)-1, s2) + 2𝜉P(ne(s2), s1)                                                                                                                     (22) 

(𝜆+𝛼)P(0, d) = 𝜉P(0, s2)                                                                                                                                                                 (23) 

(𝜆+𝛼)P(n, d) = 𝜆P(n-1, d) + 𝜉P(n, s2)                                               n=1,2,….. ne(d)-1                                                                 (24) 

𝛼P(ne(d), d) = 𝜆P(ne(d)-1, d) +  𝜉P(ne(d), s2)                                                                                                                                 (25)                                                                                          

𝛼P(n, d) = 𝜉P(n, s2)                                                                           n=ne(d)+1,…. ne(s1)or ne(s2)                                                (26) 

From eqs (16),(18),(21)and (26) we have  

𝜇2P(n+2, s2) -𝜇(2𝜆 + 3𝜉 + 2𝜇)P(n+1, s2 ) +{(𝜆 + 2𝜉 + 𝜇) (𝜆 + 𝜉 + 𝜇) + 2𝜆𝜇 + 2𝜉2}P(n, s2)- 𝜆(2𝜆 + 3𝜉 + 2𝜇)P(n-1,s2) +𝜆2P(n-

2,s2)=0                                                                                                                                                                                       (27) 

Which is a four order difference equation  𝑥4+ a1𝑥3 + a2𝑥2 + a3x + a4 = 0 with solution 𝜂𝑖(𝑖 = 1,2,3,4)therefore we can set 

P(n, s2) = ∑ 𝑏1𝑖𝜂𝑖
𝑛4

𝑖=0           n= ne(r)+1,…., ne(s2)-1                                                                                                                   (28) 

where 𝑏1𝑖i=1,2,3,4 are constant to be determined by using normalization condition  

From eqs (21), 

P(n, s1) =  ∑ 𝑏2𝑖𝜂𝑖
𝑛4

𝑖=0          n= ne(r)+1,…., ne(s1)-1                                                                                                                   (29) 

                        Where 𝑏2𝑖= 
1

2𝜉
{(𝜆 + 𝜉 + 𝜇) − 𝜇𝜌𝑖 −

𝜆

𝜌𝑖
}𝑏1𝑖 

Put the value of eqs (28) in (26) and (16) then we have  

P(n, d) =  
𝜉

𝛼
 ∑ 𝑏1𝑖𝜂𝑖

𝑛4
𝑖=0           n= ne(r)+1,…., ne(s2)-1                                                                                                                (30)                                                                                             

P(n, r) =  
𝜉

𝜃
 ∑ 𝑏1𝑖𝜂𝑖

𝑛4
𝑖=0           n= ne(r)+1,…., ne(s2)-1                                                                                                                 (31) 

From eqs (16), (19), (22)and (26) we have  

𝜇(𝜇 + 3𝜉)P(ne(s2), s2) - (2𝜇 + 3𝜉)𝜆P(ne(s2)-1, s2) + 𝜆2P(ne(s2)-2, s2)  =0 

Which is second  order difference equation  with solution  

P(ne(s2), s2) = P1 = c1(
𝜆

𝜇
)
𝑛𝑒(𝑠2)

+ 𝑐2 (
𝜆

𝜇+3𝜉
)

𝑛𝑒(𝑠2)

                                                                                                                                                 (32) 

Plugging eq(32) in eq(22), 

 P(ne(s1), s1 ) =    (
(𝜉+𝜇)

2𝜉
)𝑃1 + 

1

2𝜉
 ∑ 𝑏1𝑖𝜂𝑖

𝑛𝑒(𝑠2)−14
𝑖=0                                                                                                                                          (33) 
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From eq(26)    P(ne(s2), d) = 
𝜉

𝛼
 P1                                                                                                                                               (34) 

From eq(16)    P(ne(s2), r) = 
𝜉

𝜃
 P1                                                                                                                                                (35) 

 

The normalization equation   

∑ 𝑃(𝑛, 𝑟)

𝑛𝑒(𝑠)

𝑛=0

+ ∑ 𝑃(𝑛, 𝑠1)

𝑛𝑒(𝑠)

𝑛=0

+ ∑ 𝑃(𝑛, 𝑠2)

𝑛𝑒(𝑠)

𝑛=0

+ ∑ 𝑃(𝑛, 𝑑)

𝑛𝑒(𝑠)

