International Journal of Mathematics and Computer Research ISSN: 2320-7167 Volume 09 Issue 07 July 2021, Page no. - 2324-2338 Index Copernicus ICV: 57.55, Impact Factor: 7.184 DOI: 10.47191/ijmcr/v9i7.01

1,2 1 **Maged Z. Youssef , Nora Omar** Department of Mathematics & Statistics, College of Science, New Results on k -prime Labeling

Riyadh 11623, KSA Al Imam Mohammad Ibn Saud Islamic University,

2 Department of Mathematics, Faculty of Science, Ain Shams University, Cairo 11566, Egypt

prime labeling of cycles C_n for some values of and n . Also we give the k-prime labeling of combs $P_n \odot K_1$ and some case of the crown $C_n \odot K_1$. Second, we show that all wheels W_{2n+1} are not k-prime for every positive integers k and n while W_{2n} $(n \geq 2)$ is not k-prime for every even positive integers k . Finally, we give the k-prime labeling of the helm H_n ($n \ge 3$) for $2 \le k \le 11$ and we show that if $k + 2(n-1)$ and $k + 2n$ are twin primes where $n \geq 3$ and $k \geq 1$, then H_n is k -prime. Abstract. In this paper, we introduce new results on k-prime labeling. First, we discuss the k-

Introduction

1

The notion of prime labeling originated with Entringer and was introduced in a paper by Tout et al. [12]. A graph G with vertex set $V(G)$ is said to have a prime labeling if there exist a bijection $f: V(G) \to \{1, 2, ..., |V(G)|\}$ such that for each edge $xy \in E(G)$, $f(x)$ and $f(y)$ are relatively prime. A graph that admits a prime labeling is called a *prime graph*. Around 1980 Entringer conjectured, that all trees are prime. Paths, stars, caterpillar, complete binary trees, spider**s** have prime labeling (see [4]). In 1999, Seoud and Youssef [10] conjectured that all unicyclic graphs are prime. In 2011, Vaidya and Prajapati [13] gave a variation of the definition of prime labeling. They call a graph G of order n is k -prime for some positive integer k if its vertices can labeled bijectively by the labels $k, k + 1, ..., k + n - 1$ such that adjacent vertices receive relatively prime labels. For known results on the prime labeling and its variations see [1-14]. The reference [4] surveyed the known results to all variations of graph labelings appearing in this paper. In this paper we give new results on *k*-prime labeling. All graphs in this chapter are simple, finite, and undirected.

2. *k* **-prime labeling of cycles and related graphs**

In this section we investigate the -prime labeling of cycles, combs and crowns for some positive integer values *k* . We well denoted to the vertices of the path or the cycle by

 u_1, u_2, \ldots, u_n and the pendant edges of the comb or the crown by $\ v_1, v_2, \ldots, v_n$. However, we have the following necessary condition for the graph to be k -prime.

Lemma 2.1 If G is a k -prime graph of order n with a k -prime labeling function f and let **Lemma 2.1** If G is a κ -prime graph of order n with a κ -prime lat $E_2 = \{k \le t \le k + n - 1 : t \text{ is even}\}$, then $\beta(G) \ge |E_2|$, where

$$
\left|E_2\right| = \begin{cases} \left|\frac{n}{2}\right| & \text{if } k \text{ is odd} \\ \left|\frac{n}{2}\right| & \text{if } k \text{ is even} \end{cases}
$$

Proof Since we have $\left|E_{2}\right|$ even vertex labels, then we must have $\beta(G) \geq \left|E_{2}\right|$.

Note that if n is even in the above lemma, then we have $|E_2| = \frac{n}{2}$ $E_{\rm o}$ = $\frac{n}{\epsilon}$ for every value of k . The following result shows that if C_n is k-prime then either *n* is even or k is odd.

Corollary 2.2 C_{2n+1} is not k-prime for all even positive integer k .

Proof Comes directly from Lemma 3.1.1, since $\beta(C_{2n+1}) = n < |E_2| = n + 1$.

From the above result we may deal with the k -prime labeling of cycles when n is odd and k is odd or when k is even and for every k .

