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Residual stress in continuum has not been quantified because time relationship with residues has not 

been proven analytically. This is achieved in this paper by analyzing a two component mixture with 

the non-homogeneous equation of statics in the theory of elastic mixture, and second order differential 

equations with variable coefficients. A dry mixture of sand and cement is transformed into a 

continuum, which is been determined as an entire or a meromorphic function, as a result of the 

existence of residues that are contained in the principal component of the mixture obtained directly 

from the earth. The time relationship with residue, in these two functions are determined. Our result 

shows that time places a limit on residues, making the meromorphic function prone to implosion. 
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1 Introduction 

                The theories of mixtures in the framework of 

continuum mechanics have been developed throughout the 

sixties and seventies, and subsequent development in various 

constitutive theories and continuum analysis are too 

numerous to document [ 1 ]. A mixed problem of elasticity 

was solved in [ 2, 3 ] for a convex polygon and for doubly 

connected domain with a polygonal boundary. Also, linear 

and non-linear static bodies were solved by  [4]. [2,5] 

discussed the entropy flux of transversely isotropic elastic 

bodies of homogeneous type, while [6, 7, 8] gave a solution 

of a non-classical problem of oscillation of two component 

mixtures. A fundamental solution of the system of differential 

equations of stationary oscillation of two-temperature elastic 

mixture theory was provided by [9]. [10] worked on the 

problem of boundary valued equations for force term in a 

non-homogeneous equation of statics in the theory of elastic 

mixture in [10], while [11] gave the biharmonic solution for 

the forcing term in a non-homogeneous equation of statics in 

the theory of elastic mixture. 

               From the available literature, time impact on residue 

in a non-homogeneous equation of statics in the theory of 

elastic mixture has not been solved. In this paper, we analyze 

the time impact on residues in a two component mixture using 

special functions. A dry mixture of sand and cement is 

transformed into a continuum, which is been determined as 

an entire, or a meromorphic functions, due to the existence of 

residues that are domiciled in the principal component of the 

mixture obtained directly from the earth .  This study is 

therefore, aimed at analyzing the time impact on these two 

forms of functions, resulting from a single mixture, using 

second order differential equations with variable coefficient, 

and graphs. 

2   Mathematical Formulation 

 Consider a discrete mixture of  sand( 𝑥1) and cement( 𝑥2 ) 

on a complex plane   𝑧 = 𝑥1 + 𝑖𝑥2 , with the principal 

component of the mixture 𝑥1 ,containing 0 or n number of 

residues. On transformation [ 𝑤 = 𝑓(𝑧) = 𝑢(𝑥1, 𝑥2) +

𝑖𝑣(𝑥1, 𝑥2) ], 𝑥1 𝑎𝑛𝑑 𝑥2   gives either   𝑦 𝑜𝑟 𝑦⋆ ; namely, an 

entire or a meromorphic function. If  𝑥1 and 𝑥2 transformed 

into  𝑦 𝑜𝑟 𝑦⋆  . We are to ascertain the time (t) impact on  

𝑦 𝑎𝑛𝑑 𝑦⋆, in order to determine the effect of residues (n) on 

the transformation( w). As shown in Figures 1, 2
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                             Z = x1 + i x2                                   w = f (z) = u (x1, x2) + iv (x1, x2) 

     Figure 1: Discrete state of the mixture.                             Figure 2:  Transformed continuous state of the mixture. 

 

3. SOLUTION METHOD 

Using the equation as formulated by  [12].  

a∆𝑢 + 𝑐∆𝑢 + 𝑏 𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝑢 + 𝑑 𝑔𝑟𝑎𝑑 𝑑𝑖𝑣 𝑢 = 𝑤                              (1) 

where ∆ is two-dimensional Laplacian, grad. and div. are principal operators of field theory, u is displacement vector and a, b, c, 

and d are combination of constitutive constants characterizing the physical properties of the mixture, while w is the transformed 

state of the mixture; defined as, 𝑤 = 𝑢 + 𝑖𝑣  [12 ]. 

