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Up to now, many things were said about differential equations without time delay, the so called 

ordinary differential equations or partial differential equations, and their solutions. The fixed point 

theorems have been used to show the existence and uniqueness of solution of initial value problem of 

these equations. Since time delay occurs naturally in just about every interaction of the real world, 

here in this paper we see some differential equations with time delay, the so called functional 

differential equations or delay differential equations.  In general, we used Banach-Cacciopoli 

Theorem and Schauder’s fixed point theorem to show the existence and uniqueness of solution of a 

neutral functional differential equation. 
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1. INTRODUCTION 

In several applications, one assumes the system under 

consideration is governed by a principle of causality. That is, 

the future state of the system is independent of the past states 

and is determined solely by the present. If it is also assumed 

that the system is governed by an equation involving the state 

and rate of change of the state, then one is considering either 

ordinary or partial differential equations. However, under 

closer analysis it becomes evident that the principle of 

causality is often only a first approximation to the true 

situation and a more realistic model would include some of 

the past states of the system. Furthermore, in some problems 

it is meaningless not to have dependence on the past. This has 

been recognized for some time, but the theory for such 

systems has been extensively developed only recently. In 

reality until the time of Volterra [1] most of the outcome 

obtained during the previous 200 years were concerned with 

special properties for very special equations. There were 

some very interesting developments concerning the closure 

of the set of exponential solutions of linear equations and the 

expansion of solutions in terms of these special solutions. On 

the other hand, there seemed to be little concern about a 

qualitative theory in the same spirit as for ordinary 

differential equations. 

A functional differential equation is a differential equation 

with deviating argument. That is, a functional differential 

equation is an equation that contains some function and some 

of its derivatives to different argument values [2]. Functional 

differential equations find use in mathematical models that 

assume a specified behavior or phenomenon depends on the 

present as well as the past state of a system [3]. Functional 

differential equations of retarded type depend on the past and 

present values of the function with delays.  Also, functional 

differential equations of neutral type depend on past and 

present values of the function, similarly to retarded 

differential equations, except it also depends on derivatives 

with delays. In other words, retarded differential equations do 

not involve the given function's derivative with delays while 

neutral differential equations do [4]. This implies that, past 

events explicitly influence future results. For this reason, 

functional differential equations are used to in many 

applications rather than ordinary differential equations 

(ODE), in which future behavior only implicitly depends on 

the past.  

In many years there have been a lot of papers written on the 

various aspects for the theory of neutral functional 

differential equations (NFDE). The existence problem for 

neutral functional differential equations was considered by 

Wright [5] and Bellman & Cooke [6] in the case of constant 

delays. While, El’sgol’ts [7], Kamenskii [8, 9] and Driver 

[10] studied in the case of variable delays. Meng Fan and Ke 

Wang [11] also considered the existence of periodic solutions 

https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Ordinary_differential_equation
https://en.wikipedia.org/wiki/Ordinary_differential_equation
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of neutral functional differential equations. The results 

showed that for convex neutral functional differential 

equations of D-operator type with finite (or infinite) delay and 

hyper neutral functional differential equations with finite 

delay, there is a periodic solution if and only if there is a 

bounded solution. This result was proved by Massera, Chow 

and Makay are generalized. 

Moreover, Lianglong Wang, Zhicheng Wang and Xingfu Zou 

[12] Periodic neutral functional differential equations are 

considered. In this study, sufficient conditions for existence, 

uniqueness and global attractivity of periodic solutions are 

established by combining the theory of monotone semiflows 

generated by neutral functional differential equations and 

Krasnosel’skii’s fixed point theorem. This result is applied to 

a concrete neutral functional differential equation that can 

model single-species growth, the spread of epidemics, and the 

dynamics of capital stocks in a periodic environment. 

In addition to this, the existence and regularity of mild 

solutions for a class of abstract neutral functional differential 

equations with infinite delay was studied by Xianlong Fu 

[13]. This study used fraction power theory and α- norm to 

discuss the problem so that the obtained results can be applied 

to equations with terms involving spatial derivatives. A 

stability result for the autonomous case is also established. 

Results further concluded with an example that illustrates the 

applications of the results obtained. However, most of recent 

study as in Feng Jiang and Yi Shen [14] studied the existence 

and uniqueness of mild solutions to neutral stochastic partial 

functional differential equations under some Carathéodory-

type conditions on the coefficients by means of the successive 

approximation. In particular, they generalized and improved 

the results that appeared in Govindan and Bao &Hou.  