𝑛=0

= 1 

Here ne(s) indicates ne(s1) or ne(s2)   

the probability of balking is equal to  

 

∑ 𝑃(𝑛, 𝑟)

𝑛𝑒(𝑠)

𝑛=𝑛𝑒(𝑟)

+ P(𝑛𝑒(𝑠1), 𝑠1 ) + P(𝑛𝑒(𝑠2), 𝑠2 ) + ∑ 𝑃(𝑛, 𝑑)

𝑛𝑒(𝑠)

𝑛=𝑛𝑒(𝑑)

 

 the social benefit per time unit when all customers follow the threshold policies  (𝑛𝑒(r), 𝑛𝑒(𝑠1), 𝑛𝑒(𝑠2), 𝑛𝑒(d))  given in theorem 

1 equals: 

 

  SBfo = 𝜆 [1- ∑ 𝑃(𝑛, 𝑟)
𝑛𝑒(𝑠)
𝑛=𝑛𝑒(𝑟) − P(𝑛𝑒(𝑠1), 𝑠1 ) − P(𝑛𝑒(𝑠2), 𝑠2 ) − ∑ 𝑃(𝑛, 𝑑)

𝑛𝑒(𝑠)
𝑛=𝑛𝑒(𝑑) ]- C ∑ 𝑛(𝑃(𝑛 , r)

𝑛𝑒(𝑠) 
𝑛=0 +

                                                                                                                                  𝑃(𝑛 , 𝑠1 ) + 𝑃(𝑛 , 𝑠2 ) + 𝑃(𝑛 , d))             (36) 

3.2  Partially observable queue  

In this section we proceed to the partially observable case where the arriving customers observe the number of customers upon 

arrival, but not the state of the server. The transition diagram is depicted in Fig. 2. The corresponding equilibrium strategies within 

the class of pure threshold strategies will be studied. To this end, it is necessary to obtain the stationary distribution of the system 

when the customers follow a given pure threshold strategy. We have the following preliminary result. 

 

Lemma 1. In the partially observable M/M/1 queue with redundant server with  breakdowns and delayed repairs where the 

customers enter the system according to a threshold strategy ‘while arriving at time t, observe N(t); enter if N(t) ≤ 𝑛𝑒(I(t)) – 1  and 

balk otherwise’, 

 the stationary distribution (P(n, i): (n, i) 𝜖 {0,1, 2, . . .,ne} × {r, s1, s2, d}) is given as follows 

P(n, r)   = ∑ 𝑢𝑖𝜌𝑖
𝑛6

𝑖=0                                 n= 0,1,2,………………… ne -1                                                                       (37)                                    

P(n, s1) = ∑ 𝑤𝑖𝜌𝑖
𝑛6

𝑖=0                                 n= 0,1,2,………………… ne -1                                                                       (38)                                   

P(n, s2)  = ∑ 𝑣𝑖𝜌𝑖
𝑛6

𝑖=0                                 n= 0,1,2,………………… ne -1                                                                      (39) 

P(n, d)= ∑ 𝑐𝑖𝜌𝑖
𝑛6

𝑖=0                                      n=0,1,2…………………ne -1                                                                       (40) 

P(ne, r) = 
(𝜆+2𝜉)(𝜆+𝜉)

𝜃(𝜆+3𝜉)
[∑ (𝑤𝑖 + 𝑢𝑖 + 𝑐𝑖 +

𝜉

𝜆+𝜉
 𝑣𝑖) 𝜌𝑖

𝑛𝑒−16
𝑖=1 ] - 

𝜆

𝜃
 ∑ 𝑤𝑖𝜌𝑖

𝑛𝑒−16
𝑖=0                                                                 (41) 

P(ne, s1) = 
𝜆+𝜉

𝜆+3𝜉
[∑ (𝑤𝑖 + 𝑢𝑖 + 𝑐𝑖 +

𝜉

𝜆+𝜉
 𝑣𝑖) 𝜌𝑖

𝑛𝑒−16
𝑖=1 ]                                                                                                     (42) 

P(ne, s2) = = 
(𝜆+2𝜉)(𝜆+𝜉)

𝜉(𝜆+3𝜉)
[∑ (𝑤𝑖 + 𝑢𝑖 + 𝑐𝑖 +

𝜉

𝜆+𝜉
 𝑣𝑖) 𝜌𝑖

𝑛𝑒−16
𝑖=1 ] – 

𝜆

𝜉
 ∑ (𝑤𝑖 + 𝑢𝑖 + 𝑐𝑖)𝜌𝑖

𝑛𝑒−16
𝑖=0                                         (43) 

