
 

n
C   and n . Also we give the k-prime labeling of 

combs 
1n

P K
1n

C K  . Second, we show that all wheels 

2 1n
W  are not k-prime for every positive integers k  and n  while 

2
( 2)

n
W n  is not k-prime 

for every even positive integers k . Finally, we give the k-prime labeling of the helm 

( 3)
n
H n  for 2 11k  and we show that if 2( 1)k n  and 2k n  are twin primes 

where 3n  and 1k , then 
n
H  is k -prime. 

Introduction 

The notion of prime labeling originated with Entringer and was introduced in a paper 

by Tout et al. [12]. A graph G  with vertex  set ( )V G  is said to have a prime labeling if there 

exist a bijection : ( ) {1,2,..., ( )}f V G V G  such that for each edge ( )xy E G , ( )f x  

and ( )f y  are relatively prime. A graph that admits a prime labeling is called a prime graph. 

Around 1980 Entringer conjectured, that all trees are prime. Paths, stars, caterpillar, complete 

binary trees, spiders have prime labeling (see [4]). In 1999, Seoud and Youssef [10] conjectured 

that all unicyclic graphs are prime. In 2011, Vaidya and Prajapati [13] gave a variation of the 

definition of prime labeling. They call a graph G  of order n  is k -prime for some positive 

integer k  if its vertices can labeled bijectively by the labels , 1,..., 1k k k n  such that 

adjacent vertices receive relatively prime labels. For known results on the prime labeling and 

its variations see [1-14]. The reference [4] surveyed the known results to all variations of graph 

labelings appearing in this paper. In this paper we give new results on k-prime labeling. All 

graphs in this chapter are simple, finite, and undirected. 

 

2. k -prime labeling of cycles and related graphs 

 In this section we investigate the  -prime labeling of cycles, combs and crowns for some 

positive integer values k . We well denoted to the vertices of the path or the cycle by 
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1 2
, ,...,

n
u u u  and the pendant edges of the comb or the crown by 

1 2
, ,...,

n
v v v . However, we 

have the following necessary condition for the graph to be k -prime. 

Lemma 2.1 If G  is a k -prime graph of order n  with a k -prime labeling function f and let 

2
{ 1 : }E k t k n t is even , then 

2
( )G E , where  

2

2

2

n
if k is odd

E
n

if k is even

 

Proof Since we have 
2
E  even vertex labels, then we must have 

2
( ) .G E ∎ 

 Note that if n  is even in the above lemma, then we have 
2 2

n
E  for every value of 

k . The following result shows that if 
n
C  is k-prime then either n is even or k  is odd. 

Corollary 2.2 
2 1n
C  is not k-prime for all even positive integer k  . 

Proof Comes directly from Lemma 3.1.1, since 
2 1 2

( ) 1
n

C n E n . ∎ 

 From the above result we may deal with the k -prime labeling of cycles when n  is 

odd and k  is odd or when k  is even and for every k . 

Theorem 2.3 
2 1nC  is k -prime if and only if k  is odd. 

Proof  Necessity comes from Corollary 3.1.2. For sufficiency, label the vertices of the cycle 

consecutively by the labels , 1,..., 2nk k k  where k  is the label of 
1
u  and 2nk  is the 

label of 
2 1nu . Since ( , 2 ) ( ,2 ) 1n nk k k , as k  is odd. Thus 

2 1nC  is k -prime.∎ 

 

Theorem 2.4 
4
C   is k -prime if and only if k ≢0(mod3). 

Proof Necessity, let k ≡0(mod3) , the set of vertex labels is: {𝑘 , 𝑘 + 1, 𝑘 + 2, 𝑘 + 3} so , we put 

the labels k and k+3 on non adjacent vertices of 
4
C . We check the other two nonadjacent 

vertices: We note one of the labels of the set { , 3}k k is odd and one is even and as k, k+1 

are two consecutive integers. So, none of the remaining vertices cannot assign the even label 

from the set { 1, 2}k k . Hence 
4
C  is not k -prime. For sufficiency, let  

k ≢0(mod3). Define f: V(C4) ⟶ {k , k + 1, k + 2, k + 3} as follow: 
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𝑓(𝑢𝑖) = 𝑘 − 1 + 𝑖,   1 4i  

We have to show that the labeling works: 

 Since, (𝑘, 𝑘 + 3) = (𝑘, 3) = 1  since  k≢0(mod3). ∎ 

Theorem 2.5 The comb 
1n

P K is k -prime for every positive integer k . 