To our knowledge, most existing results on the existence of 

periodic solutions of functional differential equations are for 

the retarded type, and these existence results are usually 

obtained by the technique of bifurcation, fixed point theorems 

or by degree theory. In general, it is more difficult to study 

the uniqueness and uniqueness of the solutions neutral 

functional differential equations. This is, therefore we are 

motivated to undertake this study for fulfilling this entire gap. 

 

2. PRELIMINARY 

In this section we discussed some basic definition and 

theorems which is useful to show the existence and 

uniqueness of neutral functional differential equations 

(NFDE). Fixed point theorems can be considered in metric 

spaces where distance is used. Here we will use it in Banach 

spaces where norm is used since it is applied to many areas 

of current interest in analysis. 

Definition 2.1:  Let   Χ  be a non empty set and 𝑑: Χ × Χ ⟶

ℝ+̅̅ ̅̅  a function. Then 𝑑 is called metric on   Χ if the following 

properties hold. 

i. 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦 for some 𝑥, 𝑦 ∈ Χ; 

ii. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ Χ; 

iii. 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ Χ. 

The value of metric 𝑑 at (𝑥, 𝑦) is distance between 𝑥 and 𝑦 

and the ordered pair (Χ, 𝑑) is called metric space. 

Definition 2.2: A norm on a linear space Χ is a functional 

whose value at 𝑥 is denoted by ‖𝑥‖ with the following 

properties. 

1. ‖𝑥1 + 𝑥2‖ ≤ ‖𝑥1‖ + ‖𝑥2‖, for all 𝑥1, 𝑥2 ∈ Χ; 

2. ‖𝛼𝑥‖ = |𝛼|‖𝑥‖ , for all 𝑥 ∈ Χ and scalar 𝛼; 

3. ‖𝑥‖ ≥ 0 and ‖𝑥‖ = 0 if 𝑥 = 0, for all 𝑥 ∈ Χ. 

(Χ, ‖. ‖) is called normed linear space. Then every normed 

space (Χ, ‖. ‖)  is a metric space (Χ, 𝑑) with induced 

metric 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖. 

Definition 2.3: A sequence {𝑥𝑛} is said to be a Cauchy 

sequence if for each 𝜀 > 0 there exists a positive integer 𝑁 

such that |𝑥𝑛 − 𝑥𝑚| < 𝜀 for all 𝑛 ≥ 𝑚 ≥ 𝑁. 

Definition 2.4: A normed linear space Χ is complete if every 

Cauchy sequence in Χ  converges in  Χ. 

Definition 2.5: A complete normed linear space is called 

Banach space. 

Definition 2.6: A subset 𝐴 of a normed linear space 𝐵 is said 

to be compact if and only if every sequence {𝑥𝑛} in 𝐴 has a 

convergent subsequence with limit in  𝐴. 

Definition 2.7: Let {𝑓𝑚} be a sequence of real valued 

functions in a subset 𝐷 of  ℝ𝑛. Let  𝑥 ∈ 𝐷. The sequence is 

equi-continuous at 𝑥 if for all  𝜀 > 0 there exists  𝛿 > 0, 

independent of 𝑚 such that |𝑓𝑚(𝑦) − 𝑓𝑚(𝑥)| < 𝜀 for all  𝑦 ∈

𝐷 with  |𝑦 − 𝑥| < 𝛿. 

Definition 2.8: Let 𝑈 ⊆  ℝ𝑛  be open. A function 𝑓: 𝑈 ⟶ ℝ 

is said to be 

i. Uniformly Lipschitz continuous if and only if 

there exists 𝐿 ∈ ℝ such that ‖𝑓(𝑥) − 𝑓(𝑦)‖ ≤

𝐿‖𝑥 − 𝑦‖, for all 𝑥, 𝑦 ∈ 𝑈. Here 𝐿 is called 

Lipschitz constant. 

ii. Lipschitz continuous if and only if for all 𝑥 ∈

𝑈 there exists a neighborhood 𝑉 of 𝑥 such that 

the restriction of 𝑓 to 𝑈 ∩ 𝑉, 𝑓/(𝑈∩𝑉) is 

uniformly Lipschitz continuous. 

