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Human Immunodeficiency Virus is the causative agent of Acquired Immunodeficiency Syndrome. 

HIV can be transmitted to person through the exchange of a variety of body fluids from infected 

individuals, such as blood, breast milk, semen, and vaginal secretions. In this paper, mathematical 

model for HIV/AIDS transmission dynamics was formulated and analyze using the stability theory 

of differential equations.The basic reproduction number that represents the epidemic indicator is 

obtained by using next generation matrix.Both local and global stability of the disease free 

equilibrium and endemic equilibrium point of the model equation was established. The results show 

that, if the basic reproduction number is less than one then the solution converges to the disease free 

steady state and the disease free equilibrium is asymptotically stable. The endemic states are 

considered to exist when the basic reproduction number for each disease is greater than one. 

Sensitivity analysis of the model equation was performed on the key parameters in order to determine 

their impact on the disease transmission dynamics. The system was extended into an optimal control 

strategies by including time-dependent control variables: prevention of the recruitment to 

susceptible, reduction of spread of HIV, screen and treatment of infected individuals. Numerical 

simulations are performed and the pertinent results are presented graphically and discussed 

quantitatively. 
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1. INTRODUCTION 

HIV/AIDS is one of the sexual transmitted diseases that have 

claimed and continue to claim the lives of millions of people 

worldwide. HIV is an RNA retrovirus which translates RNA 

to DNA with a viral enzyme called reverse transcriptase [1]. 

The target cell of HIV is CD4 T cells. A healthy human body 

has about 1000/𝑚𝑚3 of CD4 T cells. When the CD4 T cells 

of a patient decline to 200/𝑚𝑚3 or below, then that person 

is classified as having AIDS [2]. When the CD4 T cells 

decline, they cannot mount a strong response. This results in 

weak responses from CTL and antibodies which cannot clear 

the infection [3]. HIV is transmitted primarily through 

unprotected sexual intercourse with an infected individual, 

through exchange of infected blood or blood products, or to 

the newborn from an infected mother. However, antiretroviral 

(ART) treatment improves health, pro-longs life, and 

substantially reduces the risk of HIV transmission. More than 

90% of adults in sub-Saharan Africa acquire HIV infection 

from unprotected sexual intercourse with infected partners 

[4]. 

According to the updated statistics on the state of 

AIDS epidemic by UNAIDS, 36.9 million people, 

globally,were living with HIV in 2017, of which 21.7 million 

individuals were accessing ART (antiretroviral therapy) 

treatment and 1.8 million became newly infected with HIV in 

2017. A total of 77.3 million individuals have become 

infected with HIV since the start of the epidemic in 1981. 

Figures of death indicate that 940,000 people died of AIDS-

related illnesses in 2017, with a total of 35.4 million people 

that have died from AIDS-related illnesses since the start of 

the epidemic[5]. 

Mathematical models have played a major role in 

increasing our understanding of of the dynamics of sexually 

transmitted diseases. Several models have been proposed to 

study the effects of some factors on the transmission 

dynamics of these sexually transmitted diseases including 

HIV/AIDS and to provide guidelines as to how the spread can 

be controlled. Among these models Anderson et al [6] 
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presented a simple mathematical HIV transmission model to 

investigate the effects of various factors on the overall pattern 

of the AIDS epidemic. Stilianakis et al [7] who proposed and 

gave a detailed analysis of a dynamical model that describes 

the pathogenesis of HIV, and Tripathi et al [8] who proposed 

a model to study the effects of screening of unaware infective 

on the transmission dynamics of HIV/AIDS. K.O. Okosun [9] 

presented the impact of optimal control on the treatment of 

HIV/AIDS and screening of unaware infective on the 

transmission dynamics of the disease in a homogeneous 

population with constant immigration of susceptible 

incorporating use of condom, screening of unaware infective 

and treatment of the infected. In [10] a mathematical model 

for HIV/AIDS transmission has been proposed, along with a 

control problem in which the objective was to determine the 

pre-exposure prophylaxis (PrEP) strategy that minimizes the 

number of individuals with pre-AIDS HIV infection, 

balanced against the costs associated with PrEP. The paper 

by Mukandavire et al [11] compares the impact of increasing 

condom use or HIV PrEP use among sex workers. The 

authors found that condom promotion interventions should 

remain the mainstay HIV prevention strategy for female sex 

workers (FSWs), with PrEP only being implemented once 

condom interventions have been maximized or to fill 

prevention gaps where condoms cannot be used. In [12], the 

authors develop a model of HIV risk and compare HIV-risk 

estimates before and after the introduction of PrEP to 

determine the maximum tolerated reductions in condom use 

with regular partners and clients for HIV risk not to change. 

With a case study of FSWs in South Africa, in [12] it is found 

that PrEP is likely to be of benefit in reducing HIV risk, even 

if reductions in condom use do occur. 

So far, few mathematical studies have been 

undertaken to model Human Immunodeficiency Virus 

mathematically, but they did not considered protected 

compartment in their studies.  

2. MODEL DESCRIPTION AND FORMULATION 

The model divides the total population, denoted by 𝑁(𝑡) into 

six subclasses with respect to their disease status in the 

system. 𝑃(𝑡) is the class of individuals which are protected 

against the disease over a period of time. 𝑆(𝑡) is the class of 

individuals who are healthy but can contract the disease. 

𝐸(𝑡) is the class of individuals which are infected but not yet 

infectious. 𝐴𝑠(𝑡)  is the class of an infectious without 

symptoms of disease. 𝐼(𝑡) is the class of an infectious with 

symptoms of disease and 𝐷(𝑡)  is the class of individuals 

with AIDS. 

The model assumes that a fraction of the population 

has been protected before the disease out break at rate of 𝜃Π 

and (1 − 𝜃)Π  fraction of population susceptible. The 

susceptible class is increased from protected class by losing 

protection with 𝜑 rate. Susceptible individuals are exposed 

to HIV infection with force of infection 𝜆 =
𝛽(𝐼+𝑞𝐴)

𝑁
 where 

𝛽  is contact rate and 𝑞  is transmission coefficient for the 

asymptomatic. If 𝑞 > 1  then, the asymptomatic infect 

susceptible more likely than infective. If 𝑞 = 1, then both 

asymptomatic and infective have equal chance to infect the 

susceptible, but if 𝑞 < 1  then, the infective have good 

chance to infect susceptible than asymptomatic. Exposed 

individuals progress to the symptomatic infectious class with 

probability 𝑝𝜂 and to the asymptomatic infectious class with 

probability (1 − 𝑝)𝜂 , where 𝜂  is the per capita rate of 

becoming infectious. The asymptomatic individuals can 

develop disease symptom or can screen them selves and join 

the symptomatic class with a rate 𝜙 and others join the AIDS 

class with rate 𝛾. Individuals in symptomatic class join the 

AIDS class with rate 𝛼. All infectious individuals 𝜉 is the 

disease induced mortality rate due to infectious. Also, in all 

class 𝜇  is the natural mortality rate of individuals and all 

parameters in the model are positive.  

 
Figure 1: Schematic diagram of the model. 

 

Based on the model assumptions and the schematic diagram,the model equations are formulated and given as follows:  
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{
 
 
 
 
 

 
 
 
 
 
𝑑𝑃(𝑡)

𝑑𝑡
= 𝜃Π − (𝜑 + 𝜇)𝑃

𝑑𝑆(𝑡)

𝑑𝑡
= (1 − 𝜃)Π + 𝜑𝑃 − (𝜆 + 𝜇)𝑆

𝑑𝐸(𝑡)

𝑑𝑡
= 𝜆𝑆 − (𝜂 + 𝜇 + 𝜉)𝐸

𝑑𝐴(𝑡)

𝑑𝑡
= (1 − 𝑝)𝜂𝐸 − (𝜙 + 𝛾 + 𝜇 + 𝜉)𝐴

𝑑𝐼(𝑡)

𝑑𝑡
= 𝑝𝜂𝐸 + 𝜙𝐴 − (𝛼 + 𝜇 + 𝜉)𝐼

𝑑𝐷(𝑡)

𝑑𝑡
= 𝛾𝐴 + 𝛼𝐼 − (𝜇 + 𝜉)𝐷

 (1) 

 With initial condition 𝑃(0) = 𝑃0, 𝑆(0) = 𝑆0, 𝐸(0) = 𝐸0, 𝐴(0) = 𝐴0, 𝐼(0) = 𝐼0, 𝐷(0) = 𝐷0.  

 

3.  MATHEMATICAL ANALYSIS OF THE MODEL 

3.1 Invariant Region 

 In the model equation1 that governs human 

population, all the variables and parameters used in the model 

equation are non-negative. We consider a biologically-

feasible region {Ω = {(𝑃, 𝑆, 𝐸, 𝐴, 𝐼, 𝐷) ∈ ℝ+
6 : 𝑁 ≤

Π

𝜇
}. 

We adhere to the following steps to show the 

positive invariance of Ω, that is all the solution of model 

equation 1 that initiate in Ω remains in the region Ω and is 

bounded in Ω. 

We have the total population  

 𝑁(𝑡) = 𝑃(𝑡) + 𝑆(𝑡) + 𝐸(𝑡) + 𝐴(𝑡) + 𝐼(𝑡) + 𝐷(𝑡)  

 The rate of change of the total population by adding 

all the equations considered in model equation1 is given by  

 
𝑑𝑁

𝑑𝑡
= Π − 𝜇𝑁 − 𝜉(𝐸(𝑡) + 𝐴(𝑡) + 𝐼(𝑡) + 𝐷(𝑡))  

 In the absence of mortality due to disease it 

becomes  

 
𝑑𝑁

𝑑𝑡
≤ Π − 𝜇𝑁 

 

 Thus, the particular solution can be expressed as  

 0 ≤ 𝑁(𝑡) ≤
Π

𝜇
+ (𝑁0 −

Π

𝜇
)𝑒−𝜇𝑡

 (2) 

 As 𝑡 ⟶ ∞  in equation 2 , the population size 𝑁 ⟶
Π

𝜇
 

which implies that 0 ≤ 𝑁 ≤
Π

𝜇
. 

 

Thus the feasible solution set of the model equation 

remain in the the region  

 Ω = {(𝑃, 𝑆, 𝐸, 𝐴, 𝐼, 𝐷) ∈ ℝ+
6 : 𝑁 ≤

Π

𝜇
} 

 Therefore, the basic model is wellposed 

epidemologically and mathematically. Hence , it is sufficient 

to study the dynamics of the basic model in region Ω.  

3.2 Existence and Uniqueness of the Solutions of 

the Model 

 The validity and authenticity of any mathematical 

model depends on whether the given system of equations has 

a solution, and if the solution exists then it is unique. We shall 

use the Lipchitz condition to verify the existence and 

uniqueness of solution for the system of equation 1. 

Theorem 1 Let Ω  denote th region 1 ≤ 𝛼 ≤ ℝ . 

Then the model equations (1) together with the initial 

condition 𝑃(0) > 0, 𝑆(0) > 0, 𝐸(0) ≥ 0, 𝐴(𝑡)(0) ≥

0, 𝐼(𝑡)(0) ≥ 0,𝐷(𝑡)(0) ≥ 0 exist in ℝ+
6  and has a unique 

solution. i.e., the model variables 𝑃(𝑡), 𝑆(𝑡), 𝐸(𝑡), 𝐴(𝑡), 𝐼(𝑡) 

and 𝐷(𝑡) exist for all 𝑡 and will remain in ℝ+
6 . 