Proof Define 
1

: ( ) { , 1,..., 2 1}
n

f V P K k k k n  as in the following two cases 

according to parity of k . 

Case 1. k  is even: 

( ) 2 1, 1

( ) 2( 1), 1 .
i

j

f u k i i n

f v k j j n
 

Case 2. k is odd: 

( ) 2( 1), 1

( ) 2 1, 1 .
i

j

f u k i i n

f v k j j n
 

 ∎ 

Theorem 2.6 
1n

C K is 2i -prime for all 3n  and 1i . 

Proof Put 2ik . Define 
1

: ( ) { , 1,..., 2 1}
n

f V C K k k k n  as follows: 

1

1

( )

( ) 2 3, 2

( ) 2 1

( ) 2( 1), 2 . 

i

j

f u k

f u k i i n

f v k n

f v k j j n

 

∎ 

 The following result enlarge the class of crowns that have k -prime labeling. 

Theorem 2.7 If p  is an odd prime, then 
1n

C K  is 
ip -prime for all 1i  and 

1(mod )n p . 

Proof Let 𝑓: 𝑉(
1n

C K )⟶ {pi, … ,2n + pi − 1}. We have two cases: 

 Case 1: 1(mod )n p  

Define f  as follow: 

𝑓(𝑢𝑖) = 2𝑖 + (pi − 2) , 1 ≤ 𝑖 ≤ 𝑛  

𝑓(𝑣𝑗  ) = 2𝑗 + (𝑝i − 1) ,      1 ≤ 𝑗 ≤ 𝑛 .  
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Case 2: 1(mod )n p  

Define f  as follow:  

𝑓(𝑢𝑖) = 2𝑖 + (pi − 2) , 1 ≤ 𝑖 ≤ 𝑛 − 2 

𝑓(𝑢𝑛) = 2𝑛 + (pi − 4) 

𝑓(𝑢𝑛−1) = 2𝑛 + (pi − 2) 

𝑓(𝑣𝑗) = 2𝑗 + (𝑝i − 1),     1 ≤ 𝑗 ≤ 𝑛 − 2 

𝑓(𝑣𝑛) = 2𝑛 + (pi − 3).   

  𝑓(𝑣𝑛−1) = 2𝑛 + (pi − 1).   ∎ 

 We investigate the k -prime labeling of wheels 
n
W  for some value of n and for fixed 

value integer k .  In the wheels 
1n n

W C K , the vertex corresponding to 
1
K  is called the 

apex vertex and  is denoted by 𝑢𝑜, while the vertices corresponding to  cycle 
n
C  are called the 

rim vertices and are denoted by 𝑢1, 𝑢2, … , 𝑢𝑛 where 𝑢𝑖 is adjacent to 𝑢0 for each 1 ≤ 𝑖 ≤ 𝑛. 

However we have the following results. 

 

Lemma 2.8 
2 1n
W is not k -prime for all 1k  and 1n . 

Proof Comes straightforward  from Lemma 2.1, since the order of the wheel 
2 1n
W  is even  and  

2 1 2

2 2
( ) 1

2n

n
W n E n  for any k , where 

2
E  is the set of even vertex 

labels, then 
2 1n
W is not k -prime.∎ 

Lemma 2.9 
2n
W  is not k -prime for all 2n  and for every even positive integer k . 

Proof Comes straightforward  from Lemma 2.1, since k  is even and 

2 2

2 1
( ) 1

2n

n
W n E n , where 

2
E  is the set of even vertex labels, 

2n
W  is 

not k -prime.∎ 

Theorem 2.10  
n
W is k -prime if and only if  1(mod6)k . 

Proof Necessity,  we have two cases 

Case 1:  k ≡ 0,2 𝑜𝑟 4(𝑚𝑜𝑑 6) 

By Lemma 2.2, 
n
W  is k -prime.  

Case 2:  k ≡ 3 𝑜𝑟 5(𝑚𝑜𝑑 6) 

Suppose 
n
W   is k -prime, then we must label two independent rim vertices of the wheel by the 

even labels 1k  and 3k . Then we can not find a vertex of the wheel to put the vertex 
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label k  in case 3(mod6)k  or to put the vertex label 5k  in case 5(mod6)k , a 

contradiction and hence the wheel is not k -prime  in this case. 