Definition 2.9: Let 𝑆 and 𝐵 be Banach spaces. A 

transformation 𝑇: 𝑉 ⊆ 𝑆 ⟶ 𝐵 such that ‖𝑇𝑥 − 𝑇𝑦‖ ≤ 𝐿‖𝑥 −

𝑦‖ for some 𝐿 ∈  ℝ+ is said to be: 

a) A contraction map on 𝑉 if 0 < 1 < 1; 

b) Non expansive map on 𝑉 if 𝐿 = 1. 

Definition 2.10: A point 𝑥 ∈ 𝑈 is said to be a fixed point of 

a transformation 𝑇: 𝑈 ⟶ 𝑈 if  

𝑇𝑥 = 𝑥. 

Definition 2.11: Let 𝐷 is a subset of a Banach space 𝑋 and 

𝑇: 𝐷 ⟶ 𝑋 be a map. Given  𝜀 > 0, a point   𝑥 ∈ 𝐷 with  

‖𝑥 − 𝑇𝑥‖ < 𝜀 is called an 𝜀 −fixed point.  

Remark 2.1: A convergent sequence is bounded. A Cauchy 

sequence is convergent and hence it is bounded. So it has a 

bounded subsequence. 

Theorem 2.1 (Arzera-Ascole Theorem): Every bounded 

and equi-continuous sequence {𝑓𝑚} of real valued functions 

on a compact subset 𝑆 of  ℝ𝑛 has a subsequence which 

converges uniformly on  𝑆.   
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Theorem 2.2 (Darbo’s Theorem): If 𝑈(𝜎, 𝑡) is 

asymptotically smooth, point dissipative and positive orbits 

of bounded sets are bounded, then there exists a connected 

global attractor. Finally there is an 𝜔 −periodic trajectory. 

Theorem 2.3 (Gronwall’s Inequality): If   𝑛(𝑡) and 𝛼(𝑡) are 

real valued continuous functions on [𝑎, 𝑏], 𝛼(𝑡) is 

nondecreasing and   𝛽(𝑡) ≥ 0  is integrable on [𝑎, 𝑏] with 

𝑢(𝑡) ≤ 𝛼(𝑡) + ∫ 𝛽(𝑠)𝑢(𝑠)𝑑𝑠
𝑡

𝑎
,  for  𝑎 ≤ 𝑡 ≤ 𝑏, 

Then  

𝑢(𝑡) ≤ 𝛼(𝑡)𝑒∫ 𝛽(𝑟)𝑑𝑟
𝑡
𝑎 , for  𝑎 ≤ 𝑡 ≤ 𝑏. 

Theorem 2.4 (Banach-Cacciopoli Theorem): Let 𝑇: 𝑉 ⟶

𝑉 is a contraction, where  𝑉 is a closed subset of a Banach 

space 𝑋, then 𝑇 has a unique fixed point in 𝑉. 

Theorem 2.5: Let 𝐷 be a closed subset of a normed linear 

space 𝑋 and  𝐹: 𝐷 ⟶ 𝑋 is a compact continuous map. Then  

𝐹 has a fixed point if and only if it has an 𝜀 −fixed point.  

Theorem 2.6 (Schauder’s Fixed Point Theorem): Let  𝐶 be 

a closed, convex subset of a normed linear space 𝑋. Then 

every compact continuous map 𝐹: 𝐶 ⟶ 𝐶 has at least one 

fixed point. 

 

3. EXISTENCE AND UNIQUENESS OF SOLUTION 

A functional equation is an equation involving an unknown 

function for different argument values. A functional 

differential equation is an equation that involves a functional 

equation together with derivatives. So combining the notions 

of differential and functional equation we obtain the notion of 

functional differential equation (FDE). 

In general, when a situation (model) does not depend on its 

past history, it consists of the so called ordinary differential 

equation (ODE) or partial differential equation (PDE).These 

equation admit the principle of causality which says that,”The 

future state of the system is independent of the past and solely 

determined by the present”. Models incorporating past 

history include functional differential equation (FDE) or 

delay differential equation (DDE). 

When the past dependence is through the state variable and 

the derivatives of the state variables we call it neutral 

functional differential equation (NFDE). Therefore neutral 

functional differential equation is a dynamical system where 

the rate of change 𝑥̇(𝑡) of the state 𝑥(. ) at time 𝑡 depends not 

only on the present value  𝑥(𝑡), but also on past values 𝑥(. ) 

where there is a derivative of the state variable 𝑥 as an 

argument value. 