3.1 Theory of Complex Variable 

Solving  equation (1), using complex variable as follows: 

𝑧 =  𝑥1 +  𝑖𝑥2                                             (2) 

And 

𝑧̅  =  𝑥1  − 𝑖𝑥2                                          (3) 

Adding equation (2) and (3) 

2𝑥1  = 𝑧 +  𝑧 ̅                                         (4) 

Introducing partial differential operator to equation (4)  [18] 

2
𝜕

𝜕𝑥1
 =  

𝜕

𝜕𝑧
  +  

𝜕

𝜕�̅�
                                   (5) 

subtracting equation (3) from (2) 

2𝑖𝑥2  = 𝑧 −  𝑧̅                                         (6) 

expressing equation (6) in partial differential equation 

2𝑖
𝜕

𝜕𝑥2

 =  
𝜕

𝜕𝑧
 −  

𝜕

𝜕𝑧̅
                                   (7) 

adding equation (5) and (7), we have 

2
𝜕

𝜕𝑥1

 +  2𝑖
𝜕

𝜕𝑥2

=  
𝜕

𝜕𝑧
+ 

𝜕

𝜕𝑧̅
+  

𝜕

𝜕𝑧
−  

𝜕

𝜕𝑧̅
 

2 (
𝜕

𝜕𝑥1

+  𝑖
𝜕

𝜕𝑥2

) = 2
𝜕

𝜕𝑧
                         (8) 

subtracting equation (5) from (7); that is, 

2
𝜕

𝜕𝑥1

+  2𝑖
𝜕

𝜕𝑥2

=  
𝜕

𝜕𝑧
+  

𝜕

𝜕𝑧̅
 −  

𝜕

𝜕𝑧
+  

𝜕

𝜕𝑧̅
 

2 (
𝜕

𝜕𝑥1
−  𝑖

𝜕

𝜕𝑥2
) = 2

𝜕

𝜕�̅�
                              (9) 

multiplying equation (8) and (9); we have, 

2
𝜕

𝜕𝑧
 .2

𝜕

𝜕𝑧̅
= 2 (

𝜕

𝜕𝑥1

+  𝑖
𝜕

𝜕𝑥2

) . 2 (
𝜕

𝜕𝑥1

−  𝑖
𝜕

𝜕𝑥2

) 

4
𝜕2

𝜕𝑧𝜕�̅�
  = 4 (

𝜕2

𝜕𝑥1
2   − 𝑖

𝜕2

𝜕𝑥1𝜕𝑥2
 + 𝑖

𝜕2

𝜕𝑥1𝜕𝑥2
 +  

𝜕2

𝜕𝑥2
2) 

4
𝜕2

𝜕𝑧𝜕�̅�
  = 4 (

𝜕2

𝜕𝑥1
2   +  

𝜕2

𝜕𝑥2
2)  +  4𝑖 (

𝜕2

𝜕𝑥1𝜕𝑥2
 −  

𝜕2

𝜕𝑥1𝜕𝑥2
)          (10) 

Equating like terms of equation (10) to the real and imaginary parts of equation (5) and (7) respectively; we have, 

4 (
𝜕2

𝜕𝑥1
2 +  

𝜕2

𝜕𝑥2
2) = 4 (

𝜕

𝜕𝑧
  +   

𝜕

𝜕�̅�
)                                              (11) 

4𝑖 (
𝜕2

𝜕𝑥1𝜕𝑥2
 −   

𝜕2

𝜕𝑥1𝜕𝑥2
)  = −4𝑖 (

𝜕

𝜕𝑧
 −  

𝜕

𝜕�̅�
)                            (12) 

Replacing the two right hand terms of equation (10) with the right hand terms of equation (11) and (12); to have, 

4
𝜕2

𝜕𝑧𝜕�̅�
   =  4 (

𝜕

𝜕𝑧
  +   

𝜕

𝜕�̅�
)  −4𝑖 (

𝜕

𝜕𝑧
− 

𝜕

𝜕�̅�
)                              (13) 

