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                                                               ABSTRACT 

                              The effects of temperature dependent viscosity and thermal conductivity 

differentia equations governing problem under consideration have been transformed into a 

system of non linear differential equations by the similarity transformations and then solved 

numerically using shooting technique. Numerical results are carried out for various 

dimensionless parameters of the problem especially variable viscosity parameter, thermal 

conductivity parameter, micro-rotation parameter along with the Prandtl number. The results 

are presented graphically for velocity distribution, temperature distribution and micropolar 

distributions for various values of non-dimensional parameters. It is found that the effects of 

the parameters representing variable property of viscosity and thermal conductivity are 

significant. 
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of a micropolar fluid over a continuous moving stretching surface with radiation is examined.

The  micropolar  model  due  to  Eringen  is  used  to  describe  the  working  fluid.  The  partial
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1. INTRODUCTION: 
 

The theory of micro polar fluids was originally formulated by Eringen ([3], [4]). In essence, the 

theory introduces new material parameters, an additional independent vector field, the micro 

rotation and new constitutive equations, which must be solved simultaneously with the usual 

equations for Newtonian flow. The desire to model the non-Newtonian flow of fluid containing 

rotating micro-constituents provided initial motivation for the development of the theory, but 

subsequent studies have successfully applied the model to a wide range of applications including 

blood flow, lubricants, porous media, turbulent shear flows and flowing capillaries and micro 

channels by Lukaszewiesz [7]. 

       The theory of thermo-micropolar fluids has been developed by Eringen taking into account 

the effect of micro-elements of fluids on both the kinematics and conduction of heat. Later 

Ariman et al. [2] describe some of the various applications which have been explored. Boundary 

layer on continuous surface is an important type of flow occurring in a number of technical 

problems. The boundary layer flow of a micropolar fluid past a semi-infinite plate has been 

studied by Peddieson and McNitt [8] where as a similarity solution for boundary layer flow near 

stagnation point was presented by Ebert  [5]. The boundary layer flow of micropolar fluids past a 

semi infinite plate was studied by Ahmadi[1] taking into account the gyration vector normal to 

the xy- plane and the micro-inertia effects. By drawing the continuous strips through a quiescent 

electrically conducting fluid subject to a magnetic field, the rate of cooling can be controlled and 

final product of desired characteristics can be achieved. Kelson and Farrell [6] studied 

micropolar flow over a stretching sheet with strong suction and injection. 

         Flow and heat transfer through porous media have several practical engineering 

applications such as transpiration cooling, packed bed chemical reactors, geothermal systems, 

that the radiation effect is important under many non isothermal situations. If the entire system 

involving the polymer extrusion process is placed in a thermally controlled environment, then 

radiation could become important. The knowledge of radiation heat transfer in the system can 

perhaps lead to a desired product with sought characteristic. Raptis [9] studied the boundary 

layer flow of a micropolar fluid through non-Darcian porous medium. The problem of 

micropolar fluid flow over a continuously moving stretching surface through a fluid saturated 

porous medium with radiation is therefore an important one. It is now to study effects of variable 

viscosity and thermal conductivity of flow and heat transfer of an electrically conducting 
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micropolar fluid on a continuously moving plate embedded in a non-Darcian porous medium in 

the presence of a radiation.    

 

2. GOVERNING EQUATIONS : 

           The equation of motion for incompressible viscous micropolar fluid is given by                   

         ( ) ( ) ( )2. .
V

V V p V V N F
t

   
 

+  = − +   +  +  + 
 

,                      (2.1)      

where    is the mass density of the fluid, p is the pressure, µ is the viscosity, N  is the angular 

velocity, κ is the material constant and t denotes time. F  is the body force per unit volume due to 

flow through porous media given by 
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where ν is the kinematic viscosity of the fluid and λ* is the coefficient of permeability of the 

porous media. 

        The equation of angular momentum for incompressible viscous micropolar fluid is given by 
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,                                   (2.3) 

where j is the micro-inertia per unit mass, γ is the material constants. The equation of heat 

transfer is given by 
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,                                                        (2.4) 

where Cp is specific heat at constant pressure, T is the temperature of the fluid, λ is the coefficient of 

thermal conductivity of the fluid,   is the viscous dissipation function and is given 

by
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3. MATHEMATICAL FORMULATION OF THE PROBLEM:      

Consider a steady, two-dimensional laminar flow of an incompressible, electrically 

conducting micropolar fluid over a continuously moving stretching surface embedded in a non-

Darcian porous medium which issues from a thin slit. The x-axis is taken along the stretching 

surface in the direction of the motion and y-axis is perpendicular to it. We assume that the 

velocity is proportional to its distance from the slit. A uniform magnetic field 
0B  is imposed 

along y-axis. Under the usual boundary layer approximations, the flow and heat transfer of a 

micropolar fluid in porous medium with the non-Darcian effects included are governed by the 

following equations. 