P(ne, d) = 
(𝜆+2𝜉)(𝜆+𝜉)

𝛼(𝜆+3𝜉)
[∑ (𝑤𝑖 + 𝑢𝑖 + 𝑐𝑖 +

𝜉

𝜆+𝜉
 𝑣𝑖)𝜌𝑖

𝑛𝑒−16
𝑖=1 ] - 

𝜆

𝛼
 ∑ (𝑤𝑖 + 𝑢𝑖)𝜌𝑖

𝑛𝑒−16
𝑖=0                                                      (44)                                      

Where  

 𝑣𝑖= 
(𝜆+𝛼)𝜌𝑖−𝜆

𝜉𝜌𝑖
                          i=1,2….6                                                                                                                           (45) 

 𝑤𝑖= 
𝑣𝑖

2𝜉
  (𝜆 + 𝜉 + 𝜇 − 𝜇𝜌𝑖 −

𝜆

𝜌𝑖
)    i=1,2…….6                                                                                                               (46) 

 𝑢𝑖=  
𝑤𝑖

𝜃
  (𝜆 + 2𝜉 + 𝜇 − 𝜇𝜌𝑖 −

𝜆

𝜌𝑖
)    i=1,2…….6                                                                                                            (47) 

a = 
 –(𝜆+𝛼){ (𝜆+𝜃)(2𝜆+3𝜉+2𝜇)𝜇+𝜇2𝜆}− 𝜇2(𝜆+𝜃)𝜆

𝜇2(𝜆+𝜃)(𝜆+𝛼)
                                                                                                                     (48)  

b = 

𝜆 (𝜆+𝜃)(2𝜆+3𝜉+2𝜇)𝜇+𝜇2𝜆2+(𝜆+𝛼)(𝜆+𝜃){(𝜆+2𝜉+𝜇)(𝜆+𝜉+𝜇)+2𝜇𝜆}+

(𝜆+𝛼)(2𝜆+3𝜉+2𝜇)𝜇𝜆 − 2𝛼𝜉2𝜃

𝜇2(𝜆+𝜃)(𝜆+𝛼)
                                                                                       (49) 

c = 

−𝜆[(𝜆+𝛼){(𝜆+𝜃)(2𝜆+3𝜉+2𝜇) +(𝜆+2𝜉+𝜇) (𝜆+𝜉+𝜇) +2𝜇𝜆} +

 (𝜆+𝜃){ (𝜆+2𝜉+𝜇) (𝜆+𝜉+𝜇) +2𝜇𝜆} +𝜆𝜇(2𝜆+3𝜉+2𝜇)]

𝜇2(𝜆+𝜃)(𝜆+𝛼)
                                                                                                     (50)                        

 d = 
𝜆2 [(𝜆+𝛼)(3𝜆+3𝜉+2𝜇+𝜃)+  (𝜆+𝜃)(2𝜆+3𝜉+2𝜇)+(𝜆+2𝜉+𝜇) (𝜆+𝜉+𝜇) +2𝜇𝜆] 

𝜇2(𝜆+𝜃)(𝜆+𝛼)
                                                                                (51) 
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e =  
− 𝜆3(4𝜆+3𝜉+2𝜇+𝜃+𝛼) 

𝜇2(𝜆+𝜃)(𝜆+𝛼)
                                                                                                                                                       (52) 

 f = 
𝜆4

𝜇2(𝜆+𝜃)(𝜆+𝛼)
                                                                                                                                                                   (53) 

and ci(i = 1,2,3,4,5,6) are determined by using normalization condition and  𝜌i (i = 1,2,3,4,5,6) are six  roots of equation   𝑥6+ a𝑥5+ 

b𝑥4+ c𝑥3+ d𝑥2+ e𝑥+ f = 0 .                                                                                   

 Proof : 

Fig.2.Transition rate diagram for the ne equilibrium strategy in partially observable queue with redundant server with breakdown 

and delayed repair 

 

The stationary distribution (P(n, i)) is obtained by using the balance equations: 

 

(𝜆+𝜃)P(0, r) = 𝛼P(0, d)                                                                                                                                                               (54) 

(𝜆+𝜃)P(n, r) = 𝜆P(n-1, r) + 𝛼P(n, d)                                                                                                                                           (55) 