Proof. We have to show that 
𝜕𝑓𝑖

𝜕𝑥𝑗
, 𝑖, 𝑗 = 1,2,3,4,5,6 

are continues and bounded in Ω. 

Let the right hand side of the system of equation (1) 

can be expressed as follows:  

 

{
  
 

  
 
𝑓1(𝑃, 𝑆, 𝐸, 𝐴, 𝐼, 𝐷) = 𝜃Π − (𝜑 + 𝜇)𝑃
𝑓2(𝑃, 𝑆, 𝐸, 𝐴, 𝐼, 𝐷) = (1 − 𝜃)Π + 𝜑𝑃 − (𝜆 + 𝜇)𝑆
𝑓3(𝑃, 𝑆, 𝐸, 𝐴, 𝐼, 𝐷) = 𝜆𝑆 − (𝜂 + 𝜇 + 𝜉)𝐸

𝑓4(𝑃, 𝑆, 𝐸, 𝐴, 𝐼, 𝐷) = (1 − 𝑝)𝜂𝐸 − (𝜙 + 𝛾 + 𝜇 + 𝜉)𝐴
𝑓5(𝑃, 𝑆, 𝐸, 𝐴, 𝐼, 𝐷) = 𝑝𝜂𝐸 + 𝜙𝐴 − (𝛼 + 𝜇 + 𝜉)𝐼
𝑓6(𝑃, 𝑆, 𝐸, 𝐴, 𝐼, 𝐷) = 𝛾𝐴 + 𝛼𝐼 − (𝜇 + 𝜉)𝐷

 (3)  

 According to Derrick and Groosman theorem, let 

Ω  denote the region Ω = (𝑃, 𝑆, 𝐸, 𝐴, 𝐼, 𝐷) ∈ ℝ+
6 ; 𝑁 ≤ (Π/

𝜇) . Then equations (1) have a unique solution if (𝜕𝑓𝑖)/

(𝜕𝑥𝑗), 𝑖, 𝑗 = 1,2,3,4,5,6 are continuous and bounded in Ω . 

Here, 𝑥1 = 𝑃, 𝑥2 = 𝑆, 𝑥3 = 𝐸, 𝑥4 = 𝐴, 𝑥5 = 𝐼, 𝑥6 = 𝐷  and 

𝜆 =
𝛽

𝑁
(𝐼 + 𝑞𝐴) . The continuity and the boundedness are 

verified here under table 1. 

Table 1: Continuity and boundedness of the model solution  

 For𝒇𝟏    For𝒇𝟐    For𝒇𝟑   

|
𝜕𝑓1

𝜕𝑃
| = | − (𝜑 + 𝜇)| < ∞   |

𝜕𝑓2

𝜕𝑃
| = |𝜑| < ∞ |

𝜕𝑓3
𝜕𝑃

| = 0 < ∞ 

|
𝜕𝑓1
𝜕𝑆
| = 0 < ∞ |

𝜕𝑓2
𝜕𝑆
| = | − (𝜆 + 𝜇)| < ∞ |

𝜕𝑓3
𝜕𝑆
| = |𝜆| < ∞ 

|
𝜕𝑓1
𝜕𝐸

| = 0 < ∞ |
𝜕𝑓2
𝜕𝐸

| = 0 < ∞ |
𝜕𝑓3
𝜕𝐸

| = | − (𝜂 + 𝜇 + 𝜉)| < ∞ 
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|
𝜕𝑓1
𝜕𝐴
| = 0 < ∞ |

𝜕𝑓2
𝜕𝐴

| = | −
𝛽𝑞𝑆

𝑁
| < ∞ |

𝜕𝑓3
𝜕𝐴

| = |
𝛽  𝑞𝑆

𝑁
| < ∞ 

|
𝜕𝑓1
𝜕𝐼
| = 0 < ∞ |

𝜕𝑓2
𝜕𝐼
| = |

−𝛽𝑆

𝑁
| < ∞ |

𝜕𝑓3
𝜕𝐼
| = |

𝛽𝑆

𝑁
| < ∞ 

|
𝜕𝑓1
𝜕𝐷

| = 0 < ∞. |
𝜕𝑓2
𝜕𝐷

| = 0 < ∞. |
𝜕𝑓3

𝜕𝐷
| = 0 < ∞.  

For𝒇𝟒    For𝒇𝟓    For𝒇𝟔   

|
𝜕𝑓4
𝜕𝑃

| = 0 < ∞ |
𝜕𝑓5
𝜕𝑃

| = 0 < ∞ |
𝜕𝑓6
𝜕𝑃

| = 0 < ∞ 

|
𝜕𝑓4
𝜕𝑆
| = 0 < ∞ |

𝜕𝑓5
𝜕𝑆
| = 0 < ∞ |

𝜕𝑓6
𝜕𝑆
| = 0 < ∞ 

|
𝜕𝑓4
𝜕𝐸
| = |(1 − 𝑝)𝜂| < ∞ |

𝜕𝑓5
𝜕𝐸

| = |𝑝𝜂| < ∞ |
𝜕𝑓6
𝜕𝐸

| = 0 < ∞ 

|
𝜕𝑓4
𝜕𝐴

| = | − (𝜙 + 𝛾 + 𝜇 + 𝜉)| < ∞ |
𝜕𝑓5
𝜕𝐴

| = |𝜙| < ∞ |
𝜕𝑓6
𝜕𝐴

| = |𝛾| < ∞ 

|
𝜕𝑓4
𝜕𝐼
| = 0 < ∞ |

𝜕𝑓5
𝜕𝐼
| = | − (𝛼 + 𝜇 + 𝜉)|

< ∞ 

|
𝜕𝑓6
𝜕𝐼
| = |𝛼| < ∞ 

|
𝜕𝑓4
𝜕𝐷

| = 0 < ∞. |
𝜕𝑓5
𝜕𝐷

| = 0 < ∞. |
𝜕𝑓6
𝜕𝐷

| = | − (𝜇 + 𝜉)| < ∞. 

 

Thus, all the partial derivatives 
(𝜕𝑓𝑖)

(𝜕𝑥𝑗)
, 𝑖, 𝑗 =

1,2,3,4,5,6 exist, continuous and bounded in Ω. Hence, by 

Derrick and Groosman theorem, a solution for the model (1) 

exists and it is unique.  

3.3.Positivity of the solution of the model 

 In this section we aim to obtain the non negative 

solution when dealing with human populations. Therefore, 

the next discussion below targets on the conditions under 

which the model being studied has a non negative solution. 

Theorem 2. Let Ω = {(𝑃, 𝑆, 𝐸, 𝐴, 𝐼, 𝐷) ∈ ℝ+
6 : 𝑃0 >

0, 𝑆0 > 0,𝐸0 ≥ 0, 𝐴0 ≥ 0, 𝐼0 ≥ 0,𝐷0 ≥ 0. } then the solution 

of {𝑃, 𝑆, 𝐸, 𝐴, 𝐼, 𝐷} are positive for all 𝑡 ≥ 0. 

Proof: From the system of differential equation(1), 

let us take the first equation such that. 
𝑑𝑃

𝑑𝑡
= 𝜃Π − (𝜑 + 𝜇)𝑃, eliminating the positive terms 

𝜃Π we get 
𝑑𝑃

𝑑𝑡
≥ −(𝜑 + 𝜇)𝑃, using variables separable method 

we get, 
𝑑𝑃

𝑃
≥ −(𝜑 + 𝜇)𝑑𝑡 integrating both side we can get, 

∫
𝑑𝑃

𝑃
≥ −∫ (𝜑 + 𝜇)𝑑𝑡 we obtain:  

ln(𝑆) ≥ −(𝜑 + 𝜇)𝑡 + ln(𝐶)  where 𝑙𝑛(𝐶)  is any 

arbitrary constant. 

Then after solving for 𝑃 we obtain: 

𝑃(𝑡) ≥ 𝑃𝑒−(𝜑+𝜇)𝑡. 

Recall that an exponential function is always non-

negative irrespective of the sign of the exponent, i.e., the 

exponential function 𝑒−(𝜑+𝜇)𝑡  is a non-negative quantity. 

Hence,it can be concluded that 𝑆(𝑡) > 𝐶𝑒−(𝜑+𝜇)𝑡 ≥ 0. 

Therefore 𝑃(𝑡) > 0 for all 𝑡 ≥ 0 

 From the system of differential equation(1), 

let us take the second equation such that. 

𝑑𝑆

𝑑𝑡
= (1 − 𝜃)Π + 𝜑𝑃 − (𝜆 + 𝜇)𝑆 , eliminating the 

positive terms (1 − 𝜃)Π + 𝜑𝑃 we get 
𝑑𝑆

𝑑𝑡
≥ −(𝜆 + 𝜇)𝑆, using variables separable method 

we get, 
𝑑𝑆

𝑆
≥ −(𝜆 + 𝜇)𝑑𝑡 integrating both side we can get, 

∫
𝑑𝑆

𝑆
≥ −∫ (𝜆 + 𝜇)𝑑𝑡 we obtain:  

ln(𝑆) ≥ −(𝜆 + 𝜇)𝑡 + ln(𝐶)  where 𝑙𝑛(𝐶)  is any 

arbitrary constant. 

Then after solving for 𝑆 we obtain: 

𝑆(𝑡) ≥ 𝐶𝑒−(𝜆+𝜇)𝑡. 

Recall that an exponential function is always non-

negative irrespective of the sign of the exponent, i.e., the 

exponential function 𝑒−(𝜆+𝜇)𝑡  is a non-negative quantity. 

Hence,it can be concluded that 𝑆(𝑡) > 𝐶𝑒−(𝜆+𝜇)𝑡 ≥ 0. 

Therefore 𝑆(𝑡) > 0 for all 𝑡 ≥ 0 

From the system of differential equation1,let us take 

the third equation such that: 
𝑑𝐸

𝑑𝑡
= 𝜆𝑆 − (𝜂 + 𝜇 + 𝜉)𝐸 , eliminating the positive 

terms 𝜆𝑆 we get 

, 
𝑑𝐸

𝑑𝑡
≥ −(𝜂 + 𝜇 + 𝜉)𝐸  using variables separable 

method we get, 
𝑑𝐸

𝐸
≥ −(𝜂 + 𝜇 + 𝜉)𝑑𝑡 integrating both side we can 

get, 

∫
𝑑𝐸

𝐸
≥ −∫ (𝜂 + 𝜇 + 𝜉)𝑑𝑡 we obtain:  

ln(𝐸) ≥ −(𝜂 + 𝜇 + 𝜉)𝑡 + ln(𝐶)  where 𝑙𝑛(𝐶)  is 

any arbitrary constant. 

Then after solving for 𝐸 we obtain: 

𝐸(𝑡) ≥ 𝐶𝑒−(𝜂+𝜇+𝜉)𝑡. 