For sufficiency, let 1(mod6)k , we define a function 𝑓: 𝑉 (
n
W ) ⟶ {𝑘 , 𝑘 + 1, … , 𝑘 + 4} as 

follow:  

𝑓(𝑢0) = 𝑘 

𝑓(𝑢𝑖) = 𝑘 + 𝑖  , 1 ≤ 𝑖 ≤ 4 

We have to show that the labeling works: 

        For  1 ≤ 𝑖 ≤ 4, 

• (𝑓(𝑢0), 𝑓(𝑢𝑖)) = (𝑘, 𝑘 + 𝑖) = (𝑘, 𝑖) = (6𝑡 + 1, 𝑖) = 1. 

• (𝑓(𝑢1), 𝑓(𝑢4)) = (𝑘 + 1, 𝑘 + 4) = (𝑘 + 1,3) = 1. 

as 1(mod6)k .  ∎    

3. k-prime labeling of helms 

 In this section we investigate the k -prime labeling of helms for some values of k . The 

helm 
n
H is the graph obtained from the wheel 

1n n
W C K  ( 3n ) by attaching a 

pendant edge at every vertex of the n-cycle. We shall denote to the centre vertex of the helm 

by 
0
u , the vertices of the n-cycle by 

1 2
, ,...,

n
u u u  and  the pendant edges by 

1 2
, ,...,

n
v v v  

where 
i
u  is adjacent to 

i
v  for each 1 i n . Although the wheel 

2 1n
W  is not 2k -prime 

for all positive integer k , we did not find yet  positive integers 2k  and 3n   for which 

a helm 
n
H is not k -prime and we conjecture that the helm 

n
H  is k -prime for every positive 

integer k . Seoud and Youssef [10] showed that 
n
H is prime for all 3n . However, we have 

the following results. 

Theorem 3.1 
n
H is 2-prime for all 3n . 

Proof Let  𝑓: V(Hn) → {2,3, … ,2𝑛 + 2} be a function. We have two cases: 

Case 1: 𝑛 ≢ 1(𝑚𝑜𝑑3) 

Define f as follows: 

𝑓(𝑢0) = 2 

𝑓(𝑢𝑖) = 2𝑖 + 1     , 1 ≤ 𝑖 ≤ 𝑛 

𝑓(𝑣𝑗) = 2𝑗 + 2     , 1 ≤ 𝑗 ≤ 𝑛 

Case 2 : 𝑛 ≡ 1(𝑚𝑜𝑑3) 

 Define f as follows: 
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𝑓(𝑢0) = 2 

𝑓(𝑢𝑖) = 2𝑖 + 1  ,1 ≤ 𝑖 ≤ 𝑛 − 2 

𝑓(𝑢𝑛) = 2𝑛 − 1 

𝑓(𝑢𝑛−1) = 2𝑛 + 1 

𝑓(𝑣𝑖) = 2𝑖 + 2     ,1 ≤ 𝑖 ≤ 𝑛 

Cleary f  is injective function in both cases. It can be easily verified that f is a 2-prime labeling 

of 
n
H . ∎ 

Theorem 3.2 
n
H is 3-prime for all 3n . 

Proof Let 𝑓: V(Hn) → {3,4, … ,2𝑛 + 3} be a function. We have two cases: 

Case 1 : 𝑛 ≡ 0(𝑚𝑜𝑑3) 

In this case define as follow: 

𝑓(𝑢0) = 4 

𝑓(𝑢𝑖) = 2𝑖 + 1   , 1 ≤ 𝑖 ≤ 𝑛 

𝑓(𝑣𝑗) = 2𝑗 + 2   , 2 ≤ 𝑗 ≤ 𝑛 − 1 

𝑓(𝑣1) = 2𝑛 + 2    ,    𝑓(𝑣𝑛) = 2𝑛 + 3 

We have to show that the labeling works: 

•  (𝑓(𝑢𝑖), 𝑓(𝑢0)) = (2𝑖 + 1,4) = 1 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 1 ≤ 𝑖 ≤ 𝑛 