𝜃P(ne, r) = 𝜆P(ne-1, r) + 𝛼P(ne, d)                                                                                                                                              (56) 

(𝜆+2𝜉)P(0, s1) = 𝜇P(1, s1) + 𝜃P(0, r)                                                                                                                                          (57) 

(𝜆+2𝜉+𝜇)P(n, s1) = 𝜇P(n+1, s1) + 𝜃P(n, r) + 𝜆P(n-1, s1)                                                                                                            (58) 

(𝜆+2𝜉)P(ne, s1) = 𝜆P(ne-1, s1) + 𝜃P(ne, r)                                                                                                                                   (59)                                                                          

 (𝜆+𝜉)P(0, s2) = 𝜇P(1, s2) + 2𝜉P(0, s1)                                                                                                                                        (60)   

(𝜆+𝜉+𝜇)P(n, s2) = 𝜇P(n+1, s2) + 2𝜉P(n, s1) + 𝜆P(n-1, s2)                                                                                                           (61) 

 (𝜆+𝜉)P(ne, s2) = 𝜆P(ne-1, s2) + 2𝜉P(ne, s1)                                                                                                                                  (62) 

 (𝜆+𝛼)P(0, d) = 𝜉P(0, s2)                                                                                                                                                             (63) 

(𝜆+𝛼)P(n, d) = 𝜆P(n-1, d) + 𝜉P(n, s2)                                                                                                                                          (64)      

𝛼P(ne, d) = 𝜆P(ne-1, d) +  𝜉P(ne, s2)                                                                                                                                            (65) 

 From eq   (55), (58), (61) and (64)     we obtain: 

𝜇2(𝜆+𝜃)(𝜆+𝛼)P(n+2, d) –[(𝜆+𝛼){ (𝜆+𝜃)(2𝜆+3𝜉+2𝜇)𝜇+𝜇2𝜆} + 𝜇2(𝜆+𝜃)𝜆]P(n+1, d)  

+[𝜆 (𝜆+𝜃)(2𝜆+3𝜉+2𝜇)𝜇+𝜇2𝜆2+(𝜆+𝛼) (𝜆+𝜃){(𝜆+2𝜉+𝜇) (𝜆+𝜉+𝜇) +2𝜇𝜆} +(𝜆+𝛼)(2𝜆+3𝜉+2𝜇)𝜇𝜆 - 2𝛼𝜉2𝜃]P(n, d) -

𝜆[(𝜆+𝛼){(𝜆+𝜃)(2𝜆+3𝜉+2𝜇) +(𝜆+2𝜉+𝜇) (𝜆+𝜉+𝜇) +2𝜇𝜆} + (𝜆+𝜃){ (𝜆+2𝜉+𝜇) (𝜆+𝜉+𝜇) +2𝜇𝜆} +𝜆𝜇(2𝜆+3𝜉+2𝜇)]P(n-1,d)+ 𝜆2 

[(𝜆+𝛼)(3𝜆+3𝜉+2𝜇+𝜃)+  (𝜆+𝜃)(2𝜆+3𝜉+2𝜇)+(𝜆+2𝜉+𝜇) (𝜆+𝜉+𝜇) +2𝜇𝜆] P(n-2, d)  - 𝜆3(4𝜆+3𝜉+2𝜇+𝜃+𝛼) P(n-3, d) + 𝜆4P(n-4, d) =0         

𝑥6+ a𝑥5+ b𝑥4+ c𝑥3+ d𝑥2+ e𝑥+ f = 0                                                                                      

 which is a six-order difference equation with solution 𝜌i(i = 1,2,3, 4,5,6) and a, b, c, d, e, f are define in eqs (48)-(51) Therefore, 

we can set:  

P(n,d)= ∑ 𝑐𝑖𝜌𝑖
𝑛6

𝑖=0                                  n=0,1,2…………………ne -1                                                                                           (66) 

where ci, i = 1, 2, 3, 4 ,5,6 are constants to be determined. By plugging (66) in (65),  

P(n,s2)= ∑ 𝑣𝑖𝜌𝑖
𝑛6

𝑖=0                                      n=1,2,3………………… ne -1                                                                                     (67) 

Again, by plugging (67) in (61), we get: 

P(n, s1) = ∑ 𝑤𝑖𝜌𝑖
𝑛6

𝑖=0                                 n=2,3………………… ne -2                                                                                           (68)                             

Again, by plugging (68) in (58), we get:                         

P(n, r) = ∑ 𝑢𝑖𝜌𝑖
𝑛6

𝑖=0                                 n=3, 4,……………… ne -3                                                                                              (69)                                 

Where vi , wi and ui are described in eqs (45)-(47) 

By putting n = 1 in (61) and using (67) and (68), it is followed that: 

P(0, s2) = v1 + v2 + v3 + v4 + v5 + v6  
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Then we obtain (39) by combining (67) and the above equation. 