Recall that an exponential function is always non-

negative irrespective of the sign of the exponent, i.e., the 

exponential function 𝑒−(𝜂+𝜇+𝜉)𝑡 is a non-negative quantity. 
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Hence,it can be concluded that 𝐸(𝑡) > 𝐶𝑒−(𝜂+𝜇+𝜉)𝑡 ≥ 0. 

Therefore 𝐸(𝑡) ≥ 0for all 𝑡 ≥ 0 

From the system of differential equation(1),let us 

take the fourth equation such that: 
𝑑𝐴

𝑑𝑡
= (1 − 𝑝)𝜂𝐸 − (𝜙 + 𝛾 + 𝜇 + 𝜉)𝐴 , eliminating 

the positive terms (1 − 𝑝)𝜂𝐸 we get  

, 
𝑑𝐴

𝑑𝑡
≥ −(𝜙 + 𝛾 + 𝜇 + 𝜉)𝐴  using variables 

separable method we get, 
𝑑𝐴

𝐴
≥ −(𝜙 + 𝛾 + 𝜇 + 𝜉)𝑑𝑡 integrating both side we 

can get, 

∫
𝑑𝐴

𝐴
≥ −∫ (𝜙 + 𝛾 + 𝜇 + 𝜉)𝑑𝑡 we obtain:  

ln(𝐴) ≥ −(𝜙 + 𝛾 + 𝜇 + 𝜉)𝑡 + ln(𝐶) where 𝑙𝑛(𝐶) 

is any arbitrary constant. 

Then after solving for 𝐴 we obtain: 

𝐴(𝑡) ≥ 𝐶𝑒−(𝜙+𝛾+𝜇+𝜉)𝑡. 

Recall that an exponential function is always non-

negative irrespective of the sign of the exponent, i.e., the 

exponential function 𝑒−(𝜙+𝛾+𝜇+𝜉)𝑡  is a non-negative 

quantity. Hence,it can be concluded that 𝐴(𝑡) ≥

𝐶𝑒−(𝜙+𝛾+𝜇+𝜉)𝑡 ≥ 0. 

Therefore 𝐴(𝑡) ≥ 0 for all 𝑡 ≥ 0 

From the system of differential equation(1),let us 

take the fifth equation such that: 
𝑑𝐼

𝑑𝑡
= 𝑝𝜂𝐸 + 𝜙𝐴 − (𝛼 + 𝜇 + 𝜉)𝐼  ,eliminating the 

positive terms 𝑝𝜂𝐸 + 𝜙𝐴 we get  

, 
𝑑𝐼

𝑑𝑡
≥ −(𝛼 + 𝜇 + 𝜉)𝐼 using variables separable 

method we get, 
𝑑𝐼

𝐼
≥ −(𝛼 + 𝜇 + 𝜉)𝑑𝑡 integrating both side we can 

get, 

∫
𝑑𝐼

𝐼
≥ −∫ (𝛼 + 𝜇 + 𝜉)𝑑𝑡 we obtain:  

ln(𝐼) ≥ −(𝛼 + 𝜇 + 𝜉)𝑡 + ln(𝐶)  where 𝑙𝑛(𝐶)  is 

any arbitrary constant. 

Then after solving for 𝐼 we obtain: 

𝐼(𝑡) ≥ 𝐶𝑒−(𝛼+𝜇+𝜉)𝑡. 

Recall that an exponential function is always non-

negative irrespective of the sign of the exponent, i.e., the 

exponential function 𝑒−(𝛼+𝜇+𝜉)𝑡 is a non-negative quantity. 

Hence,it can be concluded that 𝐼(𝑡) ≥ 𝐶𝑒−(𝛼+𝜇+𝜉)𝑡 ≥ 0. 

Therefore 𝐼(𝑡) ≥ 0 for all 𝑡 ≥ 0 

From the system of differential equation1,let us take 

the sixth equation such that: 
𝑑𝐷

𝑑𝑡
= 𝛾𝐴 + 𝛼𝐼 − (𝜇 + 𝜉)𝐷  , eliminating the 

positive terms 𝛾𝐴 + 𝛼𝐼 we get  

, 
𝑑𝐷

𝑑𝑡
≥ −(𝜇 + 𝜉)𝐷  using variables separable 

method we get, 
𝑑𝐷

𝐷
≥ −(𝜇 + 𝜉)𝑑𝑡 integrating both side we can get, 

∫
𝑑𝐷

𝐷
≥ −∫ (𝜇 + 𝜉)𝑑𝑡 we obtain:  

ln(𝐷) ≥ −(𝜇 + 𝜉)𝑡 + ln(𝐶)  where 𝑙𝑛(𝐶)  is any 

arbitrary constant. 

Then after solving for 𝐷 we obtain: 

𝐷(𝑡) ≥ 𝐶𝑒−(𝜇+𝜉)𝑡. 

Recall that an exponential function is always non-

negative irrespective of the sign of the exponent, i.e., the 

exponential function 𝑒−(𝜇+𝜉)𝑡  is a non-negative quantity. 

Hence,it can be concluded that 𝐷(𝑡) ≥ 𝐶𝑒−(𝜇+𝜉)𝑡 ≥ 0. 

Therefore 𝐷(𝑡) ≥ 0 for all 𝑡 ≥ 0  

3.4. Disease Free Equilibrium Points (DFE)  

 Disease free equilibrium points are steady state 

solutions where there is no disease in the population. In the 

absence of disease in the population, implies that 𝐸(𝑡) =

0, 𝐴(𝑡) = 0, 𝐼(𝑡) = 0  and 𝐷(𝑡) = 0  and the equilibrium 

points require that the right hand side of the model equation 

set equal to zero. We denote disease-free equilibrium point 

by 𝐸1. 

These requirements reflect in reducing the model 

equations(1) as 

{
  
 

 
 
 
𝜃Π − (𝜑 + 𝜇)𝑃 = 0
(1 − 𝜃)Π + 𝜑𝑃 − (𝜆 + 𝜇)𝑆 = 0
𝜆𝑆 − (𝜂 + 𝜇 + 𝜉)𝐸 = 0

(1 − 𝑝)𝜂𝐸 − (𝜙 + 𝛾 + 𝜇 + 𝜉)𝐴 = 0
𝑝𝜂𝐸 + 𝜙𝐴 − (𝛼 + 𝜇 + 𝜉)𝐼 = 0
𝛾𝐴 + 𝛼𝐼 − (𝜇 + 𝜉)𝐷 = 0

 (4) 

 Then solving the system of differential equation 4 

simultaneously,we obtain  

 𝐸0 = {𝑃
0, 𝑆0, 𝐸0, 𝐴0, 𝐼0, 𝐷0} = {

𝜃Π

(𝜑+𝜇)
,
Π(𝜑+𝜇−𝜃)

(𝜑+𝜇)(𝜆+𝜇)
, 0,0,0,0}  

3.5. The Basic Reproduction Number(𝑹𝟎) 

 The basic reproduction number denoted by 𝑅0 is 

the average number of secondary infections caused by an 

infectious individual during his or her entire period of 

infectiousness (Diekmann et. al) [13] The basic reproduction 

number is an important non-dimensional quantity in 

epidemiology as it sets the threshold in the study of a disease 

both for predicting its outbreak and for evaluating its control 

strategies [13]. Thus, whether a disease becomes persistent or 

dies out in a community depends on the value of the 

reproduction number,𝑅0 . Furthermore, the stability of the 

equilibrium point can be analyzed using 𝑅0 . If 𝑅0 < 1 it 

means that every infectious individual will cause less than 

one secondary infection which is impossible and hence the 

disease will die out and when 𝑅0 > 1  every infectious 

individual will cause more than one secondary infection and 

hence the disease will invade the population. It is Obtained 

by taking the largest (dominant) eigenvalue (spectral radius)  

 𝑅0 = [
𝜕𝐹𝑖(𝐸0)

𝜕𝑥𝑗
][
𝜕𝑉𝑖(𝑥0)

𝜕𝑥𝑗
]−1  

 where 𝑓𝑖 be the rate of appearance of new criminal 

in compartments, 𝑣𝑖 is the transfer of individuals out of the 

compartment by another means, 𝐸0  is the disease free 

equilibrium point. We compute the basic reproduction 

number using the next generation matrix approch. 

Thus the associated matrices F and V for the new 

infectious terms and the remaining transition terms are 
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respectively given by:  

𝐹𝑖 =

[
 
 
 
 
𝛽(  𝐼 + 𝑞𝐴)𝑆

𝑁
0
0
0 ]

 
 
 
 

, 𝑉𝑖 = [

(𝜂 + 𝜇 + 𝜉)𝐸
−(1 − 𝑝)𝜂𝐸 + (𝜙 + 𝛾 + 𝜇 + 𝜉)𝐴
−𝑝𝜂𝐸 − 𝜙𝐴 + (𝛼 + 𝜇 + 𝜉)𝐼 − 𝛾𝐴 − 𝛼𝐼 + (𝜇 + 𝜉)𝐷

] 

Thus the jacobian matrix of F and V at the disease free equilibrium point 𝐸0 take the form respectively as: 𝐹(𝐸0) =

[

0 𝛽𝑞 𝛽 0

0 0 0 0
0 0 0 0
0 0 0 0

] and 𝑉(𝐸0) =

[
 
 
 
𝑎 0 0 0
−(1 − 𝑝)𝜂 𝑏 0 0

−𝑝𝜂 −𝜙 𝑐 0

0 −𝛾 −𝛼 𝑑]
 
 
 

 

where 𝑎 = 𝜂 + 𝜇 + 𝜉, 𝑏 = 𝜙 + 𝛾 + 𝜇 + 𝜉, 𝑐 = 𝛼 + 𝜇 + 𝜉, 𝑑 = 𝜇 + 𝜉. 

It can be verified that that the matrix 𝑉(𝐸0) is non-singular as its determinant det(𝑉(𝐸0)) = 𝑎𝑏𝑐𝑑 ≠ 0 is non-zero. That 

is 𝑉(𝐸0) ≠ 0 then it is invertable and the inverse is given by .  

 (𝑉(𝐸0))
−1 =

𝐴𝑑𝑗(𝑉)

𝑑𝑒𝑡(𝑉)
 (5) 

 Then after some algebraic computations the inverse matrix is constructed as follows: 

 

 [𝑉(𝐸0)]
−1 =

[
 
 
 
 
 
 
1

𝑎
0 0 0

(1−𝑝)𝜂

𝑎𝑏

1

𝑏
0 0

(1−𝑝)𝜂+𝑏𝑝𝜂

𝑎𝑏𝑐

−𝜙

𝑏𝑐

1

𝑐
0

(1−𝑝)𝜂(𝜙𝛼+𝛾𝑐)−𝑏𝛼𝑝𝜂

𝑎𝑏𝑐𝑑

𝜙𝛼+𝑐𝛾

𝑏𝑐𝑑

𝛼

𝑐𝑑

1

𝑑

]
 
 
 
 
 
 

 (6) 

 Now,  

 [𝐹(𝐸0)][𝑉(𝐸0)]
−1 =

[
 
 
 
 
𝛽𝜂𝑞(1−𝑝)(𝑐𝑞+1)+𝛽𝑏𝑞𝜂

𝑎𝑏𝑐

𝛽𝑞

𝑏
−
𝛽𝜙

𝑏𝑐

𝛽

𝑐
0

0 0 0 0
0 0 0 0
0 0 0 0]

 
 
 
 

 (7) 

 Thus the eigenvalues of the matrix 7 are: 𝜆1 =
𝛽𝜂𝑞(1−𝑝)(𝑐𝑞+1)+𝛽𝑏𝑞𝜂

𝑎𝑏𝑐
, 𝜆2 = 0, 𝜆3 = 0, 𝜆4 = 0 Then from 𝜆1, 𝜆2, 𝜆3, 𝜆4 the dominant 

eigenvalue is 𝜆1 =
𝛽𝜂𝑞(1−𝑝)(𝑐𝑞+𝜙)+𝛽𝑏𝑞𝜂

𝑎𝑏𝑐
. Therefore the basic reproduction number is given by  

 𝑅0 =
𝛽𝜂𝑞(1−𝑝)(𝑐𝑞+𝜙)+𝛽𝑏𝑞𝜂

𝑎𝑏𝑐
  

 

3.6. Local Stability of Disease Free Equilibrium Points (DFE) 

 Theorem 3: The DFE 𝐸0 of the system (1) is locally asymptotically stable if 𝑅0 < 1 and unstable if 𝑅0 > 1. 