Theorem 2.3 C_{2^n+1} is k -prime if and only if k is odd.

Proof Necessity comes from Corollary 3.1.2. For sufficiency, label the vertices of the cycle consecutively by the labels $k, k + 1, ..., k + 2ⁿ$ where k is the label of u_1 and $k + 2ⁿ$ is the label of u_{2^n+1} . Since $(k, k+2^n) = (k, 2^n) = 1$, as k is odd. Thus C_{2^n+1} is k -prime.

Theorem 2.4 C_4 is k -prime if and only if $k \not\equiv 0 \pmod{3}$.

Proof Necessity, let $k \equiv 0 \pmod{3}$, the set of vertex labels is: $\{k, k+1, k+2, k+3\}$ so, we put the labels **k** and **k**+3 on non adjacent vertices of C_4 . We check the other two nonadjacent vertices: We note one of the labels of the set $\{k, k+3\}$ is odd and one is even and as k, k+1 are two consecutive integers. So, none of the remaining vertices cannot assign the even label from the set $\{k+1,k+2\}$. Hence C_4 is not k -prime. For sufficiency, let

 k ≢0(mod3). Define f: V(C₄) → {k , k + 1, k + 2, k + 3} as follow:

 $f(u_i) = k - 1 + i, \ 1 \leq i \leq 4$

We have to show that the labeling works:

Since, $(k, k + 3) = (k, 3) = 1$ since k≢0(mod3). ■

Theorem 2.5 The comb $P_n \odot K_1$ is k -prime for every positive integer k .

Proof Define $f: V(P_n \odot K_1) \rightarrow \{k, k+1,..., k+2n-1\}$ as in the following two cases according to parity of *k* .

Case 1. k is even:

$$
f(u_i) = k + 2i - 1, \t 1 \le i \le n
$$

$$
f(v_j) = k + 2(j - 1), \t 1 \le j \le n.
$$

Case 2. *k* is odd:

$$
f(u_i) = k + 2(i - 1), \ 1 \le i \le n
$$

$$
f(v_j) = k + 2j - 1, \ 1 \le j \le n.
$$

∎

Theorem 2.6 $C_n \odot K_1$ is 2^i -prime for all $n \geq 3$ and $i \geq 1$.

Proof Put $k = 2^i$. Define $f: V(C_n \odot K_1) \rightarrow \{k, k + 1, ..., k + 2n - 1\}$ as follows:

$$
f(u_i) = k
$$

\n
$$
f(u_i) = k + 2i - 3, \qquad 2 \le i \le n
$$

\n
$$
f(v_1) = k + 2n - 1
$$

\n
$$
f(v_j) = k + 2(j - 1), \quad 2 \le j \le n.
$$

The following result enlarge the class of crowns that have *k* -prime labeling.

Theorem 2.7 If p is an odd prime, then $C_n \odot K_1$ is p^i -prime for all $i \geq 1$ and $n \not\equiv 1 \pmod{p}$.

Proof Let $f: V(C_n \odot K_1) \rightarrow \{p^i, ..., 2n + p^i - 1\}$. We have two cases:

Case 1: $n \not\equiv 1 \pmod{p}$

Define f as follow:

$$
f(u_i) = 2i + (p^i - 2), \qquad 1 \le i \le n
$$

 $f(v_j) = 2j + (p^i - 1)$, $1 \le j \le n$.

Case 2: $n \equiv 1 \pmod{p}$

Define f as follow:

$$
f(u_i) = 2i + (p^{i} - 2), \qquad 1 \le i \le n - 2
$$

$$
f(u_n) = 2n + (p^{i} - 4)
$$

$$
f(u_{n-1}) = 2n + (p^{i} - 2)
$$

$$
f(v_j) = 2j + (p^{i} - 1), \quad 1 \le j \le n - 2
$$

$$
f(v_n) = 2n + (p^{i} - 3).
$$

 $f(v_{n-1}) = 2n + (p^{i} - 1).$

We investigate the k -prime labeling of wheels W_n for some value of n and for fixed value integer k . In the wheels $W_n = C_n + K_1$, the vertex corresponding to K_1 is called the *apex vertex* and is denoted by u_o , while the vertices corresponding to cycle C_n are called the *rim vertices* and are denoted by $u_1, u_2, ..., u_n$ where u_i is adjacent to u_0 for each $1 \le i \le n$. However we have the following results.