 In a similar manner, putting n = 1, n = 2 and n = ne - 1 in (58), and from the above equations, we get (38) . 

And putting n=1,n=2,n=3 ,n=ne -2 and n= ne – 1 in (55) and from above equation ,we get (37) 

  from eqs (56), (59) ,(62)and (65),  we have  

P(ne, s1) = 
𝜆+𝜉

𝜆+3𝜉
[P(ne-1, s1)+ P(ne-1, r)+ P(ne-1, d)+ 

𝜉

𝜆+𝜉
 P(ne-1, s2)]  

Put the value of eqs (66)-(69) then  

P(ne, s1) = 
𝜆+𝜉

𝜆+3𝜉
[∑ (𝑤𝑖 + 𝑢𝑖 + 𝑐𝑖 +

𝜉

𝜆+𝜉
 𝑣𝑖) 𝜌𝑖

𝑛𝑒−16
𝑖=1 ] 

Similarly we find (41),(43) and (44) 

 By plugging (37)–(40) in (54), (57), (60) and (61), we have: 

∑  6
𝑖=1 {

(𝜆+𝜃)[  (𝜆+2𝜉+𝜇)𝜌𝑖−𝜇𝜌𝑖
2−𝜆][ (𝜆+𝜉+𝜇)𝜌𝑖−𝜇𝜌𝑖

2−𝜆)] [(𝜆+𝛼)𝜌𝑖−𝜆]

2𝜉2𝜃𝜌𝑖
3 − 𝛼} 𝑐𝑖 = 0                                                                    (70) 

∑ {
[𝜆−(𝜇+𝜉)𝜌𝑖][ (𝜆+𝜉+𝜇)𝜌𝑖−𝜇𝜌𝑖

2−𝜆)]  [(𝜆+𝛼)𝜌𝑖−𝜆]

2𝜉2𝜌𝑖
2 }6

𝑖=1 𝑐𝑖 = 0                                                                                                   (71) 

∑ {
(𝜆−𝜇𝜌𝑖) [(𝜆+𝛼)𝜌𝑖−𝜆]

𝜉𝜌𝑖 
2 }6

𝑖=1 𝑐𝑖 = 0                                                                                                                                       (72) 

∑ {
𝜆

𝜌𝑖
}6

𝑖=1 𝑐𝑖 = 0                                                                                                                                                                 (73) 

with the help of Eqs. (70)–(73), then the value of 𝑐𝑖, i = 1, 2,..,6 can be determined by using normalization condition.  

We now proceed to find the expected net reward of a customer that observes n customers ahead of him and decides to enter. We 

have the following: 

 

Lemma 2. Consider the partially observable M/M/1 queue with redundant server for breakdowns and delayed repairs where the 

customers enter to the system according to a threshold strategy ‘While arriving at time t, observe N(t); enter if   N(t) ≤ ne- 1 and 

balk otherwise’. The net benefit of a customer that observes n customers and decides to enter is given by 

S(n) = R -C [ (n + 1) (1 +
𝜉

𝛼
 +

𝜉

𝜃
 )

1

𝜇
+

1

𝜃
∑ 𝑢𝑖𝜌𝑖

𝑛6
𝑖=0 + (

1

𝜃
 + 

1

𝛼
) ∑ 𝑐𝑖𝜌𝑖

𝑛6
𝑖=0

 ∑ (𝑢𝑖+𝑤𝑖+𝑣𝑖+𝑐𝑖)𝜌𝑖
𝑛6

𝑖=0
     ]           , 𝑛 = 0,1,2, …… . 𝑛𝑒 − 1                         (74) 

S(ne)=R-C [  (𝑛𝑒 + 1) (1 +
𝜉

𝛼
 +

𝜉

𝜃
 )

1

𝜇
+

1

𝜃
𝑃(𝑛𝑒,𝑟)+ (

1

𝜃
 + 

1

𝛼
)𝑃(𝑛𝑒,𝑑)

 𝑃(𝑛𝑒,𝑟)+𝑃(𝑛𝑒,𝑠1)+𝑃(𝑛𝑒,𝑠2)+𝑃(𝑛𝑒,𝑑)
      ]                                                                  (75)                                                                

 

Proof. The expected net reward, if he enters, for a customer that observes n customers is  

S(n) = R - CT(n)                                                                                                                                                                (76) 

 

where T(n) = E[S|N- = n] denotes his expected mean sojourn time given that he finds n customers in the system just before his 

arrival. We let Pr (I- = i|N-  = n) be the probability that the state of the server is i when he observes n customers in the system upon 

his arrival. 