3.1. Axioms for the phase space 

Let 𝐵̂ be a linear real vector space of function mapping 

(−∞, 0] into ℝ𝑛 with elements denoted by 𝜑̂, 𝜓̂, …, where 

𝜑̂ =  𝜓̂ means 𝜑̂(𝑡) =  𝜓̂(𝑡) for  𝑡 ≤ 0. Assume that a 

seminorm |. |𝐵̂ is given in 𝐵̂ so that 𝐵 =
𝐵̂

|.|
 is a Banach space 

with the induced norm |𝜑|𝐵 = |𝜑̂|𝐵̂ for 𝜑 ∈ 𝐵, 𝜑̂ ∈ 𝐵̂ if 𝜑̂ ∈

𝜑. 

For 𝑥̂: (−∞, 𝜎) ⟶ ℝ𝑛, 𝑡 ∈ (−∞, 𝜎), we define 

𝑥̂𝑡: (−∞, 𝜎] ⟶ ℝ𝑛 by 𝑥̂𝑡(𝑠) = 𝑥̂(𝑡 + 𝑠) for  𝑠 ≤ 0. For 𝛼 ≥

0, 𝑡0 ∈ ℝ and 𝜑̂ ∈ 𝐵̂, let ℱ𝛼,𝑡0(𝜑̂) be the set of all functions 

𝑥̂: (−∞, 𝑡0 + 𝛼] ⟶ ℝ𝑛 with 𝑥̂𝑡0 = 𝜑̂ and 𝑥̂ being continuous 

on [𝑡0, 𝑡0 + 𝛼] (on [𝑡0, ∞) in case 𝛼 = ∞). Furthermore we 

put ℱ𝛼,𝑡0 = 𝑈𝜑̂∈𝐵̂ℱ𝛼,𝑡0(𝜑̂). In case 𝑡0 = 0 we simply write 

ℱ𝛼(𝜑̂) and  ℱ𝛼. Thus we have the following axioms for the 

phase space is 

(A1) 𝑥̂𝑡 ∈ 𝐵̂ for 𝑥̂𝑡 ∈ ℱ𝛼 and 𝑡 ∈ [0, 𝛼].  

For 𝛽 ≥ 0 and 𝜑̂ ∈ 𝐵̂, let 𝜑̂𝛽 denoted the restriction of 𝜑̂ to 

(−∞,−𝛽). For 𝜑 ∈ 𝐵, define 

|𝜑|𝛽 = 𝑖𝑛𝑓 {|𝜓̂|
𝐵̂
} ;  𝜓̂ ∈ 𝐵̂ and  𝜓̂𝛽 = 𝜑̂𝛽 for some 𝜑̂ ∈ 𝜑. 

𝐵𝛽 = 𝐵|.|𝛽 is the space of all equivalent classes {𝜑}𝛽 =

{𝜓 ∈ 𝐵 ∶  |𝜑 − 𝜓|𝛽 = 0} for 𝜑 ∈ 𝐵 with respect to the 

seminorm |. |𝛽. In 𝐵𝛽, we define the norm |. |𝛽 naturally 

induced by the seminorm |. |𝛽.  

For 𝛽 ≥ 0 and 𝜑̂ ∈ 𝐵̂, define 

(𝑆̂𝛽𝜑̂)(𝜃) = {
𝜑̂(𝛽 + 𝜃), 𝜃 ∈ (−∞,−𝛽),

𝜑̂(0),             𝜃 ∈ [−𝛽, 0].
 

(A2) If  |𝜑̂ − 𝜓̂|
𝛽̂
= 0, then  |𝑆̂𝛽𝜑̂ − 𝑆̂𝛽𝜓̂|𝛽̂

= 0. 

This axiom justifies the definition of    𝑆𝛽 given by    𝑆𝛽𝜑 =

𝜓 if 𝑆̂𝛽𝜑̂ ∈ 𝜓 for 𝜑̂ ∈ 𝜑 and if    𝜑 = 𝜓 in  𝐵, then 

  |𝑆𝛽𝜑 − 𝑆𝛽𝜓|𝛽
= 0 for   𝛽 ≥ 0. 