Proof. Consider the right hand side expressions of the equations (1) as functions so as to find the Jacobian matrix as follows: 

Thus, the Jacobian matrix 𝐽 of model at the disease free equilibrium 𝐸0 is given by  

 𝐽(𝐸0) =

[
 
 
 
 
 
−(𝜑 + 𝜇) 0 0 0 0 0
𝜑 −𝜇 0 −𝛽𝑞 −𝛽 0
0 0 −𝑎 𝛽𝑞 𝛽 0
0 0 (1 − 𝑝)𝜂 −𝑏 0 0
0 0 𝑝𝜂 𝜙 −𝑐 0
0 0 0 𝛾 𝛼 −𝑑]

 
 
 
 
 

 (8) 

 

The eigenvalues of the jacobian matrix 𝐽(𝐸0) are required to be found as follows. 

 

 

|

|

−(𝜑 + 𝜇) − 𝜆 0 0 0 0 0
𝜑 −𝜇 − 𝜆 0 −𝛽𝑞 −𝛽 0
0 0 −𝑎 − 𝜆 𝛽𝑞 𝛽 0
0 0 (1 − 𝑝)𝜂 −𝑏 − 𝜆 0 0
0 0 𝑝𝜂 𝜙 −𝑐 − 𝜆 0
0 0 0 𝛾 𝛼 −𝑑 − 𝜆

|

|
= 0 

The characteristic equation of the Jacobian matrix at the disease free equilibrium point is  
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(−(𝜑 + 𝜇) − 𝜆)(−𝜇 − 𝜆)(−𝑑 − 𝜆)(𝜆3 + 𝑒1𝜆
2 + 𝑒2𝜆 + 𝑒3) = 0 

Where 𝑒1 = (𝑎 + 𝑏 + 𝑐), 𝑒2 = (𝑎𝑐 + 𝑏𝑐 + 𝑎𝑏 − 𝛽𝑞(1 −

𝑝)𝜂 − 𝛽𝑝𝜂), 𝑒3 = 𝑎𝑏𝑐(1 − 𝑅0) 

Then, 𝜆1 = −(𝜑 + 𝜇), 𝜆2 = −𝜇, 𝜆3 = −𝑑 . From 

this the first three eigenvalues 𝜆1, 𝜆2, 𝜆3 are real, distinct and 

negative, which is stable. To determine the sign of the 

eigenvalues we use the Routh-Hurwitz criterian for the cubic 

equation; 𝜆3 + 𝑒1𝜆
2 + 𝑒2𝜆 + 𝑒3 = 0 . 

According to the Routh-Hurwitz criteria the three 

roots of a polynomial of order three of type 𝑝(𝜆) = 𝜆3 +

𝑒1𝜆
2 + 𝑒2𝜆 + 𝑒3  , are real distinct and negative if the 

coefficients satisfy the conditions 𝑒1 > 0, 𝑒2 > 0, 𝑒3 > 0 

and 𝑒1𝑒2 > 𝑒3 

It is straight forward to verify that this conditions are 

satisfied and hence the last three eigenvalues are real distinct 

and negative.i.e  

 𝑒1 > 0 if 𝑎 + 𝑏 + 𝑐 > 0 

𝑒2 > 0 if 𝑎𝑐 + 𝑐𝑏 + 𝑎𝑏 > (𝛽𝑞(1 − 𝑝)𝜂 − 𝛽𝑝𝜂) 

𝑒3 > 0 if 𝑅0 < 1  

 Clearly it can be observed that the first three 

conditions of the Routh-Hurwitz criteria are satisfied and the 

fourth condition is satisfied provided that : 𝑎1𝑎2 > 𝑎3  if 

(𝑎 + 𝑏 + 𝑐)(𝑎𝑐 + 𝑏𝑐 + 𝑎𝑏 − 𝛽𝑞(1 − 𝑝)𝜂 + 𝛽𝑝𝜂) >

𝑎𝑏𝑐(1 − 𝑅0). 

Therefore the disease free equilibrium point of the 

system of ordinary differential equation (1) is locally 

asymptotically stable if 𝑅0 < 1.  

3.7. Global stability of the disease free 

equilibrium point (DFE) 

 Theorem 4: The disease free equilibrium point 𝐸0 

of the model equation (1 is globally asymptotically stable if 

𝑅0 < 1.  

proof To establish the global stability of the disease-

free equilibrium point, we construct a Lyapunov function. 

let Ω ⊆ ℝ+
6  be an open neighborhood of the disease 

free equilibrium point 𝐸0. 

Then the function 𝐿: Ω ⟶ ℝ+
6  defined by:  

 𝐿(𝑃, 𝑆, 𝐸, 𝐴, 𝐼, 𝐷) =
𝐵1

2
(𝐸(𝑡))2 +

𝐵2

2
(𝐴(𝑡))2 +

𝐵3

2
(𝐼(𝑡))2 +

𝐵4

2
(𝐷(𝑡))2 (9) 

 where 𝐵𝑖 , for 𝑖 = 1,2,3,4 are some positive constants to be 

chosen later. 

Then 𝐿(𝑃, 𝑆, 𝐸, 𝐴, 𝐼, 𝐷) should satisfies the 

following properties: 

𝑖)𝐿 is continuously differentiable. 

𝑖𝑖)𝐿 > 0, ∀𝑥 ∈ Ω:𝐸0  and 𝐿(𝐸0) = 0,as (𝐸(𝑡))2 ≥

0, (𝐴(𝑡))2 ≥ 0, (𝐼(𝑡))2 ≥ 0, (𝐷(𝑡))2 ≥ 0. 

𝑖𝑖𝑖)
𝑑𝐿

𝑑𝑡
≤ 0 in Ω, then 𝐸0 is stable. 

The first two condition holds, as 𝐿 it is continuously 

differentiable and 𝐿 > 0, ∀𝑥 ∈ Ω:𝐸0 and 𝐿(𝐸0) = 0. Now 

let we check the third condition 
𝑑𝐿

𝑑𝑡
≤ 0 in Ω. 

𝑑𝐿

𝑑𝑡
= 𝐵1

𝑑𝐸

𝑑𝑡
+ 𝐵2

𝑑𝐴

𝑑𝑡
+ 𝐵3

𝑑𝐼

𝑑𝑡
+ 𝐵4

𝑑𝐷

𝑑𝑡
 

= 𝐵1(𝜆𝑆 − 𝑎𝐸) + 𝐵2((1 − 𝑝)𝜂𝐸 − 𝑏𝐴) + 𝐵3(𝑝𝜂𝐸 + 𝜙𝐴

− 𝑐𝐼) + 𝐵3(𝛾𝐴 + 𝛼𝐼 − 𝑑𝐷) 

= 𝐵1(
𝛽(𝐼+𝑞𝐴)

𝑁
𝑆 − 𝑎𝐸) + 𝐵2((1 − 𝑝)𝜂𝐸 − 𝑏𝐴) +

𝐵3(𝑝𝜂𝐸 + 𝜙𝐴 − 𝑐𝐼) + 𝐵4(𝛼𝐼 − 𝑑𝐷), 𝑆 ≤ 𝑁 at 𝐸0. 

= 𝐵1(𝛽(𝐼 + 𝑞𝐴) − 𝑎𝐸) + 𝐵2((1 − 𝑝)𝜂𝐸 − 𝑏𝐴) + 𝐵3(𝑝𝜂𝐸

+ 𝜙𝐴 − 𝑐𝐼) + 𝐵4(𝛼𝐼 − 𝑑𝐷) 

= 𝐵1𝛽𝐼 + 𝐵1𝛽𝑞𝐴 − 𝐵1𝑎𝐸 + 𝐵2(1 − 𝑝)𝜂𝐸 − 𝐵2𝑏𝐴

+ 𝐵3𝑝𝜂𝐸 + 𝐵3𝜙𝐴 − 𝐵3𝑐𝐼 + 𝐵4𝛾𝐴 + 𝐵4𝛼𝐼

− 𝐵4𝑑𝐷 

= (𝐵2(1 − 𝑝)𝜂 + 𝐵3𝑝𝜂 − 𝐵1𝑎)𝐸 + (𝐵1𝛽𝑞 − 𝐵2𝑏 + 𝐵3𝜙

+ 𝐵4𝛾)𝐴 + (𝐵1𝛽 − 𝐵3𝑐 + 𝐵4𝛼)𝐼 − 𝐵4𝑑𝐷 

= 𝐵1𝑎(
(𝐵2(1 − 𝑝)𝜂 + 𝐵3𝑝𝜂

𝐵1𝑎
− 1)𝐸 + 𝐵3𝜙𝐴 − 𝐵3𝑐𝐼

+ 𝐵4𝛾𝐴 + 𝐵4𝛼𝐼 − 𝐵4𝑑𝐷 

Now choosing 𝐵1 = 𝑏𝑐,𝐵2 = 𝛽(𝑐𝑞 + 𝜙), 𝐵3 =

𝛽𝑏, 𝐵4 = 0. Then, 

𝑑𝐿

𝑑𝑡
= 𝑎𝑏𝑐(

𝛽(𝑐𝑞 + 𝜙)(1 − 𝑝)𝜂 + 𝛽𝑏𝑝𝜂

𝑎𝑏𝑐
− 1)𝐸 + (𝑏𝑐𝑞𝛽

− 𝑏𝑐𝑞𝛽 − 𝛽𝑏𝜙 + 𝛽𝑏𝜙)𝐴 + (𝑏𝑐𝛽

− 𝛽𝑏𝑐)𝐼 

= 𝑎𝑏𝑐(
𝛽(𝑐𝑞+𝜙)(1−𝑝)𝜂+𝛽𝑏𝑝𝜂

𝑎𝑏𝑐
− 1)𝐸  

= 𝑎𝑏𝑐(𝑅0 − 1)𝐸 

Therefore 
𝑑𝐿

𝑑𝑡
≤ 𝑏𝑐𝑑(𝑅0 − 1)𝐸 < 0  if 𝑅0 < 1 

which implies that 
𝑑𝐿

𝑑𝑡
≤ 0 . Therefore the largest compact 

invariant set in Ω  is singleton set 𝐸0 . Hence LaSalle’s 

invariant principle implies that 𝐸0 is globally asymptotically 

stable. 