 Conditioning on the state of the server that he finds upon arrival and taking into account (3) and (6) we obtain:  

T(n) = T(n, s1) Pr (I- = s1|N
-  = n) +T(n,s2) Pr (I- = s2|N

-  = n) +T(n,r) Pr (I- = r|N-  = n)  +T(n,d) Pr (I- = d|N-  = n)    

Put the value of eqs (10), (11) and (12)     , now we have  

 

T(n) = T(n, s1) Pr (I- = s1|N
-  = n) +T(n,s1) Pr (I- = s2|N

-  = n)  + (
1

𝜃
 + T(n, 𝑠1) ) Pr (I- = r|N-  = n)  +  (

1

𝜃
 +  

1

𝛼
 +  T(n, 𝑠1))   

Pr (I- = d|N-  = n) 

         = T(n,s1)  + 
1

𝜃
 Pr (I- = r|N-  = n) + (

1

𝜃
 + 

1

𝛼
) Pr (I- = d|N-  = n)                                                                                            (77) 

                        

  Pr (I- = r|N-  = n) =
𝜆 𝑃(𝑛,𝑟)

𝜆𝑃(𝑛,𝑟)+𝜆𝑃(𝑛,𝑠1)+𝜆𝑃(𝑛,𝑠2)+𝜆𝑃(𝑛,𝑑)
 

  Pr (I- = d|N-  = n) =
𝜆 𝑃(𝑛,𝑑)

𝜆𝑃(𝑛,𝑟)+𝜆𝑃(𝑛,𝑠1)+𝜆𝑃(𝑛,𝑠2)+𝜆𝑃(𝑛,𝑑)      
                      𝑛 = 0,1,2,…… . 𝑛𝑒 

  Using the stationary probabilities obtained in Lemma 1 we obtain the probabilities   Pr (I- = r|N-  = n) and   Pr (I- = d|N-  = n)  for n 

= 0,1, . . . , 𝑛𝑒. 

 So, we have: 

T(n)  =  (n+1) (1 +
𝜉

𝛼
 +

𝜉

𝜃
 )

1

𝜇
+

1

𝜃
∑ 𝑢𝑖𝜌𝑖

𝑛6
𝑖=0 + (

1

𝜃
 + 

1

𝛼
) ∑ 𝑐𝑖𝜌𝑖

𝑛6
𝑖=0

 ∑ (𝑢𝑖+𝑤𝑖+𝑣𝑖+𝑐𝑖)𝜌𝑖
𝑛6

𝑖=0
           , 𝑛 = 0,1,2,…… . 𝑛𝑒 − 1                                             (78)                                                                       

T(𝑛𝑒)  =  (𝑛𝑒+1) (1 +
𝜉

𝛼
 +

𝜉

𝜃
 )

1

𝜇
+

1

𝜃
𝑃(𝑛𝑒,𝑟)+ (

1

𝜃
 + 

1

𝛼
)𝑃(𝑛𝑒,𝑑)

 𝑃(𝑛𝑒,𝑟)+𝑃(𝑛𝑒,𝑠1)+𝑃(𝑛𝑒,𝑠2)+𝑃(𝑛𝑒,𝑑)
                                                                                   (79) 
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where 𝑃(𝑛𝑒, 𝑟), 𝑃(𝑛𝑒, 𝑠1), 𝑃(𝑛𝑒, 𝑠2) and 𝑃(𝑛𝑒, 𝑑) are given by Eqs. (41)–(44). And then, Eqs. (74) and (75) can be obtained by 

put value of  Eqs.(78) and (79) in (76) for every ne. 

 

It should be noted that a customer does not enter the system even if he finds no customers in front of him if  S(0) < 0, otherwise, he 

enters the queue.  