(A3) there exists a positive constant  𝐾 such that for any 𝜑 ∈

𝐵,   |𝜑(0)| ≤ 𝐾|𝜑|𝐵. 

(A4) there exist a continuous function 𝐾1(𝑠) and 𝑑 locally 

bounded function 𝑀1(𝑠) such that 

i. |𝜏𝛽𝜑|
𝛽
≤ 𝑀1(𝛽)|𝜑|𝐵 for 𝛽 ≥ 0, 𝜑 ∈ 𝐵, 

ii. If 𝑥 ∈ ℱ𝛼,𝑡0, then for 𝑡 ∈ [𝑡0, 𝑡0 + 𝛼], we have 

|𝑥𝑡|𝐵 ≤ 𝐾1(𝑡 − 𝑡0) sup
𝑡0≤𝑠≤𝑡

|𝑥(𝑠)| + 𝑀1(𝑡 −

𝑡0)|𝑥𝑡0|𝐵. 

(A5) if 𝑥 ∈ ℱ𝛼 , 𝛼 > 0, then 𝑥𝑡 is continuous in 𝑡 ∈ [0, 𝛼]. 

Definition 3.1: Suppose that Ω is an open set in ℝ ×

𝐵,   𝐺: Ω ⟶ ℝ𝑛  is continuous, 𝐺(𝑡, 𝜑) has a continuous 

Fr𝑒̇chet derivative 𝐺𝜑(𝑡, 𝜑) with respect to 𝜑 on Ω and  

𝐺𝜑(𝑡, 𝜑)𝜓 = 𝐴(𝑡, 𝜑)𝜓(0) + 𝐿(𝑡, 𝜑, 𝜓), for  (𝑡, 𝜑) ∈ Ω, 𝜓 ∈

B.                              (3.1)                                             

If 𝐴(𝑡, 𝜑) is an 𝑛 × 𝑛 matrix such that 𝑑𝑒𝑡 𝐴(𝑡, 𝜑) ≠ 0 and 

𝐴(𝑡, 𝜑), 𝐴−1(𝑡, 𝜑) are continuous, and if 𝐿(𝑡, 𝜑, 𝜓) is linear 

with respect to 𝜓 and satisfies: 

(H1) there are an 𝛼0 > 0 and a continuous map 

𝑟(𝑡, 𝜑, 𝛼): Ω × [0, 𝛼0] ⟶ ℝ+, 𝑟(𝑡, 𝜑, 0) = 0 , such that for 

𝜓 ∈ 𝐵 satisfying |𝜓|𝛼 = 0, 

                                𝐿(𝑡, 𝜑, 𝜓) < 𝑟(𝑡, 𝜑, 𝛼)|𝜓|𝐵                                                                        

(3.2) 

Then we say 𝐺 is generalized atomic at zero on Ω. 

Definition 3.2: Suppose Ω ⊆ ℝ × 𝐵 is open, 𝑓: Ω ⟶

ℝ𝑛, 𝐺: Ω ⟶ ℝ𝑛 are given continuous functions with 𝐺 

atomic at zero. Then we say; 

                                 
𝑑

 𝑑𝑡
𝐺(𝑡, 𝑥𝑡) = 𝑓(𝑡, 𝑥𝑡)                                                                                

(3.3) 



“Existence and Uniqueness of Solution of a Neutral Functional Differential Equation” 

2274 Tagay Takele Fikadu1, IJMCR Volume 09 Issue 04 April 2021 

 

is a neutral functional differential equation with infinity delay 

(NFDE). The function 𝐺 will be called the difference operator 

for the NFDE. 

By a solution of equation (3.3) we mean an 𝑥 ∈ ℱ𝐴,𝜎 for some 

𝐴 > 0 and −∞ < 𝜎 < ∞ such that 

i. (𝑡, 𝑥𝑡) ∈ Ω for 𝑡 ∈ [𝜎, 𝜎 + 𝐴], 

ii. 𝐺(𝑡, 𝑥𝑡) is continuously differentiable and 

satisfies (3.3) on [𝜎, 𝜎 + 𝐴]. 

If, in addition, 𝑥𝜎 = 𝜑, then we say 𝑥 is a solution of (3.3) 

through (𝜎, 𝜑) and we denote it  by 𝑥(𝑡, 𝜎, 𝜑).