3.8. Endemic Equilibrium Points 

 The endemic equilibrium point denoted by 𝐸1 =

{𝑃∗, 𝑆∗, 𝐸∗, 𝐴∗, 𝐼∗, 𝐷∗}  is a steady state solution where the 

disease persists in the population. The endemic equilibrium 

point is obtained by setting rates of changes of variables with 

respect to time in model equations (1) equal to zero. That is, 

setting  

{
 
 
 

  
 
𝜃Π − (𝜑 + 𝜇)𝑃 = 0
(1 − 𝜃)Π + 𝜑𝑃 − (𝜆 + 𝜇)𝑆 = 0
𝜆𝑆 − (𝜂 + 𝜇 + 𝜉)𝐸 = 0

(1 − 𝑝)𝜂𝐸 − (𝜙 + 𝛾 + 𝜇 + 𝜉)𝐴 = 0
𝑝𝜂𝐸 + 𝜙𝐴 − (𝛼 + 𝜇 + 𝜉)𝐼 = 0
𝛾𝐴 + 𝛼𝐼 − (𝜇 + 𝜉)𝐷 = 0

 (10) 

 Then solving they system of differential equation 10 by 

substitution and after some algebraic simplificaton we obtain 

𝐸1 = {𝑃
∗, 𝑆∗, 𝐸∗, 𝐴∗, 𝐼∗, 𝐷∗} where:  

 𝑃∗ =
𝜃Π

(𝜑+𝜇)
 

𝑆∗ =
Π(𝜑 + 𝜇 − 𝜃𝜇)

(𝜆∗ + 𝜇)
 

𝐸∗ =
𝜆∗𝑆∗

(𝜂 + 𝜇 + 𝜉)
 

𝐴∗ =
(1 − 𝑝)𝜂𝐸∗

(𝜙 + 𝛾 + 𝜇 + 𝜉)
 



“Mathematical Modelling of HIV/AIDS Transmission Dynamics with Optimal Control Strategy” 

2244 Eshetu Dadi Gurmu1, IJMCR Volume 09 Issue 04 April 2021 

 

𝐼∗ =
𝑝𝜂𝐸∗ +𝜙𝐴∗

(𝛼 + 𝜇 + 𝜉)
 

𝐷∗ =
𝛾𝐴∗+𝛼𝐼∗

𝜇+𝜉
.  

 On substituting the expression for 𝐴∗ and 𝐼∗ into 

the force of infection, that is, 𝜆∗ =
𝛽(𝐼∗+𝑞𝐴∗)

𝑁
 obtained as  

 𝜆∗ = 𝜇[𝑅0(𝜑 + 𝜇 − 𝜃𝜇) − 1] 

𝜆∗ ≤ 0, if 𝑅0(𝜑 + 𝜇 − 𝜃𝜇) < 1, i.e 𝑅0 <
1

𝜑+𝜇−𝜃𝜇
  

 From this, we see that, there is no endemic 

equilibrium for this model. Therefore, this condition shows 

that it is not possible for backward bifurcation in the model if 

𝑅0 < 1. 

Lemma: A unique endemic equilibrium point 𝐸1 

exists and positive if 𝑅0 > 1.  

3.9. Global Stability of Endemic Equilibrium 

Theorem: 5 The endemic equilibrium point of the model equation(1) is globally asymptotically stable whenever 𝑅0 > 1. 

Proof: To prove the global stability of the endemic equilibrium we use the method of Lyapunov functions. Define 

Define:  

 𝐿(𝑃∗, 𝑆∗, 𝐸∗, 𝐴∗, 𝐼∗, 𝐷∗) = [𝑃 − 𝑃∗ − 𝑃∗ln(
𝑃

𝑃∗
)][𝑆 − 𝑆∗ − 𝑆∗ln(

𝑆

𝑆∗
)] + [𝐸 − 𝐸∗ − 𝐸∗ln(

𝐸

𝐸∗
)] 

 +[𝐴 − 𝐴∗ − 𝐴∗ln(
𝐴

𝐴∗
)] + [𝐼 − 𝐼∗ − 𝐼∗ln(

𝐼

𝐼∗
)] + [𝐷 − 𝐷∗ −𝐷∗ln(

𝐷

𝐷∗
)] (11) 

 Then by taking the time derivative of 𝐿(𝑃∗, 𝑆∗, 𝐸∗, 𝐴∗, 𝐼∗, 𝐷∗), we obtain: 

𝑑𝐿

𝑑𝑡
= (𝑃′ −

𝑃∗

𝑃
𝑃′) + (𝑆′ −

𝑆∗

𝑆
𝑆′) + (𝐸′ −

𝐸∗

𝐸
𝐸′) + (𝐴′ −

𝐴∗

𝐴
𝐴′) + (𝐼′ −

𝐼∗

𝐼
𝐼′) + (𝐷′ −

𝐷∗

𝐷
𝐷′) 

= (1 −
𝑃∗

𝑃
)
𝑑𝑃

𝑑𝑡
+ (1 −

𝑆∗

𝑆
)
𝑑𝑆

𝑑𝑡
+ (1 −

𝐸∗

𝐸
)
𝑑𝐸

𝑑𝑡
+ (1 −

𝐴∗

𝐴
)
𝑑𝐴

𝑑𝑡
+ (1 −

𝐼∗

𝐼
)
𝑑𝐼

𝑑𝑡
+ (1 −

𝐷∗

𝐷
)
𝑑𝐷

𝑑𝑡
 

By substituting the value 
𝑑𝐷

𝑑𝑡
,
𝑑𝑆

𝑑𝑡
,
𝑑𝐸

𝑑𝑡
,
𝑑𝐴

𝑑𝑡
,
𝑑𝐼

𝑑𝑡
,
𝑑𝐷

𝑑𝑡
 from model equation1 we obtain 

𝑑𝐿

𝑑𝑡
= (1 −

𝑃∗

𝑃
)[𝜃Π − (𝜑 + 𝜇)𝑃] + [1 −

𝑆∗

𝑆
][(1 − 𝜃)Π + 𝜑𝑃 − (𝜆 + 𝜇)𝑆] + [1 −

𝐸∗

𝐸
][𝜆𝑆 − (𝜂 + 𝜇 + 𝜉)𝐸] + [1 −

𝐴∗

𝐴
][(1 − 𝑝)𝜂𝐸

− (𝜙 + 𝛾 + 𝜇 + 𝜉)𝐴] + [1 −
𝐼∗

𝐼
][𝑝𝜂𝐸 + 𝜙𝐴 − (𝛼 + 𝜇 + 𝜉)𝐼] + [1 −

𝐷∗

𝐷
][𝛾𝐴 + 𝛼𝐼 − (𝜇 + 𝜉)𝐷] 

= (𝜋 + 𝜃𝑅 + 𝜆𝑆∗ + 𝜇𝑆∗ − 𝜆𝑆 − 𝜇𝑆 − 𝜋
𝑆∗

𝑆
− 𝜃𝑅

𝑆∗

𝑆
) + (𝜆𝑆 + 𝜇𝐸∗ + 𝜂𝐸∗ + 𝜑𝐸∗ − 𝜇𝐸 − 𝜂𝐸 − 𝜑𝐸 − 𝜆𝑆

𝐸∗

𝐸
) + (𝜂𝐸 + 𝜇𝐴∗ + 𝛾𝐴∗

+
𝐴∗

𝐴
𝑝𝜂𝐸 − 𝑝𝜂𝐸 − 𝜇𝐴 − 𝛾𝐴 −

𝐴∗

𝐴
𝜂𝐸) + (𝑝𝜂𝐸𝜇𝐼∗ + 𝛼𝐼∗ − 𝜇𝐼 − 𝛼𝐼 −

𝐼∗

𝐼
𝑃𝜂𝐸) + (𝛼𝐼 + 𝛾𝐼 + 𝜑𝐸 + 𝜃𝑅∗ + 𝜇𝑅∗

− 𝜃𝑅 − 𝜇𝑅 − 𝛼𝐼
𝑅∗

𝑅
− 𝛾𝐴

𝑅∗

𝑅
− 𝜑𝐸

𝑅∗

𝑅
) 

Now after some simplifications i.e cancelling like terms which is opposite in sign we obtain: 

= [Π + 𝑃∗𝜑 + 𝜆∗𝑆∗ + 𝜂𝐸∗ + (𝜙 + 𝛾)𝐴∗ + 𝛼𝐼∗ + 𝜇(𝑁∗ −𝑁) + 𝜉[(𝐸∗ + 𝐴∗ + 𝐼∗ +𝐷∗) − (𝐸 + 𝐴 + 𝐼 + 𝐷)]]⏟                                                                  
𝑄

− [𝜃Π
𝑃∗

𝑃
+ ((1 − 𝜃)Π + 𝜑𝑃)

𝑆∗

𝑆
+ 𝜆∗𝑆

𝐸∗

𝐸
+ ((1 − 𝑝)𝜂𝐸)

𝐴∗

𝐴
+ (𝑝𝜂𝐸 + 𝜙𝐴)

𝐼∗

𝐼
+ (𝛾𝐴 + 𝛼𝐼)

𝐷∗

𝐷
]

⏟                                                          
𝐾

 

𝑑𝐿

𝑑𝑡
= 𝑄 − 𝐾 

Thus if 𝑄 < 𝐾 , then 
𝑑𝐿

𝑑𝑡
≤ 0 . Noting that 

𝑑𝐿

𝑑𝑡
= 0  if and only if 𝑃 = 𝑃∗, 𝑆 = 𝑆∗, 𝐸 = 𝐸∗, 𝐴 = 𝐴∗, 𝐼 = 𝐼∗, 𝐷 = 𝐷∗ . 

Therefore, the largest compact invariant set in {(𝑃∗, 𝑆∗, 𝐸∗, 𝐴∗, 𝐼∗, 𝐷∗) ∈ Ω;
𝑑𝐿

𝑑𝑡
= 0} is the singleton 𝐸1 is the endemic equilibrium 

of the system 1. By LaSalle’s invariant principle (LaSalle’s,1976),it implies that 𝐸1is globally asymptotically stable in Ω if 𝑄 <

𝐾. 

 

4. SENSITIVITY ANALYSIS OF MODEL 

PARAMETERS 

One of the most important concerns about any infectious 

disease is its ability to invade a population. The basic 

reproduction number, 𝑅0 is a measure of the potential for 

disease spread in a population, and is inarguably ’one of the 

foremost and most valuable ideas that mathematical thinking 

has brought to epidemic theory’ [14]. A large value of 𝑅0 

may indicate the possibility of a major epidemic. We thus, 

carried out sensitivity analysis of the basic reproduction 

number, 𝑅0 with respect to the model parameters in order to 

determine the relative importance of the different factors 

responsible for the transmission and prevalence of the 

disease. This will assist in curtailing the transmission of the 

disease by using appropriate intervention strategies. There are 

more than a dozen ways of conducting sensitivity analysis, all 

resulting in a slightly different sensitivity ranking [15]. 