The equation of continuity is  

            0
u v

x y

 
+ =

 
                                                                                                     (3.1) 

The equation of momentum is  
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equation of angular momentum is  
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the equation of energy is  
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where   is the apparent kinematic viscosity,  is the coefficient of dynamic viscosity, S is a 

constant characteristic of the fluid, Nis the microrotation component, ( )1 0
S

k


=  is the coupling 

constant, ( )1 0G  is the microrotation constant,  is the fluid density, u and v are the components 
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of velocity along x and y directions respectively, is the porosity, k is the permeability of the 

porous medium,T is the temperature of the fluid in the boundary layer, T  is the temperature of 

the fluid far away from the plate, wT is the temperature of the plat,  is the thermal 

conductivity, pC is the specific heat at constant pressure, and rq  is the radiative heat flux. 

       The appropriate physical boundary conditions of equations are  

       0 :y = ,u ax=     0,v =     ,wT T=       0N =                                                       (3.5) 

            y →   : 0u → ,T T→ , 0N →                                                                        (3.6)         

The governing equations subject to the boundary conditions can be expressed in a simpler form 

by introducing the following transformations: 
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=                                        (3.7) 
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using the Rosselant approximation  , we have 

  
4

0

0

4

3
r

T
q

k y

  
= − 

 
                                                                            (3.8)                      

where 0 is the Stefan-Boltzmann constant and 0k is the mean absorption coefficient. The fluid 

viscosity is assumed to be inverse linear function of temperature (Lai and Kulacki [10]) as  

( ) ( )
1 1 1
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= + − = −   , a=




and
1

rT T


= −                                     (3.9)     

 

where a and  rT  are constants and their values depends on the reference state and the thermal 

property of the fluid. In general a>0 for liquids and a<0 for gases. rT  is transformed reference 
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temperature related to viscosity parameter. α is constant based on thermal property and  
 is the 

viscosity at T=T
  similarly, consider the variation of thermal conductivity as,  

               ( ) ( )
1 1 1

1 , kT T b T T
  





= + − = −   , b=




and   
1

kT T


= −                            (3.10) 

where b and  kT  are constants and their values depends on the reference state and thermal 

property of the fluid   is constant based on thermal property and  is the thermal conductivity 

at T=T∞.    Using equation (3.7), it can be easily verified that the continuity equation is satisfied 

automatically and using equation (3.7) -  (3.8) in the equation (3.2) - (3.4) become, 
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The transform boundary conditions are  

0 = ,  1f  = ,  0f = ,  0g = ,  1 =                                                                (3.14) 

 =  ,  0f  = ,   0g = ,  0 =                                                                           (3.15) 

where            

1k
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=            denotes the coupling constant parameter 
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x =           denotes the inertia coefficient parameter 
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4.      RESULTS AND DISCUSSION: 

                 The system of coupled nonlinear ordinary differential equation (3.11-3.13) together 

with the boundary conditions(3.14-3.15) is solved numerically by using the fourth order Runge-

Kutta method along with the shooting technique. We have considered in some detail the 

influence of the physical parameters 1

aD− , R , k  , r  on the velocity, micro rotation and 

temperature distributions which shown in figures  

(1-4). Figures (1) and (2) show the velocity and micro rotation profiles for various values of 1

aD−  

and r . From (1) ,It is seen that the velocity distribution increases with the increasing values of 

1

aD− .   Application of a transverse magnetic field normal to the flow direction gives rise to a 

resistive drag-like force acting in a direction opposite to that of flow. This has a tendency to 

reduce both the fluid velocity and angular velocity .This indicates that the velocity distribution 

and microrotation distribution decreases then increases with the increasing values of R. Figures 

(3) and (4) depict the influence of the thermal conductivity parameter k  and the radiation 

parameter R on the temperature distributions respectively. From figure (3), it is observed that the 

temperature distributions increases with the increasing values of thermal conductivity 

parameter k . From (4), it is seen that the temperature distributions decreases as R increases.  
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Fig. 1. Velocity distribution profiles along against η for various values of parameter 1

aD−  taking  

Pr=0.70 G=0.50  lm1=0.50  r=0.30  θr =-10.00 θk =-10.00 

 

Fig. 2. microrotation distribution profiles along against η for various values of parameter θr 

taking Pr=0.70 R=0.80 G=0.50  lm1=0.50   r=0.30 θk =-10.00  

Variation of micro-rotation for different values of θr  
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Fig. 3. Temperature distribution profiles along against η for various values of parameter θk 

taking Pr=0.70 R=0.80 G=0.50  lm1=0.50   Da
-1=0.5   r=0.30  θr=-10.00 

 
 

 

 

Fig. 4. Temperature distribution profiles along against η for various values of parameter R 

taking Pr=0.70 G=0.50  lm1=0.50   Da
-1=0.5   r=0.30  θr =-10.00  θk =-10.00  

 Variation of Temperature profile for different values thermal conductivity  parameter θk  
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5. CONCLUSION:  

                

                 In this study the effects of temperature dependent viscosity and thermal conductivity 

of a micropolar fluid over a continuous moving stretching surface with radiation is examined. 

The resulting partial differential equations, which describe the problem, are transformed into 

ordinary differential equations by using similarity transformations. Numerical evaluations are 

performed and graphical results are obtained. The results presented demonstrate clearly that the 

viscosity and thermal conductivity parameters have a substantial effect on velocity distribution, 

micropolar distribution and temperature distribution. The effect of inverse Darcy number 1

aD − , 

viscosity parameter, thermal conductivity parameter,  Prandtl number rP  radiation parameter 

R are quite significant. 
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