Lemma 2.8 W_{2n+1} is not k-prime for all $k \ge 1$ and $n \ge 1$.

Proof Comes straightforward from Lemma 2.1, since the order of the wheel W_{2n+1} is even and **2.1**, since the order of the wheel W_{2n+1} is even and $(W_{2n+1}) = n \lt |E_2| = \frac{2n+2}{2} = n+1$ for any k , where E_2 is the set of even vertex labels, then W_{2n+1} is not k -prime.■

Lemma 2.9 W_{2n} is not k-prime for all $n \geq 2$ and for every even positive integer k.

Proof Comes straightforward from Lemma 2.1, since *k* is even and **coot** Comes straightforward from Lemma 2.1, since k is even and $\mathcal{L}(W_{2n}) = n \langle E_2 | = \left| \frac{2n+1}{2} \right| = n+1$, where E_2 is the set of even vertex labels, W_{2n} is not *k* -prime.∎

Theorem 2.10 W_n is k -prime if and only if $k \equiv 1 \pmod{6}$. **Proof** Necessity, we have two cases

 $\frac{\text{Case 1:}}{\text{Area}}$ *k* = 0,2 or 4(mod 6)

By Lemma 2.2, W_n is k -prime.

 $\frac{\text{Case 2:}}{\text{ }} k \equiv 3 \text{ or } 5 \pmod{6}$

Suppose W_n is k -prime, then we must label two independent rim vertices of the wheel by the even labels $k+1$ and $k+3$. Then we can not find a vertex of the wheel to put the vertex label k in case $k \equiv 3 \pmod{6}$ or to put the vertex label $k+5$ in case $k \equiv 5 \pmod{6}$, a contradiction and hence the wheel is not k -prime in this case.

For sufficiency, let $k \equiv 1 \pmod{6}$, we define a function $f: V(W_n) \to \{k, k+1, ..., k+4\}$ as follow:

$$
f(u_0) = k
$$

$$
f(u_i) = k + i, \quad 1 \le i \le 4
$$

We have to show that the labeling works:

For $1 \leq i \leq 4$,

- $(f(u_0), f(u_i)) = (k, k + i) = (k, i) = (6t + 1, i) = 1.$ • $(f(u_1), f(u_4)) = (k + 1, k + 4) = (k + 1,3) = 1.$
- as $k \equiv 1 \pmod{6}$. ■

3. k-prime labeling of helms

In this section we investigate the k -prime labeling of helms for some values of k . The helm H_n is the graph obtained from the wheel $W_n = C_n + K_1$ ($n \geq 3$) by attaching a pendant edge at every vertex of the n-cycle. We shall denote to the centre vertex of the helm by u_0 , the vertices of the n-cycle by $u_1, u_2, ..., u_n$ and the pendant edges by $v_1, v_2, ..., v_n$ where u_i is adjacent to v_i for each $1 \leq i \leq n$. Although the wheel W_{2n+1} is not $2k$ -prime for all positive integer k , we did not find yet positive integers $k \geq 2$ and $n \geq 3$ for which a helm H_n is not k -prime and we conjecture that the helm H_n is k -prime for every positive integer k . Seoud and Youssef [10] showed that H_n is prime for all $n \geq 3$. However, we have the following results.

Theorem 3.1 H_n is 2-prime for all $n \geq 3$.

Proof Let $f: V(H_n) \to \{2, 3, ..., 2n + 2\}$ be a function. We have two cases:

Case 1: $n \not\equiv 1 \pmod{3}$

Define f as follows:

$$
f(u_0) = 2
$$

$$
f(u_i) = 2i + 1 \quad 1 \le i \le n
$$

$$
f(v_j) = 2j + 2 \quad 1 \le j \le n
$$

Case $2 : n \equiv 1 \pmod{3}$

Define f as follows:

$$
f(u_0) = 2
$$

$$
f(u_i) = 2i + 1, 1 \le i \le n - 2
$$

$$
f(u_n) = 2n - 1
$$

$$
f(u_{n-1}) = 2n + 1
$$

$$
f(v_i) = 2i + 2, 1 \le i \le n
$$

Cleary f is injective function in both cases. It can be easily verified that f is a 2-prime labeling of H_{n} .■

Theorem 3.2 H ^{*n*} is 3-prime for all $n \geq 3$.