Following [14], we used the normalized forward sensitivity 

index also called elasticity as it is the backbone of nearly all 

other sensitivity analysis techniques [15] and are 

computationally efficient[16]. The normalized forward 

sensitivity index of the basic reproduction number, 𝑅0 with 

respect to a parameter value, 𝑃 is given by:  
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𝑆𝑝
𝑅0 =

𝜕𝑅0

𝜕𝑃
×

𝑃

𝑅0
 (12) 

 The sensitivity indices of the basic reproductive number 

with respect to main parameters are arranged orderly in Table 

2. Those parameters that have positive indices show that they 

have great impact on expanding the disease in the community 

if their values are increasing. Due to the reason that the basic 

reproduction number increases as their values increase, it 

means that the average number of secondary cases of 

infection increases in the community. Furthermore, those 

parameters in which their sensitivity indices are negative 

have an influence of minimizing the burden of the disease in 

the community as their values increase while the others are 

left constant. And also as their values increase, the basic 

reproduction number decreases, which leads to minimizing 

the endemicity of the disease in the community. 

 

 

Table 2: Sensitivity indices Table.  

 Parameter 

symbol 

 Sensitivity 

indices 

𝜷  +ve  

𝜼  +ve  

𝒒 +ve 

𝝁  -ve  

𝒑  -ve  

𝜶  -ve  

𝝓 -ve 

𝜸 -ve 

𝝃 -ve 

  

5. FORMULATION OF AN OPTIMAL CONTROL PROBLEM 

 The purpose of this section is to extend model equation (1) into an optimal control problem. The controls are defined as 

follows:  

1.  𝑢1 is the control variable for prevention of the recruitment to susceptible individuals.  

    2.  𝑢2 is the control variable for reduction of the spread/contact of HIV infection.  

    3.  𝑢3 is the control variable for screen of the exposed individuals.  

    4.  𝑢4 is the control variable for treatment of the asymptomatic and symptomatic individuals.  

 After incorporating the controls, the corresponding state system for model equation1 is given as:  

 

{
 
 
 
 
 

 
 
 
 
 
𝑑𝑃(𝑡)

𝑑𝑡
= 𝜃Π − (1 − 𝑢1)𝜑𝑃 − 𝜇𝑃

𝑑𝑆(𝑡)

𝑑𝑡
= (1 − 𝜃)Π + (1 − 𝑢1)𝜑𝑃 − (1 − 𝑢2)𝜆𝑆 − 𝜇𝑆

𝑑𝐸(𝑡)

𝑑𝑡
= (1 − 𝑢2)𝜆𝑆 − (1 − 𝑢3)𝜂𝐸 − (𝜇 + 𝜉)𝐸

𝑑𝐴(𝑡)

𝑑𝑡
= (1 − 𝑢3)(1 − 𝑝)𝜂𝐸 − (1 − 𝑢4)(𝜙 + 𝛾)𝐴 − (𝜇 + 𝜉)𝐴

𝑑𝐼(𝑡)

𝑑𝑡
= (1 − 𝑢3)𝑝𝜂𝐸 + (1 − 𝑢4)𝜙𝐴 − (1 − 𝑢4)𝛼𝐼 − (𝜇 + 𝜉)𝐼

𝑑𝐷(𝑡)

𝑑𝑡
= (1 − 𝑢4)𝛾𝐴 + (1 − 𝑢4)𝛼𝐼 − (𝜇 + 𝜉)𝐷

 (13) 

 

 With initial condition 𝑃(0) ≥ 0, 𝑆(0) ≥ 0, 𝐸(0) ≥

0, 𝐴(0) ≥ 0, 𝐼(0) ≥ 0,𝐷(0) ≥ 0 with a bounded Lebesgue 

measurable control set is represented as  

 𝑈 = {𝑢 = (𝑢1, 𝑢2, 𝑢3, 𝑢4),0 ≤ 𝑢𝑖 ≤ 𝑢𝑖𝑚𝑎𝑥 , 𝑖 = 1,2,3,4, } 

and 𝑡 ∈ [0, 𝑇]  

 The aim objective is to minimize the number of 

infected population while minimizing the rate of 

interventions 𝑢1, 𝑢2, 𝑢3  and 𝑢4  on a fixed time period 𝑇 . 

Therefore, the optimal control problem for the model 13 is to 

minimize the objective functional:  

 𝐽(𝑢) = ∫
𝑇

0
[𝑔(𝜙, 𝑢)]𝑑𝑡 = ∫

𝑇

0
[𝑀1𝑆 + 𝑀2𝐸 +

𝑀3𝐴 + 𝑀4𝐼 + +
1

2
∑4𝑖=1 𝑘𝑖𝑢𝑖

2(𝑡)]𝑑𝑡 ⟶ 𝑚𝑖𝑛 (14) 

 where, 𝑖 = 1,2,3,4  and 𝜙 = (𝑃, 𝑆, 𝐸, 𝐴, 𝐼, 𝐷)  solves 

equation 13 for the specified control 𝑢. 

In the intervention of controls the solution 𝜙 =

(𝑃, 𝑆, 𝐸, 𝐴, 𝐼, 𝐷)  depends on the controls. The constants 

𝑤1, 𝑤2, 𝑤3  and 𝑤4 measures the cost or effort required for 

the implementation of each of the four control measures 

adopted while 𝑀1,𝑀2, 𝑀3  and 𝑀4  measures the relative 

importance of reducing the associated classes on the spread 

of the disease. Thus, we need to find the optimal controls 

𝑢∗ = (𝑢1
∗ , 𝑢2

∗ , 𝑢3
∗ , 𝑢4

∗) such that  

𝐽(𝑢∗) = min
𝑈
𝐽(𝑢1, 𝑢2, 𝑢3, 𝑢4) (15) 

 Hence, the basic setup of the optimal control problem is to 
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check the existence and uniqueness of the optimal controls and to characterize them.  

5.1. Existence of an optimal controls 

 Theorem: 6 Given 𝐽(𝑢) subject to system 13 with 𝑃(0) ≥ 0, 𝑆(0) ≥ 0, 𝐸(0) ≥ 0, 𝐴(0) ≥ 0, 𝐼(0) ≥ 0,𝐷(0) ≥ 0, then 

there exists an optimal control 𝑢∗ and corresponding (𝑃∗, 𝑆∗, 𝐸∗, 𝐴∗, 𝐼∗, 𝐷∗), that minimizes 𝐽(𝑢) over 𝑈. The proof is based on 

the following assumption and by Fleming and Rishel’s [17] theorem.   

    1.  The set of controls and corresponding state variable is nonempty.  

    2.  The measurable control set is convex and closed.  

    3.  All the right hand sides of equations of the state system is continuous, bounded above by a sum of bounded control 

and state, and can be written as a linear function of 𝑢 with coefficients depending on time and state.  

    4.  The integrand 𝑔(𝜙, 𝑢) of the objective functional is convex.  

    5.  There exist constants 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5 ≥ 0 and 𝜏∗ ≥ 1 such that the integrand of the objective functional satisfies 

𝑔(𝜙, 𝑢) ≥ 𝑐1 + 𝑐2|𝑢1|
𝜏 + 𝑐3|𝑢2|

𝜏 + 𝑐4|𝑢3|
𝜏 + 𝑐5|𝑢4|

𝜏 .  

 Proof:   

    1.  𝑈 is a nonempty set of measurable functions on 0 ≤ 𝑇 with values in real numbers ℝ. The system 13 has bounded 

coefficients and hence any solutions are bounded on [0, T]. The corresponding solutions for the system 13 exists.  

    2.  Assume that 𝑢1, 𝑢2, 𝑢3, 𝑢4 ∈ 𝑈 such that ∥ 𝑢𝑖 ∥≤ 1, 𝑖 = 1,2,3,4. Now, let us take any controls 𝑢1, 𝑢2 ∈ 𝑈 and 

𝜆 ∈ [0,1], then 0 ≤ 𝜆𝑢1 + (1 − 𝜆)𝑢2. Additionally, we observe that  

 ∥ 𝜆𝑢1 ∥≤ 𝜆 ∥ 𝑢1 ∥≤ 𝜆 and ∥ (1 − 𝜆)𝑢2 ∥≤ (1 − 𝜆) ∥ 𝑢2 ∥≤ (1 − 𝜆)  

 Then for any 𝜆 ∈ [0,1],  

 ∥ 𝜆𝑢1 + (1 − 𝜆)𝑢2 ∥ 

≤∥ 𝜆𝑢1 ∥ +∥ (1 − 𝜆)𝑢2 ∥ 

≤ 𝜆 ∥ 𝑢1 ∥ +(1 − 𝜆) ∥ 𝑢2 ∥ 

≤ 𝜆 + (1 − 𝜆) = 1  

 Hence, 0 ≤ 𝜆𝑢1 + (1 − 𝜆)𝑢2 ≤, for all 𝑢1, 𝑢2 ∈ 𝑈 and 𝜆 ∈ [0,1]. 

Therefore, the control space 𝑈 = {𝑢 = (𝑢1, 𝑢2, 𝑢3, 𝑢4),0 ≤ 𝑢𝑖 ≤ 𝑢𝑖𝑚𝑎𝑥 , 𝑖 = 1,2,3,4, } and 𝑡 ∈ [0, 𝑇] is convex and closed 

by definition.  

    3.  By definition, each right hand side of system 13 is continuous. All variables 𝑃, 𝑆, 𝐸, 𝐴, 𝐼, 𝐷 and 𝑢 are bounded on 

[0, 𝑇]. To prove the boundedness we use the method in []. To do so we use the fact the super-solutions of system 13 is written as:  

{
 
 
 
 
 

 
 
 
 
 
𝑑𝑃(𝑡)

𝑑𝑡
= 𝜃Π

𝑑𝑆(𝑡)

𝑑𝑡
= (1 − 𝜃)Π + (1 − 𝑢1)𝜑𝑃

𝑑𝐸(𝑡)

𝑑𝑡
= (1 − 𝑢2)𝜆𝑆

𝑑𝐴(𝑡)

𝑑𝑡
= (1 − 𝑢3)(1 − 𝑝)𝜂𝐸

𝑑𝐼(𝑡)

𝑑𝑡
= (1 − 𝑢3)𝑝𝜂𝐸 + (1 − 𝑢4)𝜙𝐴

𝑑𝐷(𝑡)

𝑑𝑡
= (1 − 𝑢4)𝛾𝐴 + (1 − 𝑢4)𝛼𝐼

 (16) 

 are bounded on a finite time interval. System 17 can be written as;  

𝜙 =

[
 
 
 
 
 
𝑃′
𝑆′
𝐸′
𝐴′
𝐼′
𝐷′]
 
 
 
 
 

=

[
 
 
 
 
 
0 0 0 0 0 0
(1 − 𝑢1)𝜑 0 0 0 0 0
0 (1 − 𝑢2)𝜆 0 0 0 0
0 0 (1 − 𝑢3)𝜂 0 0 0

0 0 (1 − 𝑢3)𝜂𝑝 (1 − 𝑢4)𝜙 0 0
0 0 0 (1 − 𝑢4)𝛾 (1 − 𝑢4)𝛼 0]

 
 
 
 
 

[
 
 
 
 
 
 𝑃

𝑆

𝐸

𝐴

𝐼

𝐷]
 
 
 
 
 
 

+

[
 
 
 
 
 
𝜃Π
(1 − 𝜃)Π
0
0
0
0 ]

 
 
 
 
 

 (17) 

 The system is linear in finite time with bounded coefficients, then the super-solutions 𝑃, 𝑆, 𝐸, 𝐴, 𝐼 and 𝐷 are uniformly bounded. 