Let the displacement vector component u in equation (1), be represented in its complex form as: 
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𝑢1  + 𝑖𝑢2  = 𝜑                                                                         (14) 

and 

𝑢1 – 𝑖𝑢  =   �̅�                                                                          (15) 

Substituting equation (14) and (15) into equation (13) as components of the dependent variable of the partial differential equation; 

to have, 

4
𝜕2𝜑

𝜕𝑧𝜕�̅�
  = 4 (

𝜕𝜑

𝜕𝑧
 +   

𝜕�̅�

𝜕�̅�
)  − 4𝑖 (

𝜕𝜑

𝜕𝑧
 −  

𝜕�̅�

𝜕�̅�
)                           (16) 

To make equation (1) solvable, we shall as in [ 12]. Let 

∆𝑢  =   
𝜕2𝜑

𝜕𝑧𝜕�̅�
                                                                              (17) 

and 
𝜕𝜑

𝜕𝑧
 +  

𝜕�̅�

𝜕�̅�
   =  2 (

𝜕𝑢1

𝜕𝑥1
  +   

𝜕𝑢2

𝜕𝑥2
) =   2∇. 𝑢 = 2𝜃                  (18) 

Substituting equation (17) and (18), for ∆𝑢 𝑎𝑛𝑑 𝑑𝑖𝑣. 𝑢 in equation (1); we have, 

4𝑎
𝜕2𝜑

𝜕𝑧𝜕�̅�
  +   4𝑐

𝜕2𝜑

𝜕𝑧𝜕�̅�
 + 2𝑏∇𝜃  +   2𝑑∇𝜃 = w                (19) 

Note: Here, our Laplacian is defined as 

∆ =  ∇. ∇ =   
𝜕

𝜕𝑧
 .

𝜕

𝜕𝑧̅
 

Such that 

∇ = 𝑔𝑟𝑎𝑑 =  
𝜕

𝜕𝑧
 

Substituting for gradient (grad) in equation (19) with  
𝜕

𝜕𝑧
 ; we have, 

4𝑎
𝜕2𝜑

𝜕𝑧𝜕�̅�
  +   4𝑐

𝜕2𝜑

𝜕𝑧𝜕�̅�
  +   2𝑏

𝜕𝜃

𝜕𝑧
  +   2𝑑

𝜕𝜃

𝜕𝑧
 =  w              (20) 

𝜕

𝜕𝑧
(4𝑎

𝜕𝜑

𝜕�̅�
  +   4𝑐

𝜕𝜑

𝜕�̅�
  +   2𝑏𝜃  +   2𝑑𝜃)  =  w               (21) 

∫ 𝑑 (4𝑎
𝜕𝜑

𝜕�̅�
 + 4𝑐

𝜕𝜑

𝜕�̅�
 + 2𝑏𝜃 + 2𝑑𝜃)   = ∫ 𝑤 𝑑𝑧            (22) 

4𝑎
𝜕𝜑

𝜕�̅�
 + 4𝑐

𝜕𝜑

𝜕�̅�
  + 2𝑏𝜃 + 2𝑑𝜃  =    ∮ 𝑤 𝑑𝑧                  (23) 

 

3.2 Analytic Analysis of the Non-homogeneous Part 

∮ 𝑤 𝑑𝑧                                                                                  (24) 

Where 

𝑤 = 𝑢 + 𝑖𝑣 𝑎𝑛𝑑  𝑧 =  𝑥1 +  𝑖𝑥2 

So that equation (24); become, 

∫(𝑢 + 𝑖𝑣)𝑑(𝑥1 +  𝑖𝑥2) 

∫(𝑢 + 𝑖𝑣)(𝑑𝑥1  + 𝑖𝑑𝑥2)                                                (25)    

Expanding equation (25) ; we have, 

∫(𝑢𝑑𝑥1  + 𝑖𝑣𝑑𝑥1  + 𝑖𝑢𝑑𝑥2  − 𝑣𝑑𝑥2)                         (26) 