Proof Let $f: V(H_n) \to \{3, 4, ..., 2n + 3\}$ be a function. We have two cases:

 $Case 1: $n \equiv 0 \pmod{3}$$ </u>

In this case define as follow:

$$
f(u_0) = 4
$$

$$
f(u_i) = 2i + 1, 1 \le i \le n
$$

$$
f(v_j) = 2j + 2, 2 \le j \le n - 1
$$

$$
f(v_1) = 2n + 2, f(v_n) = 2n + 3
$$

We have to show that the labeling works:

- $(f(u_i), f(u_0)) = (2i + 1, 4) = 1$ for each $1 \le i \le n$
- $(f(u_i), f(v_i) = (2i + 1,2i + 2) = (2i + 1,1) = 1, 2 \le i \le n 1$
- $(f(u_1), f(v_1) = (3, 2n + 2) = (3, (n + 1)) = 1$
- $(f(u_n), f(v_n)) = (2n + 1,2n + 3) = 1$

 $\text{Case 2}: n \neq 0 \text{(mod 3)}$

Define f as follows:

$$
f(u_0) = 4
$$

$$
f(u_i) = 2i + 1, 1 \le i \le n
$$

$$
f(v_j) = 2j + 2, 2 \le j \le 2
$$

$$
f(v_1) = 2n + 3
$$

Again, this labeling is works since moreover:

$$
\bullet \quad \left(f(v_1), f(u_1) \right) = (3, 2n + 3) = (3, 2n) = (3, n) = 1
$$

as $n \not\equiv 0 \pmod{3}$. ■

Theorem 3.3 H_n is 4-prime for all $n \geq 3$.

Proof We have two cases :

Case 1: $n \not\equiv 1 \pmod{5}$

Define a function $f: V(H_n) \to \{4, 5, ..., 2n + 4\}$ as follows:

$$
f(u_0) = 4
$$

$$
f(u_i) = 2i + 3, 1 \le i \le n
$$

 $f(v_i) = 2j + 4$, $1 \le i \le n$.

Clearly f is injective function. We show that all adjacent vertices receive relatively prime labels:

- $(f(u_0), f(u_i) = (4, 2i + 3) = 1$
- $(f(u_i), f(v_i)) = (2i + 3,2i + 4) = 1$
- $(f(u_i), f(u_{i+1})) = (2i + 3,2i + 5) = (2i + 3,2) = 1$, $1 \le i \le n 1$
- $(f(u_1), f(u_n)) = (5, 2n + 3) = (5, 2n 2) = (5, n 1) = 1$

Case 2: $n \equiv 1 \pmod{5}$

Define a function $f: V(H_n) \to \{4, 5, ..., 2n + 4\}$ as follows:

$$
f(u_0) = 4
$$

$$
f(u_i) = 2i + 3, 1 \le i \le n - 2
$$

$$
f(u_{n-1}) = 2n + 3
$$

$$
f(u_n) = 2n + 1
$$

 $f(v_i) = 2i + 4$, $1 \le i \le n$.

Clearly f is injective function. Again, it is straightforward to verify that all adjacent vertices receive relatively prime labels. ∎

Theorem 3.4 H_n is 5-prime for all $n \ge 3$.