Next, we describe the equilibrium balking pure threshold strategies in the partially observable case by assuming S(0) > 0. We have 

the following result. 

 

Theorem 2. Define the sequences (f1(n): n = 0, 1, . . .) and (f2(n):n = 0,1, . . .) by 

f1(n) =  R -C [ (n + 1) (1 +
𝜉

𝛼
 +

𝜉

𝜃
 )

1

𝜇
+

1

𝜃
∑ 𝑢𝑖𝜌𝑖

𝑛6
𝑖=0 + (

1

𝜃
 + 

1

𝛼
) ∑ 𝑐𝑖𝜌𝑖

𝑛6
𝑖=0

 ∑ (𝑢𝑖+𝑤𝑖+𝑣𝑖+𝑐𝑖)𝜌𝑖
𝑛6

𝑖=0
  ]           , 𝑛 = 0,1,2,…                                           (80) 

f2(n) =R-C 

[
 
 
 (𝑛𝑒 + 1) (1 +

𝜉

𝛼
 +

𝜉

𝜃
 )

1

𝜇
+

    
(𝜆+2𝜉){(

1

𝜃2+
1

𝜃𝛼
+

1

𝛼2)𝜓𝑛−𝜆(
1

𝜃3+(
1

𝜃
+

1

𝛼
)

1

𝛼2)∑ 𝑤𝑖𝜌𝑖
𝑛𝑒−16

𝑖=0 −𝜆(
1

𝜃
+

1

𝛼
)

1

𝛼2 ∑ 𝑢𝑖𝜌𝑖
𝑛𝑒−16

𝑖=0 }

{(𝜆+2𝜉)(
1

𝜃
+

1

𝛼
+

1

𝜉
)+1}𝜓𝑛−𝜆(𝜆+2𝜉)(

1

𝜃2+
1

𝛼2+
1

𝜉2)∑ 𝑤𝑖𝜌𝑖
𝑛𝑒−16

𝑖=0 −𝜆(𝜆+2𝜉)(
1

𝜉
+

1

𝛼
)∑ 𝑢𝑖𝜌𝑖

𝑛𝑒−16
𝑖=0 −𝜆(𝜆+2𝜉)

1

𝜉2 ∑ 𝑐𝑖𝜌𝑖
𝑛𝑒−16

𝑖=0

  
]
 
 
 

  n=0,1…..   (81)                      

 

Where    𝜓𝑛 =  ∑ (𝑤𝑖 + 𝑢𝑖 + 𝑐𝑖 +
𝜉

𝜆+𝜉
 𝑣𝑖) 𝜌𝑖

𝑛𝑒−16
𝑖=1    

By definition  f1(n) = S(n)   , n=0,1,2….   𝑛𝑒 − 1   and   f2(𝑛𝑒) = S(𝑛𝑒) 

Moreover,              f1(n) > f2(n)  , n=0,1,….. 

 

Then there exist finite non-negative integers   𝑛𝐿 ≤ 𝑛𝑈   such that  

    f1(0) , f1(1) , f1(2) …….. f1(𝑛𝑈 − 1) > 0,                          f1(𝑛𝑈)  ≤  0                                                                                   (82) 

and   

     f2(𝑛𝑈) , f2(𝑛𝑈 − 1) , f2(𝑛𝑈 − 2) …… f2(𝑛𝐿) ≤ 0 ,            f2(𝑛𝐿 − 1) > 0                                                                               (83) 

 or 

      f2(𝑛𝑈),  f2(𝑛𝑈 − 1),  f2(𝑛𝑈 − 2), …… f2(1),  f2(0) ≤ 0                                                                                                          (84) 

In the partially observable M/M/1 queue with redundant server with breakdowns and delayed repairs the pure threshold strategies 

of the form ‘While arriving at time t, observe N(t); enter if N(t) ≤ 𝑛𝑒-1 and balk otherwise ‘ . 

For 𝑛𝑒𝜖{𝑛𝐿, 𝑛𝐿 + 1,…… . 𝑛𝑈}   are equilibrium strategies. 

Proof. if we assume that S(0) > 0 then We have f1(0) > 0 and lim
𝑛→∞

𝑓1(𝑛) = −∞ 

 so if 𝑛𝑈 is the subscript of the first negative term of the sequence (f1(n)), we have that for the finite number 𝑛𝑈 the condition (82) 

holds. 