 

Theorem 3.1 (Existence of solution): Suppose Ω is an open set of ℝ × 𝐵. Then for any (𝜎, 𝜑) ∈ Ω there exist a solution of NFDE 

(𝐺, 𝑓, Ω) through  (𝜎, 𝜑). 

Proof: For 𝛼 > 0, 𝛽 > 0,  define  

𝐴(𝛼, 𝛽) = {𝑧 ∈ 𝐶((−∞, 𝛼],ℝ𝑛 ): 𝑧(𝑠) = 0, 𝑠 ≤ 0, |𝑧(𝑡)| ≤ 𝛽, 𝑡 ∈ [0, 𝛼]}. 

Obviously,  𝐴(𝛼, 𝛽) is a bounded, closed, convex subset of 𝐵𝐶((−∞,𝛼], ℝ𝑛 ) (the space of bounded and continuous functions with 

the supnorm  ‖. ‖). 

We define two operators on  𝐴(𝛼, 𝛽): 

𝑆: {
𝑆𝑧(𝑡) = 0,   − ∞ < 𝑡 ≤ 0,                                                                                                                                (3.4)

𝐴(𝜎 + 𝑡, 𝜑̂𝑡)(𝑆𝑧)(𝑡) = −𝐿(𝜎 + 𝑡, 𝜑̂𝑡 , 𝑧𝑡) − 𝑔(𝜎 + 𝑡, 𝜑̂𝑡 , 𝑧𝑡) + 𝐺(𝜎, 𝜑) − 𝐺(𝜎 + 𝑡, 𝜑̂𝑡),    0 ≤ 𝑡 ≤ 𝛼
 

𝑈:

{
 

 
𝑈𝑧(𝑡) = 0,   − ∞ < 𝑡 ≤ 0,                                                                                                                                

𝐴(𝜎 + 𝑡, 𝜑̂𝑡)(𝑈𝑧)(𝑡) = ∫𝑓

𝑡

0

(𝜎 + 𝑠, 𝜑̂𝑠 + 𝑧𝑠)𝑑𝑠,   0 ≤ 𝑡 ≤ 𝛼                                                                  
(3.5) 

Under equation (3.1), where 𝜑̂ ∈ ℱ𝛼(𝜑) with 𝜑̂(𝑡) = 𝜑(0) for   𝑡 > 0, and  

                                      𝑔(𝜎, 𝜑, 𝜓) = 𝐺(𝜎, 𝜑 + 𝜓) − 𝐺(𝜎, 𝜓) − 𝐺𝜑(𝜎, 𝜑)𝜓                          (3.6) 

(i) By equation (2.2) and the continuity of 𝑓, 𝐺, 𝐺𝜑, there are 𝛽0 > 0 and a positive function 𝛼1(𝛽) defined for 0 < 𝛽 <

𝛽0 such that for 0 < 𝛽 < 𝛽0 and 0 < 𝛼 < 𝛼1(𝛽),   𝑆 + 𝑈 maps 𝐴(𝛼, 𝛽) into itself. 

(ii) 𝑆 is a contraction on 𝐴(𝛼, 𝛽) for suitable 𝛼, 𝛽. 

By the continuity of 𝐺𝜑, for any 𝜀 > 0, there are 𝛽(𝜀) ∈ (0, 𝛽0), 𝛼(𝜀) ∈ (0, 𝛼1(𝛽(𝜀))) such that for 𝑦, 𝑧 ∈ 𝐴(𝛼(𝜀), 𝛽(𝜀)), 𝑡 ∈

[0, 𝛼(𝜀)], 

|𝑔(𝜎 + 𝑡, 𝜑̂𝑡 , 𝑧𝑡) − 𝑔(𝜎 + 𝑡, 𝜑̂𝑡 , 𝑦𝑡)| ≤ 𝜀|𝑧𝑡 − 𝑦𝑡|𝐵 

Therefore, for  0 < 𝛽 < 𝛽(𝜀), 0 < 𝛼 < 𝛼(𝜀),   we have 

‖𝑆𝑧 − 𝑆𝑦‖ ≤ sup
0≤𝑡≤𝛼

{|𝐴−1(𝜎 + 𝑡, 𝜑̂𝑡)|[|𝐿(𝜎 + 𝑡, 𝜑̂𝑡 , 𝑦𝑡 − 𝑧𝑡)| + |𝑔(𝜎 + 𝑡, 𝜑̂𝑡 , 𝑧𝑡) − 𝑔(𝜎 + 𝑡, 𝜑̂𝑡 , 𝑧𝑡)|]} 