Proof We have three cases :

Case 1: $n \equiv 0 \pmod{5}$

Define $f: V(H_n) \rightarrow \{5,6, ..., 2n + 5\}$ as follow:

$$
f(u_0) = 8
$$

$$
f(u_i) = 2i + 5, \t 1 \le i \le n - 2
$$

$$
f(u_n) = 2n + 3
$$

$$
f(u_{n-1}) = 2n + 5
$$

$$
f(v_j) = 2j + 6, 2 \le j \le n - 1
$$

$$
f(v_1) = 6
$$

$$
f(v_n) = 5
$$

We have to show that the labeling works:

- As $f(u_i)$ is odd for each $1 \le i \le n$, then $(f(u_i), f(u_0)) = (f(u_i), 8) = 1$.
- (fu_i) , $f(u_{i+1})$) = 1, 1 $\leq i \leq n-1$.
- $(f(u_n), f(v_n)) = (2n + 3.5) = (5, n 1) = 1$

Case 2: $n \equiv 1 \pmod{5}$

$$
f(u_0) = 8
$$

$$
f(u_i) = 2i + 3, 1 \le i \le n - 2
$$

$$
f(u_{n-1}) = 2n + 3
$$

$$
f(u_n) = 2n + 1
$$

$$
f(v_1) = 2n + 4
$$

$$
f(v_2) = 6
$$

$$
f(v_j) = 2j + 4, 3 \le j \le n - 1
$$

$$
f(v_n) = 2n + 5
$$

We have to show that the labeling works:

- As in case 1, $(f(u_i), f(u_0)) = 1$, $1 \le i \le n$.
- $(f(u_1), f(u_n)) = (5, 2n + 1) = (5, 2n 4) = (5, n 2) = 1.$
- $(f(u_1), f(v_1)) = (5, 2n + 4) = (5, 2n 1) = 1.$

Case3: $n \not\equiv 0$ and $1 \pmod{5}$

$$
f(u_0) = 8
$$

$$
f(u_i) = 2i + 3, 1 \le i \le n
$$

$$
f(v_j) = 2j + 4, 3 \le j \le n
$$

$$
f(v_2) = 5
$$

$$
f(v_1) = 2n + 5
$$

We must show that the labeling works:

- $(f(u_1), f(u_n) = (5, 2n + 3) = (5, 2n 2) = (5, n 1) = 1$, as $n \not\equiv 1 \pmod{5}$.
- $(f(u_1), f(v_1)) = (5, 2n + 5) = (5, n) = 1$, as $n \not\equiv 0 \pmod{5}$.

Theorem 3.5 H_n is 6-prime for all $n \ge 3$.

Proof We have two cases:

<u>Case 1</u>: $n \equiv 1 \pmod{7}$

Define $f: V(H_n) \to \{6,7, ..., 2n + 6\}$ as follow:

$$
f(u_0) = 8
$$

$$
f(u_i) = 2i + 5, \t 1 \le i \le n - 2
$$

$$
f(u_n) = 2n + 3
$$

$$
f(u_{n-1}) = 2n + 5
$$

$$
f(v_j) = 2j + 6, 2 \le j \le n
$$

$$
f(v_1) = 6.
$$

Case 2: $n \not\equiv 1 \pmod{7}$

$$
f(u_0) = 8
$$

$$
f(u_i) = 2i + 5, 1 \le i \le n
$$

$$
f(v_1) = 6
$$

$$
f(v_j) = 2j + 6, 2 \le j \le n.
$$

Theorem 3.6 H_n is 7-prime for all $n \ge 3$.

Proof We have three cases:

<u>Case 1</u>: $n \equiv 1 \pmod{7}$

Define $f: V(H_n) \rightarrow \{7,8,\ldots,2n+7\}$ as follow:

$$
f(u_0) = 8
$$

$$
f(u_i) = 2i + 5, \t 1 \le i \le n - 2
$$

$$
f(u_n) = 2n + 3
$$

$$
f(u_{n-1}) = 2n + 5
$$

$$
f(v_j) = 2j + 6, 2 \le j \le n - 1
$$

$$
f(v_1) = 2n + 6
$$

$$
f(v_n) = 2n + 7
$$

Case 2: $n \equiv 0 \pmod{7}$

$$
f(u_0) = 8
$$

$$
f(u_i) = 2i + 5, 1 \le i \le n
$$

$$
f(v_1) = 2n + 6
$$

$$
f(v_j) = 2j + 6, 2 \le j \le n - 1
$$

$$
f(v_n) = 2n + 7
$$

Case 3: $n \neq 0$, 1(mod7)

$$
f(u_0) = 8
$$

$$
f(u_i) = 2i + 5, 1 \le i \le n
$$

$$
f(v_j) = 2j + 6, 2 \le j \le n
$$

$$
f(v_1) = 2n + 7. \blacksquare
$$

Theorem 3.7 H_n is 8-prime for all $n \ge 3$.