∫[(𝑢𝑑𝑥1 −  𝑣𝑑𝑥2)   +  (𝑖𝑣𝑑𝑥1 +  𝑖𝑢𝑑𝑥2)] 

∫(𝑢𝑑𝑥1  − 𝑣𝑑𝑥2)  + 𝑖 ∫(𝑣𝑑𝑥1  + 𝑢𝑑𝑥2)                 (27) 

 From Green’s Theorem, the line integral in equation (28) become an area integral [13 ] ; such as, 

∬ (−
𝜕𝑣

𝜕𝑥1

 −  
𝜕𝑢

𝜕𝑥2

) 𝑑𝑥1𝑑𝑥2  + 𝑖 ∬ (
𝜕𝑢

𝜕𝑥1

 −  
𝜕𝑣

𝜕𝑥2

) 𝑑𝑥1𝑑𝑥2                                    (28) 

equating like terms in equation (27) and (28); that is, 

∬ (−
𝜕𝑣

𝜕𝑥1

 −  
𝜕𝑢

𝜕𝑥2

) 𝑑𝑥1𝑑𝑥2 =  ∫(𝑢𝑑𝑥1  − 𝑣𝑑𝑥2)                                                  (29) 

and 

∬ (
𝜕𝑢

𝜕𝑥1

 −  
𝜕𝑣

𝜕𝑥2

) 𝑑𝑥1𝑑𝑥2  =  ∫(𝑣𝑑𝑥1  + 𝑢𝑑𝑥2)                            (30) 

From Cauchy Morare Theorem [13 ], the line integrals in equation (29) and (30) is equal to zero; leaving, 
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∬ (−
𝜕𝑣

𝜕𝑥1

 −  
𝜕𝑢

𝜕𝑥2

) 𝑑𝑥1𝑑𝑥2   = 0 ⇒
𝜕𝑣

𝜕𝑥1

 =   − 
𝜕𝑢

𝜕𝑥2

                                            (31)  

and 

∬ (
𝜕𝑢

𝜕𝑥1

 −  
𝜕𝑣

𝜕𝑥2

) 𝑑𝑥1𝑑𝑥2 =   0 ⇒
𝜕𝑢

𝜕𝑥1

  =   
𝜕𝑣

𝜕𝑥2

                                                   (32) 

Equation (31) and (32) satisfy Cauchy Riemman condition, the necessary condition for the transformed mixture (w) of equation 

(23) to be analytic [13 ]. 

 

4. TIME IMPACT ON RESIDUE 

The analytic state of the transformed mixture (w) is categorized into two forms; name, (i) an entire function (y) and (ii) a 

meromorphic function (𝑦⋆).   

(i) A transformed mixture [𝑤 = 𝑢(𝑥1, 𝑥2) + 𝑖𝑣(𝑥1, 𝑥2)] is an entire function (y) when it is analytic at every point in a given domain; 

that is, it contains no pole (residue), represented by Taylor series, which gives an infinite radius of convergence [13 ]. To see this, 

we formulate Cauchy-Euler’s   equation of the entire function (y) as the dependent variable and time (t) as the independent variable 

as: 

𝑡2
𝑑2𝑦

𝑑𝑡2
 − 𝑡

𝑑𝑦

𝑑𝑡
  + 𝑦 =   0                                                                                            (33) 

With the transformer 𝑥 = 𝑒𝑡 ,  equation (33) becomes a second order linear differential equation with constant coefficient [14 ]; that 

is, 

𝑡  =  ln 𝑥 

𝑑𝑦

𝑑𝑥
 =

𝑑𝑦

𝑑𝑡
×

𝑑𝑡

𝑑𝑥
= (

1

𝑥
 
𝑑𝑦

𝑑𝑡
) 

𝑑2𝑦

𝑑𝑥2 = 
1

𝑥
(

𝑑2𝑦

𝑑𝑡2 ×
𝑑𝑦

𝑑𝑡
)  −

1

𝑥2

𝑑𝑦

𝑑𝑡
 

𝑑2𝑦

𝑑𝑥2
 − 2

𝑑𝑦

𝑑𝑥
 + 𝑦  = 0                                                                                               (34) 

Whose auxiliary equation is, 

𝑚2 −  2𝑚 + 1 = 0 

with roots, m = 1 twice. 