≤ sup
0≤𝑡≤𝛼

|𝐴−1(𝜎 + 𝑡, 𝜑̂𝑡)|[𝑟(𝜎 + 𝑡, 𝜑̂𝑡 , 𝑡) + 𝜀] |𝑧𝑡 − 𝑦𝑡|𝐵 

≤ sup
0≤𝑡≤𝛼

|𝐴−1(𝜎 + 𝑡, 𝜑̂𝑡)|𝐾1(𝑡)[𝑟(𝜎 + 𝑡, 𝜑̂𝑡 , 𝑡) + 𝜀] ‖𝑧 − 𝑦‖ 

Therefore, for a constant 𝑘 ∈ (0,1), there are 0 < 𝛽2 < 𝛽0  and a function 𝛼2(𝛽)defined on [0, 𝛽2], 𝛼2(𝛽) < 𝛼1(𝛽) such that for 

0 < 𝛽 < 𝛽2, 0 < 𝛼 < 𝛼2(𝛽), 𝑧, 𝑦 ∈ 𝐴(𝛼, 𝛽),  we have 

‖𝑆𝑧 − 𝑆𝑦‖ ≤ 𝑘‖𝑧 − 𝑦‖ 

iii.  𝑈 is completely continuous on  𝐴(𝛼, 𝛽) for 0 < 𝛽 < 𝛽2, 0 < 𝛼 < 𝛼2(𝛽). 

For any  𝐵 ⊆   𝐴(𝛼, 𝛽), 𝑧 ∈ 𝐵, 0 ≤ 𝑡, 𝜏 ≤ 𝛼,  

|𝑈𝑧(𝑡) − 𝑈𝑧(𝜏)| ≤ |𝐴−1(𝜎 + 𝑡, 𝜑̂𝑡)∫𝑓

𝑡

0

(𝜎 + 𝑠, 𝜑̂𝑠 + 𝑧𝑠)𝑑𝑠 − 𝐴
−1(𝜎 + 𝑡, 𝜑̂𝑡)∫𝑓

𝜏

0

(𝜎 + 𝑠, 𝜑̂𝑠 + 𝑧𝑠)𝑑𝑠| 

≤ |𝐴−1(𝜎 + 𝑡, 𝜑̂𝑡)∫𝑓

𝑡

𝜏

(𝜎 + 𝑠, 𝜑̂𝑠 + 𝑧𝑠)𝑑𝑠| + |𝐴
−1(𝜎 + 𝑡, 𝜑̂𝑡) − 𝐴

−1(𝜎 + 𝑡, 𝜑̂𝑡)| × |∫𝑓

𝜏

0

(𝜎 + 𝑠, 𝜑̂𝑠 + 𝑧𝑠)𝑑𝑠| 

≤ 𝑁|𝑡 − 𝜏| + 𝑁|𝐴−1(𝜎 + 𝑡, 𝜑̂𝑡) − 𝐴
−1(𝜎 + 𝑡, 𝜑̂𝑡)| 

Where 𝑁 is a positive constant (by the continuity of  𝐴−1  and  𝑓−1 ,  for sufficiently small 𝛼, 𝛽, we can find such an 𝑁). So, 𝑈𝐵  is 

uniformly bounded and equicontinuous, and hence 𝑈𝐵 is precompact by Ascoli’s theorem. This implies 𝑈 is completely continuous 

on  𝐴(𝛼, 𝛽). 

Obviously, by (ii), (iii), 𝑆 + 𝑈 is an 𝛼-contraction on  𝐴(𝛼, 𝛽). By Darbo’s theorem 2.2, 𝑆 + 𝑈 has a fixed point. Since; 

𝐴(𝜎 + 𝑡, 𝜑̂𝑡)(𝑆𝑧 + 𝑈𝑧)(𝑡) = ∫𝑓

𝑡

0

(𝜎 + 𝑠, 𝜑̂𝑠 + 𝑧𝑠)𝑑𝑠 + 𝐺(𝜎, 𝜑) + 𝐺(𝜎 + 𝑡, 𝜑̂𝑡 + 𝑧𝑡) + 𝐴(𝜎 + 𝑡, 𝜑̂𝑡)𝑍(𝑡) 

 The integral equation  
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{
𝐺(𝜎 + 𝑡, 𝜑̂𝑡 + 𝑧𝑡) − 𝐺(𝜎, 𝜑) = ∫𝑓

𝑡

0

(𝜎 + 𝑠, 𝜑̂𝑠 + 𝑧𝑠)𝑑𝑠

𝑧0 = 0                                                                                      

 

Has a continuous solution. This implies there exist a solution of (3.3) through (𝜎, 𝜑). 