Proof We have two cases:

Case 1: $n \equiv 1 \pmod{3}$

Define f: $V(H_n)$ → {8,9, ..., 2n + 8} *as follows*:

$$
f(u_0) = 8
$$

$$
f(u_i) = 2i + 7, 1 \le i \le n - 2
$$

$$
f(u_n) = 2n + 5
$$

$$
f(u_{n-1}) = 2n + 7
$$

$$
f(v_j) = 2j + 8
$$

Case 2: $n \neq 1 \pmod{3}$

$$
f(u_0) = 8
$$

$$
f(u_i) = 2i + 7, 1 \le i \le n
$$

$$
f(v_j) = 2j + 8 \blacksquare
$$

Theorem 3.8 H_n is 9-prime for all $n \ge 3$.

Proof We have three cases:

Case 1: $n \equiv 0 \pmod{3}$

a) If $n > 3$:

Define $f: V(H_n) \to \{9, 10, ..., 2n + 9\}$ as follow:

$$
f(u_0) = 16
$$

$$
f(u_i) = 2i + 7, \quad 1 \le i \le n
$$

$$
f(v_1) = 2n + 8
$$

$$
f(v_j) = 2j + 6, 2 \le j \le 4
$$

$$
f(v_j) = 2j + 8, \quad 5 \le i \le n - 1
$$

$$
f(v_n) = 2n + 9
$$

This labeling is work since:

- $(9,2n+8) = (9,n+4) = 1$.
- **b**) If $n = 3$:

Define $f: V(H_3) \rightarrow \{9, 10, ..., 15\}$ as follows:
 $f(u_0)$

$$
f(u_0) = 13
$$

\n**c)** $f(u_1) = 9$, $f(u_2) = 11$, $f(u_3) = 14$
\n $f(v_1) = 10$, $f(u_2) = 12$, $f(u_3) = 15$.

Case 2: $n \equiv 2 \pmod{3}$

The same as in Case 1(a) except for $f(v_1)$, $f(v_n)$.

Define $g: V(H_n) \to \{9, 10, ..., 2n + 9\}$ as follow:

$$
g(v) = f(v), \qquad \forall v \in V(H_n) : v \neq v_1, v_n.
$$

$$
g(v_1) = 2n + 9
$$

$$
g(v_n) = 2n + 8
$$

Case 3: $n \equiv 1 \pmod{3}$

$$
f(u_0) = 16
$$

$$
f(u_i) = 2i + 7, 1 \le i \le n - 2
$$

$$
f(u_{n-1}) = 2n + 7
$$

$$
f(u_n) = 2n + 5
$$

$$
f(v_1) = 2n + 9
$$

$$
f(v_j) = 2j + 6, 2 \le j \le 4
$$

$$
f(v_j) = 2j + 8, 5 \le j \le n
$$

This labeling is work since:

- $(9,2n+9)=(9,2n)=(9,n)=1$, as n=1 (mod3).
- $(9,2n+5)=(9,2n-4)=(9,n-2)=1$
- $(2n+5,2n+8)=(2n+5,3)=1.$

Theorem 3.9 H_n is 10-prime for all $n \ge 3$.

Proof We have two cases:

 $\textbf{Case 1: } n \not\equiv 1 \text{(mod 11)}$

 $\text{Define } f: V(H_n) \to \{10, 11, ..., 2n + 10\} \text{ as follow:}$

 $f u_0 = 16$ $f(u_i) = 2i + 9$, $1 \leq i \leq n$ $f(v_j) = 2j + 8$, $1 \leq j \leq 3$ $f(v_j) = 2j + 10$, $4 \le j \le n$

This labeling is work since:

is labeling is work since:

• $(f(u_1), f(u_n)) = (11, 2n + 9) = (11, 2n - 2) = (11, n - 1) = 1$.