On the other hand, f1(n)  > f2(n),n = 0,1, . . . . In particular we conclude that f2(𝑛𝑈) < f1(𝑛𝑈) ≤ 0. Now, we begin to go 

backwards, starting from the subscript 𝑛𝑈, towards 0 and we let 𝑛𝐿 − 1  be the subscript of the first positive term of the sequence 

(f2(n)). Then we have (83). If all the terms of (f2(n)) going backwards from 𝑛𝑈 to 0 are non-positive we have (84). 

Now we can establish the existence of equilibrium threshold policies in the partially observable case. 

 

 In this model we consider an arrival  customer assume that all other customers follow the same threshold strategy 

‘while arriving at time t, observe N(t), enter if  N(t) ≤ 𝑛𝑒-1 and balk otherwise ‘ .for some fixed r 𝑛𝑒𝜖{𝑛𝐿, 𝑛𝐿 + 1,…… . 𝑛𝑈}   

If the tagged customer finds n ≤ 𝑛𝑒-1 customers in front of him and decides to enter, his expected benefit is equal to f1(n) > 0 because 

of (76), (80) and (82). So in this case the customer prefers to enter. 

If the tagged customer finds n = 𝑛𝑒 customers in front of him and decides to enter, his expected benefit is equal to 

F2(𝑛𝑒) ≤ 0  because of (76), (81), (83) or (84). So in this case the customer prefers to balk.  

Define 

              P(n) = P(n, r) + P(n, s1) + P(n, s2) + P(n, d)                        n=1,2,…… 𝑛𝑒 

Because the probability of balking is equal to P(𝑛𝑒), the social benefit per time unit when all customers follow the threshold policies 

𝑛𝑒  given in Lemma 2 equals: 

                                 SBpo = 𝜆 (1- 𝑃(𝑛𝑒)) - C ∑ 𝑛𝑃(𝑛 )
𝑛𝑒 
𝑛=0                                                                                                         (85)    

Numerical experiments 

In this section by some numerical examples, we calculate the  effect of different parameters on customer's behaviour in fully 

observable queueing system with redundant server for server breakdown and delayed repair. We analysis the sensitivity of 
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equilibrium threshold strategy with the help of main indicator of the system. Here we assume 𝜆 = 1 , 𝜇 = 2, 𝛼 = 1, 𝜉 = 3, 𝜃 =

2, 𝑐 = 2, 𝑅 = 10 

 
Fig3. Threshold vs. ξ for  𝜆 = 1 , 𝜇 = 2, 𝛼 = 1, 𝜃 = 2, 𝑐 = 2, 𝑅 = 10 

 

In the Fig 3, we observe that equilibrium threshold strategy are decreasing function of breakdown rate. This is because  Customers 

waiting time and their payment increases when breakdown of server increases. 

 

 
Fig4. Threshold vs. 𝛼 for  𝜆 = 1 , 𝜇 = 2, 𝜉 = 3, 𝜃 = 2, 𝑐 = 2, 𝑅 = 10 

 

 
Fig5. Threshold vs. 𝜃 for  𝜆 = 1 , 𝜇 = 2, 𝜉 = 3, 𝛼 = 1, 𝑐 = 2, 𝑅 = 1 

 

In the Fig 4 and 5, we observe that equilibrium threshold strategy are increasing  function of both the  repair  rate and delayed repair 

rate. This is because when   highly delayed repair rate and highly repair rate are shown in the system upon customers arrival then 

customers prefer to join the queue. 
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Fig6. Threshold vs. 𝜇 for  𝜆 = 1 , 𝛼 = 1, 𝜉 = 3, 𝜃 = 2, 𝑐 = 2, 𝑅 = 10 

 

 Fig 6 indicats equilibrium threshold strategy versus service 

rate.  we observe that equilibrium threshold strategy are 

increasingly function of service  rate. This is because  when 

server can serve more customer per time  in the system then 

an arriving customer is always prefer to enter the queue. 

 

IV.  CONCLUSION 

We studied equilibrium thresholds strategy for the observable 

markovian queue with redundant server for balking and 

delayed repair. Inspired by Wang and Zhang [9], they 

describe equilibrium  analysis of  the observable markovian 

queue with  balking and delayed repair. Here we are derived 

the equilibrium thresholds balking strategy and equilibrium 

social benifit for the fully and partially  observable markovian 

queue with redundant server for balking and delayed. Here 

we use an algorithm Provided to identify for equilibrium 

strategy for fully observable system or partially observable 

system with redundant system. 
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