Theorem 3.2 (Uniqueness of solution): If there is a constant 𝐿 > 0 such that |𝑓(𝑡, 𝜑) − 𝑓(𝑡, 𝜓)| ≤ 𝐿|𝜑 − 𝜓|𝐵 for (𝑡, 𝜑), (𝑡, 𝜓) ∈

Ω, then for any (𝜎, 𝜑) ∈ Ω, there is a unique solution of (3.3) through (𝜎, 𝜑). 

Proof: It is sufficient to prove 𝑆 + 𝑈 has a unique fixed point in 𝐴(𝜎, 𝛽). Suppose there are 𝑧1, 𝑧2 ∈ 𝐴(𝛼, 𝛽) such that  𝑧𝑖 =

(𝑆 + 𝑈)𝑧𝑖(𝑖 = 1,2). Then by (ii), we have  

sup
0≤𝑠≤𝑡

|𝑆𝑧1(𝑠) − 𝑆𝑍2(𝑠)| ≤ 𝑘 sup
0≤𝑠≤𝑡

|𝑧1(𝑠) − 𝑧2(𝑠)| 

And  

|𝑈𝑧1(𝑡) − 𝑈𝑧2(𝑡)| ≤ |𝐴
−1(𝜎 + 𝑡, 𝜑̂𝑡)| |∫[𝑓

𝑡

0

(𝜎 + 𝑠, 𝜑̂𝑠 + 𝑧1𝑠) − 𝑓(𝜎 + 𝑠, 𝜑̂𝑠 + 𝑧2𝑠)𝑑𝑠| 

≤ |𝐴−1(𝜎 + 𝑡, 𝜑̂𝑡)|𝐿 ∫|𝑧1𝑠 − 𝑧2𝑠|𝐵𝑑𝑠

𝑡

0

 

≤ |𝐴−1(𝜎 + 𝑡, 𝜑̂𝑡)|𝐿 ∫𝐾1(𝑠) sup
0≤𝜃≤𝑠

|𝑧1(𝜃) − 𝑧2(𝜃)|𝑑𝑠

𝑡

0

 

≤ 𝐿𝐿1∫ sup
0≤𝜃≤𝑠

|𝑧1(𝜃) − 𝑧2(𝜃)|𝑑𝑠

𝑡

0

 

Where,  𝐿1 = sup
0≤𝑡≤𝛼

|𝐴−1(𝜎 + 𝑡, 𝜑̂𝑡)| sup
0≤𝑡≤𝛼

𝐾1(𝑡). 

Putting 𝑚(𝑡) = sup
0≤𝑠≤𝑡

|𝑧1(𝑠) − 𝑧2(𝑠)|, we have 

𝑚(𝑡) ≤ 𝑘𝑚(𝑡) + 𝐿𝐿1∫𝑚(𝑠)

𝑡

0

𝑑𝑠 

And   

𝑚(𝑡) ≤
𝐿𝐿1
1 − 𝑘

∫𝑚(𝑠)

𝑡

0

𝑑𝑠 

By Gronwall’s inequality, 𝑚(𝑡) = 0 for 0 ≤ 𝑡 ≤ 𝛼. 

Therefore, 𝑧1 = 𝑧2. 

Hence, equation (3.3) has a unique solution. 

 

4.  CONCLUSION 

In this study, we discussed the existence and uniqueness of 

solutions of neutral functional differential equations. Some 

preliminary definition and theorem are discussed which are 

used to show the existence and uniqueness solution of neutral 

functional differential equation. The Banach-Cacciopoli 

Theorem and Schauder’s fixed point theorems have been 

used to show the existence and uniqueness of solution of 

initial value problem of neutral functional differential 

equations.  
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