\n- \n
$$
(f(u_1), f(u_n)) = (11, 2n + 9) = (11, 2n - 2) = (11)
$$
\n
\n- \n
$$
(f(u_i), f(v_i)) = (2i + 9, 2i + 8) = 1, \quad 1 \leq j \leq 3.
$$
\n
\n

• $(f(u_i), f(v_i)) = (2i + 9,2i + 10) = 1, 4 \le i \le n.$

 $\cosh 2$: $n \equiv 1 \pmod{11}$

$$
f(u_{_o}) = 16
$$

\n
$$
f(u_i) =\begin{cases} 2i + 9, & 1 \le i \le n - 2 \\ 2n + 9, & i = n - 1 \\ 2n + 7, & i = n \end{cases}
$$

\n
$$
f(v_j) =\begin{cases} 2j + 8, & 1 \le j \le 3 \\ 2j + 10, & 4 \le j \le n - 2 \\ 2n + 10, & j = n - 1 \\ 2n + 8, & j = n \end{cases}
$$

This labeling is work since:

is labeling is work since:
\n•
$$
(f(u_1), f(u_n)) = (11, 2n + 7) = (11, 2n - 4) = (11, n - 2) = 1
$$

$$
(f(u_i), f(v_i)) = \begin{cases} (2i + 9, 2i + 8) = 1, & 1 \le i \le 3 \\ (2i + 9, 2i + 10) = 1, & 4 \le i \le n - 2 \\ (2n + 9, 2n + 10) = 1, & i = n - 1 \\ (2n + 7, 2n + 8) = 1, & i = n \end{cases}
$$

•
$$
(f(u_n), f(u_{n-1})) = (2n + 7, 2n + 9) = (2n + 7, 2) = 1.
$$

•
$$
(f(u_n), f(u_{n-1})) = (2n + 7, 2n + 9) = (2n + 7, 2) = 1.
$$

\n• $(f(u_{n-2}), f(u_{n-1})) = (2n + 5, 2n + 9) = (2n + 5, 4) = 1.$

Theorem 3.10 H_n is 11-prime for all $n \ge 3$.

Proof We have three cases :

Case 1: $n \equiv 0 \pmod{11}$

Define $f: V(H_n) \to \{11, 12, ..., 2n + 11\}$ as follow:

$$
f(u_0) = 16
$$

\n
$$
f(u_i) = 2i + 9, \quad 1 \le i \le n
$$

\n
$$
f(v_j) = 2j + 8, \quad j = 2,3
$$

\n
$$
f(v_j) = 2j + 10, \quad 4 \le j \le n - 1
$$

\n
$$
f(v_1) = 2n + 10
$$

\n
$$
f(v_n) = 2n + 11
$$

This labeling is work since:

- $(f(u_1), f(u_n)) = (11,2n + 9) = (11,2n 2) = (11, n 1) = 1$
- $(f(u_1), f(v_1)) = (11, 2n + 10) = (11, 2n 1) = 1$

Case 2: $n \equiv 1 \pmod{11}$

$$
f(u_0) = 16
$$

\n
$$
f(u_i) = 2i + 9, \t 1 \le i \le n - 1
$$

\n
$$
f(u_n) = 2n + 11
$$

\n
$$
f(v_j) = 2j + 8, \t j = 2,3
$$

\n
$$
f(v_j) = 2j + 10, \t 4 \le j \le n - 1
$$

\n
$$
f(v_1) = 2n + 10
$$

\n
$$
f(v_n) = 2n + 9
$$

This labeling is work since:

- is labeling is work since:

 $(f(u_1), f(u_n)) = (11, 2n + 11) = (11, 2n) = (11, n) = 1$ • $(f(u_1), f(u_n)) = (11, 2n + 11) = (11, 2n) = (11, n)$
• $(f(u_1), f(v_1)) = (11, 2n + 10) = (11, 2n - 1) = 1$
-
- **Case 3**: $n \not\equiv 0$, 1(mod 11)

$$
f(u_{\scriptscriptstyle 0})=16
$$

$$
f(u_i) = 2i + 9 \quad , \ 1 \leq i \leq n
$$

$$
f(v_j) = 2j + 8 \quad , \ j = 2, 3
$$

$$
f(v_j) = 2j + 10 \quad , \ 4 \leq j \leq n
$$

$$
f(v_1) = 2n + 11
$$

This labeling is work since:

- is labeling is work since:

 $(f(u_1), f(u_n)) = (11, 2n + 9) = (11, 2n 2) = (11, n 1) = 1$, as $n \not\equiv 1 \pmod{11}$.
- $n \not\equiv 1 \pmod{11}.$

 $(f(u_1), f(v_1)) = (11, 2n + 11) = (11, n) = 1, \text{ as } n \not\equiv 0 \pmod{11}.$

Theorem 3.11 If $k + 2(n-1)$ and $k + 2n$ are twin primes where $n \ge 3$ and $k \ge 1$, then H_n is k -prime.

Proof Clearly, *k* must be an odd integer, define

 $f: V(H_n) \to \{k, k+1, ..., k+2n\}$ as follows: $f(u_i) = k + 2(i - 1)$, $1 \le i \le n$ $f(u_n) = k + 2n$ $f(u_{_0})=k+2n$ $f(v_{_j})=k+2(j-1)+1=k+2j-1 \ \ , \ 1\leq j\leq n$ $f(u_{_i})-f(v_{_i})\Big|=1 \Rightarrow (f(u_{_i}),f(v_{_i}))=1.$ \blacksquare

 $|f(u_i) - f(v_i)| = 1 \Rightarrow (f(u_i), f(v_i)) = 1.$

Our previous results about the k-prime labeling of the helms for $2 \leq k \leq 11$ motivated us to arise the following conjecture.

Conjecture All helms are *k* -prime for every positive integer *k* .

References

[1] T. Deretsky, S. M. Lee, and J. Mitchem, On vertex prime labelings of graphs, in Graph Theory, Combinatorics and Applications Vol. 1, J. Alavi, G. Chartrand, O. Oellerman, and A. Schwenk, eds., *Proceedings 6th International Conference Theory and Applications of Graphs* (Wiley, New York, 1991) 359-369.

[2] N. Diefenderfer, M. Hastings, L. N. Heath, H. Prawzinsky, B. Preston, E. White, and A. Whittemore, Prime vertex labelings of families of unicyclic graphs, *Rose-Hulman Undergrad. Math J.*, 16 (1) (2015) 253-269.

[3] H. L. Fu and K. C. Huang, On prime labelings , *Discrete Mathematics*, **127**(1994) 181-186.

[4] J. A. Gallian, A dynamic survey of graph labeling, *Elect. J. Combin., 18 edition* , #DS6 (2015) 1-389.

[5] A. Kanetkar, Prime labeling of grids, *AKCE J. Graphs Combin.*, 6 (2009) 135-142.

[6] S. M. Lee, I. Wui and J. Yeh, On the amalgamation of prime graphs, *Bull. Malaysian Math. Soc.* (Second Series), 11 (1988) 59-67.

[7] A. G. Michael and M. Z. Youssef, On prime self-complementary graphs, *J. Disc. Math. Sci. and Cryptography*, 17 (3) (2014) 239-256.

[8] M. A. Seoud, A. El Sonbaty, and A. E. A. Mahran, On prime graphs, *Ars Combin*., 104 (2012) 241-260.

[9] M. A. Seoud A. El Sonbaty, and A. E. A. Mahran, Primality of some graphs, *Ars Combin*., 112 (2013) 459-469.

[10] M. A. Seoud and M. Z. Youssef, On prime labelings of graphs, *Congr. Numer*., 141 (1999) 203-215.

[11] M. Sundaram, R. Ponraj, and S. Somasundaram, On a prime labeling conjecture, *Ars Combin*., 80 (2006) 205-209.

[112] A. Tout, A. N. Dabboucy and K. Howalla, Prime labeling of graphs, *Nat. Acad.Sci. Letters*, 11, (1982) 365–368.

[13] S. K. Vaidya and U. M. Prajapati, Some results on prime and k-prime labeling, *J. Math. Research*, 3(1) (2011) 66-75.

[14] M. Z. Youssef and E.A. El Sakhawi, Some properties of prime graphs, *Ars Combin*., 84 (2007) 129-140.