Since the solution to each state equation is bounded, we observe that,  

 |𝑓(𝑡, 𝜙, 𝑢)| ≤

|

|

[
 
 
 
 
 
0 0 0 0 0 0
(1 − 𝑢1)𝜑 0 0 0 0 0
0 (1 − 𝑢2)𝜆 0 0 0 0
0 0 (1 − 𝑢3)𝜂 0 0 0

0 0 (1 − 𝑢3)𝜂𝑝 (1 − 𝑢4)𝜙 0 0
0 0 0 (1 − 𝑢4)𝛾 (1 − 𝑢4)𝛼 0]

 
 
 
 
 

[
 
 
 
 
 
 𝑃

𝑆

𝐸

𝐴

𝐼

𝐷]
 
 
 
 
 
 

|

|

+ (18) 
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|

|

[
 
 
 
 
 
𝜃Π
(1 − 𝜃)Π
0
0
0
0 ]

 
 
 
 
 

|

|
+

|

|

[
 
 
 
 
 
 
𝑆
𝐸
𝐴
𝐼

]
 
 
 
 
 
 

[
 
 
 
 
 
0
𝑢1
𝑢2
𝑢3
𝑢4
0 ]
 
 
 
 
 

|

|

 

  

≤ 𝐾|𝜙| +𝑀|𝑢| + 𝑁 

 Where 𝐾 depends on the coefficients of the system. Thus, the assumption holds.  

    4.  The integrand in the objective functional, which is a cost function 𝑔(𝜙, 𝑢) is an affine function. Recall that any 

affine function is a convex and the sum of a convex function is a convex. Therefore, 𝑔(𝜙, 𝑢) is convex on 𝑈.  

    5.  Assume that there exists constants 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5 ≥ 0 and 𝜏∗ ≥ 1 such that 𝑔(𝜙, 𝑢) satisfies 𝑔(𝜙, 𝑢) ≥ 𝑐1 +

𝑐2|𝑢1|
𝜏 + 𝑐3|𝑢2|

𝜏 + 𝑐4|𝑢3|
𝜏 + 𝑐5|𝑢4|

𝜏. Thus, the state variables are being bounded. 

Let 𝑐1 = inf𝑡∈[0,𝑇][𝑀1𝑆 + 𝑀2𝐸 + 𝑀3𝐴 +𝑀4𝐼], 𝑐2 =
𝑤1

2
, 𝑐3 =

𝑤2

2
, 𝑐4 =

𝑤3

2
, 𝑐5 =

𝑤4

2
 and 𝜏 = 2 then it follows that  

 𝑔(𝜙, 𝑢) ≥ 𝑐1 + 𝑐2|𝑢1|
𝜏 + 𝑐3|𝑢2|

𝜏 + 𝑐4|𝑢3|
𝜏 + 𝑐5|𝑢4|

𝜏  

 Thus, this assumption is justified.  

 Therefore, the optimal control 𝑢 exists.  

 

5.2. Characterization of an optimal control 

 In order to determine the necessary conditions for 

the optimal control the Pontryagin’s maximum principle [18] 

is used. To apply this we need to convert the optimal control 

problem into a problem of minimizing point wise a 

Hamiltonian, 𝐻 , with respect to 𝑢 . The Hamiltonian 

associated to our problem is:  

 𝐻(𝜙, 𝑢, 𝜆) = 𝑀1𝑆 +𝑀2𝐸 +𝑀3𝐴 + 𝑀4𝐼 +
𝑤1𝑢1

2

2
+

𝑤2𝑢2
2

2
+
𝑤3𝑢3

2

2
+
𝑤4𝑢4

2

2
 (19) 

  

 +𝜆1[𝜃Π − (1 − 𝑢1)𝜑𝑃 − 𝜇𝑃] + 𝜆2[(1 − 𝜃)Π + (1 −

𝑢1)𝜑𝑃 − (1 − 𝑢2)𝜆𝑆 − 𝜇𝑆]  

  

 +𝜆3[(1 − 𝑢2)𝜆𝑆 − (1 − 𝑢3)𝜂𝐸 − (𝜇 + 𝜉)𝐸] + 𝜆4[(1 −

𝑢3)(1 − 𝑝)𝜂𝐸 − (1 − 𝑢4)(𝜙 + 𝛾)𝐴 − (𝜇 + 𝜉)𝐴]  

  

 +𝜆5[(1 − 𝑢3)𝑝𝜂𝐸 + (1 − 𝑢4)𝜙𝐴 − (1 − 𝑢4)𝛼𝐼 − (𝜇 +

𝜉)𝐼] + 𝜆6[(1 − 𝑢4)𝛾𝐴 + (1 − 𝑢4)𝛼𝐼 − (𝜇 + 𝜉)𝐷]  

 Based on [], if the control𝑢∗ and the corresponding 

state 𝜙∗ are an optimal couple, necessarily there exists a non 

trivial adjoint vector 𝜆 = (𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6)  satisfying 

the following equality  

{
 
 

 
 
𝑑𝜙

𝑑𝑡
=
𝜕𝐻(𝜙,𝑢,𝜆)

𝜕𝜆
𝑑𝜆

𝑑𝑡
= −

𝜕𝐻(𝜙,𝑢,𝜆)

𝜕𝜙

𝜕𝐻(𝜙,𝑢,𝜆)

𝜕𝑢
= 0

 (20) 

 Which gives after derivation  

{
 
 

 
 𝑢𝑖

∗ = 0, 𝑖𝑓
𝜕𝐻

𝜕𝑢𝑖
< 0

0 ≤ 𝑢𝑖
∗ ≤ 𝑢𝑖𝑚𝑎𝑥 , 𝑖𝑓

𝜕𝐻

𝜕𝑢𝑖
= 0

𝑢𝑖
∗ = 𝑢𝑖𝑚𝑎𝑥 , 𝑖𝑓

𝜕𝐻

𝜕𝑢𝑖
> 0

 (21) 

 Now we apply the necessary conditions to the Hamilton 

function,H. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem: 7 Given an optimal control 𝑢∗ and a solution to the corresponding state13, 𝜙, then there exist an adjoint vector 𝜆 and 

this satisfies the following adjoint equation:  
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{
 
 
 
 
 

 
 
 
 
 
𝑑𝜆1

𝑑𝑡
= 𝜆1[(1 − 𝑢1)𝜑 + 𝜇] − 𝜆2(1 − 𝑢1)𝜑

𝑑𝜆2

𝑑𝑡
= −𝑀1 + 𝜆2[(1 − 𝑢2)𝜆

∗ + 𝜇] − 𝜆3(1 − 𝑢2)𝜆
∗

𝑑𝜆3

𝑑𝑡
= −𝑀2 + 𝜆3[(1 − 𝑢3)𝜂 + (𝜇 + 𝜉)] − 𝜆4[(1 − 𝑢3)(1 − 𝑝)𝜂] − 𝜆5[(1 − 𝑢3)𝑝𝜂]

𝑑𝜆4

𝑑𝑡
= −𝑀3 + 𝜆2[(1 − 𝑢2)

𝛽𝑞𝑆

𝑁
] − 𝜆3[(1 − 𝑢2)

𝛽𝑞𝑆

𝑁
] + 𝜆4[(1 − 𝑢4)(𝛾 + 𝜙) + (𝜇 + 𝜉)] − 𝜆5[(1 − 𝑢4)𝜙]

−𝜆6[(1 − 𝑢4)𝛾]
𝑑𝜆5

𝑑𝑡
= −𝑀4 + 𝜆2[(1 − 𝑢2)

𝛽𝑆

𝑁
] − 𝜆3[(1 − 𝑢2)

𝛽𝑆

𝑁
] + 𝜆5[(1 − 𝑢4)𝛼 + (𝜇 + 𝜉)] − 𝜆6[(1 − 𝑢4)𝛼]

𝑑𝜆6

𝑑𝑡
= 𝜆6(𝜇 + 𝜉)

𝜆𝑖(𝑇) = 0, 𝑖 = 1,2,3,4,5,6.

 

 𝜆𝑖(𝑇) = 0 is the transversality condition. Moreover, the optimal control 𝑢∗ given by  

 

{
  
 

  
 𝑢1

∗ = min{max{
(𝜆2−𝜆1)𝜑𝑃

𝑤1
, 0}, 𝑢1𝑚𝑎𝑥}

𝑢2
∗ = min{max{

(𝜆3−𝜆2)𝜆
∗𝑆

𝑤2
, 0}, 𝑢2𝑚𝑎𝑥}

𝑢3
∗ = min{max{

(𝜆4(1−𝑝)−𝜆3)𝜂𝐸+𝜆5𝑝𝜂𝐸

𝑤3
, 0}, 𝑢3𝑚𝑎𝑥}

𝑢4
∗ = min{max{

(𝜆6−𝜆4)𝛾𝐴+(𝜆5−𝜆4)𝜙𝐴+(𝜆6−𝜆5)𝛼𝐼

𝑤4
, 0}, 𝑢4𝑚𝑎𝑥}

 (22) 

Proof: The adjoint equation is obtained by differentiating the Hamiltonian equation 19 with respect to 𝜙 = (𝑃, 𝑆, 𝐸, 𝐴, 𝐼, 𝐷). That 

is 
𝑑𝜆

𝑑𝑡
= −

𝜕𝐻(𝜙,𝑢,𝜆)

𝜕𝜙
. Assuming that the final states 𝑃(𝑇), 𝑆(𝑇), 𝐸(𝑇), 𝐴(𝑇), 𝐼(𝑇), 𝐷(𝑇) are free we get the transversality conditions 

𝜆(𝑇) = 0. The optimal controls 𝑢 are found from the optimality conditions and using the property of the control space 𝑈. The 

optimality condition of the Hamiltonian gives 
𝜕𝐻

𝜕𝑢
= 0. That is  

 

{
  
 

  
 
𝜕𝐻

𝜕𝑢1
= 0 ⇒ 𝑢1

∗ =
(𝜆2−𝜆1)𝜑𝑃

𝑤1
𝜕𝐻

𝜕𝑢2
= 0 ⇒ 𝑢2

∗ =
(𝜆3−𝜆2)𝜆

∗𝑆

𝑤2
𝜕𝐻

𝜕𝑢3
= 0 ⇒ 𝑢3

∗ =
(𝜆4(1−𝑝)−𝜆3)𝜂𝐸+𝜆5𝑝𝜂𝐸

𝑤3
𝜕𝐻

𝜕𝑢4
= 0 ⇒ 𝑢4

∗ =
(𝜆6−𝜆4)𝛾𝐴+(𝜆5−𝜆4)𝜙𝐴+(𝜆6−𝜆5)𝛼𝐼

𝑤4

 (23) 