Giving a complementary solution 

y = (𝑐1𝑡  +  𝑐2)𝑒𝑡 = (𝑐1𝑡 +  𝑐2)(2.718)𝑡 [14 ] 

Assigning our arbitrary constants, 𝑐1 = 𝑐2  = 1; we have, 

y = (𝑡 + 1)(2.718)𝑡 

Hence, the entire function (y) can be simulated against time (t) with the table generated from the solution above as: 

Table 1.1 

           t                                        0           1            2           3            4 

           y            1            5            22           80            273 

 

(ii)A transformed mixture [𝑤 = 𝑢(𝑥1, 𝑥2)  + 𝑖𝑣(𝑥1,𝑥2)], is meromorphic (𝑦⋆ ) if it is analytic with finite number of poles (residues). 

It is represented by Laurent series. Laurent series is made of an analytic part (represent by Taylor series), and the principal part 

[represented by Residual Theorem (n)], which gives a finite radius of convergence on simulation [13 ].To show this, we formulate 

Bessel’s equation of the mixture, taking the meromorphic function (𝑦⋆) as the dependent variable, and time (t) as the independent 

variable. 

That is, 

𝑡2 𝑑2𝑦⋆

𝑑𝑡2  + 𝑡
𝑑𝑦⋆

𝑑𝑡
 + (𝑡2  −  𝑛2)𝑦⋆  = 0                                                                            (35) 

Where (-n) is the residual term of the mixture.  

Simplifying equation (35) using power series extension [15 ]; we have, 

𝑦⋆ =  𝑎0𝑡𝑛[1 −
𝑡2

2.2(𝑛 + 1)
 +  

𝑡4

2.4. 22(𝑛 + 1)(𝑛 + 2)
 − ⋯ ] 

where 

𝑎𝑜 =  2𝑛𝑛! 

so that 

𝑦⋆ =  𝐽𝑛(𝑡)  =  
𝑡𝑛

2𝑛𝑛!
[1 −

𝑡2

2.2(𝑛 + 1)
 +  

𝑡4

2.4. 22(𝑛 + 1)(𝑛 + 2)
 − ⋯ ] 
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when the residue, n = 1; 

𝑦⋆ =  𝐽1(𝑡)  =  
𝑡

2
 −  

𝑡3

2.2.2
 + 

𝑡5

2.4. 22. 6
−  … 

The meromorphic function (𝑦⋆), can be simulated against time (t) with the table generated from the solution above. 

 

Table 1.2 

         t              1              2           3            4           5 

         𝑦⋆          0.4          0.5         -0.2          -2.0         -5.3 

 

 
Figure 3: Graph of the Entire Function (y) against time (t) 

 
Figure 4: Graph of  the  Meromorphic Function (y*)  against time (t) 
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5. DISCUSSION OF RESULT 

The graphs in Figure 3, and 4 show the reaction of the 

continuum to time. Figure 3, shows an infinite radius of 

convergence; implying that, the entire function is not 

bounded by time; that is, continuum at this state is a constant.  

While, Figure 4, gives a finite radius of convergence; 

meaning, the continuum in the meromorphic state is limited 

by time. 

 

6. CONCLUSION 

Convergence in mathematics generally implies the existence 

of limit of any analytic system [11 ]. The continuum in the 

meromorphic state differs from the entire state, due to the 

existence of residues that are inherent in the mixture. The 

continuum in this state undergoes dehydration as time 

progresses in order to solidify, as it is usual with all concrete. 

This give rise to the contraction of the residues; thereby, 

creating voids at the spaces they occupy. This voids, alters the 

internal molecular matrix of the solid, making the solid prone 

to implosion (an inward explosion; that is, so sudden and 

complete)] with the smallest external pressure. [16] [17]. 
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