 And using the property of the control space 𝑈, the controls are given as  

 {

𝑢1
∗ = 0, 𝑖𝑓(𝜆2 − 𝜆1)𝜑𝑃 < 0,
𝑢1
∗ , 𝑖𝑓0 ≤ (𝜆2 − 𝜆1)𝜑𝑃 ≤ 𝑤1𝑢1𝑚𝑎𝑥
𝑢1𝑚𝑎𝑥 , 𝑖𝑓(𝜆2 − 𝜆1)𝜑𝑃 > 𝑤1𝑢1𝑚𝑎𝑥

 (24) 

  

 {

𝑢2
∗ = 0, 𝑖𝑓(𝜆3 − 𝜆1)𝜆

∗𝑆 < 0,
𝑢2
∗ , 𝑖𝑓0 ≤ (𝜆3 − 𝜆1)𝜆

∗𝑆 ≤ 𝑤2𝑢2𝑚𝑎𝑥
𝑢2𝑚𝑎𝑥 , 𝑖𝑓(𝜆3 − 𝜆1)𝜆

∗𝑆 > 𝑤2𝑢2𝑚𝑎𝑥

 (25) 

  

 {

𝑢3
∗ = 0, 𝑖𝑓(𝜆4(1 − 𝑝) − 𝜆3)𝜂𝐸 + 𝜆5𝑝𝜂𝐸 < 0,
𝑢3
∗ , 𝑖𝑓0 ≤ (𝜆4(1 − 𝑝) − 𝜆3)𝜂𝐸 + 𝜆5𝑝𝜂𝐸 ≤ 𝑤3𝑢3𝑚𝑎𝑥
𝑢3𝑚𝑎𝑥 , 𝑖𝑓(𝜆4(1 − 𝑝) − 𝜆3)𝜂𝐸 + 𝜆5𝑝𝜂𝐸 > 𝑤3𝑢3𝑚𝑎𝑥

 (26) 

  

 {

𝑢4
∗ = 0, 𝑖𝑓(𝜆6 − 𝜆4)𝛾𝐴 + (𝜆5 − 𝜆4)𝜙𝐴 + (𝜆6 − 𝜆5)𝛼𝐼 < 0,
𝑢4
∗ , 𝑖𝑓0 ≤ (𝜆6 − 𝜆4)𝛾𝐴 + (𝜆5 − 𝜆4)𝜙𝐴 + (𝜆6 − 𝜆5)𝛼𝐼 ≤ 𝑤4𝑢4𝑚𝑎𝑥
𝑢4𝑚𝑎𝑥 , 𝑖𝑓(𝜆6 − 𝜆4)𝛾𝐴 + (𝜆5 − 𝜆4)𝜙𝐴 + (𝜆6 − 𝜆5)𝛼𝐼 > 𝑤4𝑢4𝑚𝑎𝑥

 (27) 

  

5.3. The Optimality System 

 The optimality system consists of the state system 13 with its initial conditions coupled with the adjoint system ?? with 

its transversality conditions together with the characterization of the optimal controls. It is written as follows:  
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{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
𝑑𝑃(𝑡)

𝑑𝑡
= 𝜃Π − (1 − 𝑢1)𝜑𝑃 − 𝜇𝑃

𝑑𝑆(𝑡)

𝑑𝑡
= (1 − 𝜃)Π + (1 − 𝑢1)𝜑𝑃 − (1 − 𝑢2)𝜆𝑆 − 𝜇𝑆

𝑑𝐸(𝑡)

𝑑𝑡
= (1 − 𝑢2)𝜆𝑆 − (1 − 𝑢3)𝜂𝐸 − (𝜇 + 𝜉)𝐸

𝑑𝐴(𝑡)

𝑑𝑡
= (1 − 𝑢3)(1 − 𝑝)𝜂𝐸 − (1 − 𝑢4)(𝜙 + 𝛾)𝐴 − (𝜇 + 𝜉)𝐴

𝑑𝐼(𝑡)

𝑑𝑡
= (1 − 𝑢3)𝑝𝜂𝐸 + (1 − 𝑢4)𝜙𝐴 − (1 − 𝑢4)𝛼𝐼 − (𝜇 + 𝜉)𝐼

𝑑𝐷(𝑡)

𝑑𝑡
= (1 − 𝑢4)𝛾𝐴 + (1 − 𝑢4)𝛼𝐼 − (𝜇 + 𝜉)𝐷

𝑑𝜆1

𝑑𝑡
= 𝜆1[(1 − 𝑢1)𝜑 + 𝜇] − 𝜆2(1 − 𝑢1)𝜑

𝑑𝜆2

𝑑𝑡
= −𝑀1 + 𝜆2[(1 − 𝑢2)𝜆

∗ + 𝜇] − 𝜆3(1 − 𝑢2)𝜆
∗

𝑑𝜆3

𝑑𝑡
= −𝑀2 + 𝜆3[(1 − 𝑢3)𝜂 + (𝜇 + 𝜉)] − 𝜆4[(1 − 𝑢3)(1 − 𝑝)𝜂] − 𝜆5[(1 − 𝑢3)𝑝𝜂]

𝑑𝜆4

𝑑𝑡
= −𝑀3 + 𝜆2[(1 − 𝑢2)

𝛽𝑞𝑆

𝑁
] − 𝜆3[(1 − 𝑢2)

𝛽𝑞𝑆

𝑁
] + 𝜆4[(1 − 𝑢4)(𝛾 + 𝜙) + (𝜇 + 𝜉)] − 𝜆5[(1 − 𝑢4)𝜙]

−𝜆6[(1 − 𝑢4)𝛾]
𝑑𝜆5

𝑑𝑡
= −𝑀4 + 𝜆2[(1 − 𝑢2)

𝛽𝑆

𝑁
] − 𝜆3[(1 − 𝑢2)

𝛽𝑆

𝑁
] + 𝜆5[(1 − 𝑢4)𝛼 + (𝜇 + 𝜉)] − 𝜆6[(1 − 𝑢4)𝛼]

𝑑𝜆6

𝑑𝑡
= 𝜆6(𝜇 + 𝜉)

 

 Where 𝜆∗ =
𝛽(𝐼+𝑞𝐴)

𝑁
, 𝜆𝑖(𝑇) = 0, 𝑖 = 1,2,3,4,5,6.  

 

5.4. Uniqueness of the optimality system 

 In order to successively discuss uniqueness of the 

optimality system we notice that the adjoint system is also 

linear in 𝜆𝑖  for 𝑖 = 1,2,3,4,5,6 with bounded coefficients. 

Thus, there exists a 𝑀 > 0 such that |𝜆𝑖(𝑡)| < 𝑀 for 𝑖 =

1,2,3,4,5,6 on [0, 𝑇]. 

Theorem 8. [?] For 𝑇  sufficiently small the 

solution to the optimality system is unique.  

 

6.  NUMERICAL SIMULATION 

6.1. Numerical Simulation of the autonomous 

system 

 In this subsection, numerical simulation study of 

the autonomous system 1 are carried out using the software 

MATLAB R2015b with ODE45 solver. To conduct the study, 

a set of physically meaningful values are assigned to the 

model parameters. These values are either taken from 

literature or assumed on the basis of reality. Using the 

parameter values given in Table 3 and the initial conditions 

𝑃(0) = 100,𝑆(0) = 80, 𝐸(0) = 50, 𝐴(0) = 25, 𝐼(0) = 15 

and 𝐷(0) = 30  a simulation study is conducted and the 

results are given in the following Figures.  

 

Table 3: Parameter values  

 Parameter  Value  Source 

𝜽  0.007  Assumed  

𝚷  0.004  [19]  

𝜷  0.067   Assumed  

𝝁  0.054  [19]  

𝜸  0.015  Assumed  

𝜶  0.16  [19]  

𝜼  0.012  Assumed  

𝒑  0.06  Assumed  

𝝃  0.0001  [19]  

𝝓  0.04  [19]  

𝝋  0.03  Assumed  

𝒒  0.01  Assumed  

  

 Figure 2 shows that the protected individuals 

decreases due to more number of protected join susceptible 

class and converges to disease free equilibrium. Similarly 

susceptible individual decreases due to more number of 

infectious individuals. Figure 3 illustrate that the Exposed 

individuals decreases due to more number of exposed join 

asymptomatic and symptomatic class and converges to 

disease free equilibrium. However, in this figure 

asymptomatic individual increases firstly as the consequence 

of some number of exposed individuals joined the 

asymptomatic class but decline because of some 

asymptomatic individuals joined symptomatic class after 

developing the symptom of the disease and others join AIDS 

class. Similarly, in Figure 4 individuals with AIDS increases 

firstly as the consequence of some number of asymptomatic 

individuals and symptomatic individuals joined the AIDS 

class but decline because of natural death and disease 

death(induced death). Moreover, Figure 5 shows that the 

number of all infectious increases in the beginning as a result 

of infectious from susceptible enters it and decreases due to 

death rate. Also, Figure 6 and Figure 7 indicating that contact 

rate has an effect on reducing the disease from community. 

An increases in level of contact rate among individuals has an 

effect on reducing the prevalence of infectious and AIDS the 

disease.
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Figure 2: Dynamics of Protected individuals and Susceptible Individuals 

  

 
Figure 3: Dynamics of Exposed individuals and Asymptomatic Individuals 

    

 ,  

Figure 4: Dynamics of Symptomatic individuals and AIDS Individuals 
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Figure 5: Dynamics of total population 

 
Figure 6: Effect of increasing contact rate on Exposed and Asymptomatic Individuals 

    

  
Figure  7: Effect of increasing contact rate on Symptomatic and AIDS Individuals 

    

6.2. Numerical Simulation of the optimality 

system 

 In this section, the result obtained by numerically 

solving the optimality system was presented. In our control 

problem, we have initial conditions for the state variables and 

terminal conditions for the adjoints. That is, the optimality 

system is a two-point boundary value problem with separated 

boundary conditions at times step 𝑖 = 0  and 𝑖 = 𝑇 . The 

simulations are consistent for all the scenarios under 

consideration,varying only in the margins of growth and 

reduction. We, consequently, only present and discuss results 

for the most effective combination. In Figure 8,9 and 10, the 

number of individuals are lower under control as contrasted 

to without control. In fact, the number individuals reduces 

under control while there is increase in time without control.  
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,

 
Figure 8: Simulations of Susceptible individuals and Exposed individuals with control strategy 

, 

Figure 9: Simulations of Asymptomatic individuals with control strategy 
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Figure 10: Simulations of AIDS individuals with control strategy 

    

7. CONCLUSION 

In this paper, a non linear deterministic model of HIV/AIDS 

was formulated and analyzed. The well possedness of the 

modified model are performed. The study also obtained the 

basic reproduction number that governs the disease 

transmission from the largest eigenvalue of the next-

generation matrix. The equilibria points of the model are 

obtained and their local as well as global stability condition 

was established. The model exhibits a backward bifurcation 

and the sensitivity analysis was performed. The optimal 

control problem is designed by incorporating continuous 

controls: prevention, reduction, screening and treatment. The 

results from the optimal control problem suggest that the 

disease may be reduces by implementing controls. Control 

policies implementing either of the strategies presented in this 

paper could reduce the number of infection in a community. 

It could be concluded that the qualitative analysis targeted to 

the autonomous system and the optimal control approach 

together provide a complete picture of the possible outcomes 

of the system behavior. 
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