• (𝑓(𝑢𝑖), 𝑓(𝑣𝑖) = (2𝑖 + 1,2𝑖 + 2) = (2𝑖 + 1,1) = 1 , 2 ≤ 𝑖 ≤ 𝑛 − 1 

• (𝑓(𝑢1), 𝑓(𝑣1) = (3,2𝑛 + 2) = (3, (𝑛 + 1)) = 1 

• (𝑓(𝑢𝑛), 𝑓(𝑣𝑛)) = (2𝑛 + 1,2𝑛 + 3) = 1 

 

Case 2 : 𝑛 ≢ 0(𝑚𝑜𝑑3) 

Define f as follows: 

𝑓(𝑢0) = 4 

𝑓(𝑢𝑖) = 2𝑖 + 1  , 1 ≤ 𝑖 ≤ 𝑛 

𝑓(𝑣𝑗) = 2𝑗 + 2  , 2 ≤ 𝑗 ≤ 2 

𝑓(𝑣1) = 2𝑛 + 3 

Again, this labeling is works since moreover: 

• (𝑓(𝑣1), 𝑓(𝑢1)) = (3,2𝑛 + 3) = (3,2𝑛) = (3, 𝑛) = 1  

as 𝑛 ≢ 0(𝑚𝑜𝑑3). ∎ 
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Theorem 3.3 
n
H is 4-prime for all 3n . 

Proof We have two cases : 

Case 1: 𝑛 ≢ 1(𝑚𝑜𝑑5) 

Define a function : ( ) {4,5,...,2 4}
n

f V H n as follows: 

 𝑓(𝑢0) = 4 

𝑓(𝑢𝑖) = 2𝑖 + 3  ,1 ≤ 𝑖 ≤ 𝑛 

𝑓(𝑣𝑗) = 2𝑗 + 4    ,1 ≤ 𝑗 ≤ 𝑛. 

Clearly f is injective function. We show that all adjacent vertices receive relatively prime labels:  

• (𝑓(𝑢0), 𝑓(𝑢𝑖) = (4,2𝑖 + 3) = 1 

• (𝑓(𝑢𝑖), 𝑓(𝑣𝑖)) = (2𝑖 + 3,2𝑖 + 4) = 1 

• (𝑓(𝑢𝑖), 𝑓(𝑢𝑖+1)) = (2𝑖 + 3,2𝑖 + 5) = (2𝑖 + 3,2) = 1  , 1 ≤ 𝑖 ≤ 𝑛 − 1 

• (𝑓(𝑢1), 𝑓(𝑢𝑛)) = (5,2𝑛 + 3) = (5,2𝑛 − 2) = (5, 𝑛 − 1) = 1 

Case 2: 𝑛 ≡ 1(𝑚𝑜𝑑5) 

Define a function : ( ) {4,5,...,2 4}
n

f V H n as follows: 

𝑓(𝑢0) = 4 

𝑓(𝑢𝑖) = 2𝑖 + 3  ,1 ≤ 𝑖 ≤ 𝑛 − 2 

𝑓(𝑢𝑛−1) = 2𝑛 + 3 

𝑓(𝑢𝑛) = 2𝑛 + 1 

𝑓(𝑣𝑖) = 2𝑖 + 4  ,   1 ≤ 𝑖 ≤ 𝑛. 

Clearly f is injective function. Again, it is straightforward to verify that all adjacent vertices 

receive relatively prime labels. ∎ 

Theorem 3.4  
n
H  is 5-prime for all 𝑛 ≥ 3. 

Proof  We have three cases : 

Case 1:  𝑛 ≡ 0(𝑚𝑜𝑑5) 

Define 𝑓: V(Hn) → {5,6, … ,2𝑛 + 5} as follow: 

𝑓(𝑢0) = 8 

𝑓(𝑢𝑖) = 2𝑖 + 5  , 1 ≤ 𝑖 ≤ 𝑛 − 2 

𝑓(𝑢𝑛) = 2𝑛 + 3 

𝑓(𝑢𝑛−1) = 2𝑛 + 5 

𝑓(𝑣𝑗) = 2𝑗 + 6  , 2 ≤ 𝑗 ≤ 𝑛 − 1 
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𝑓(𝑣1) = 6 

𝑓(𝑣𝑛) = 5 

We have to show that the labeling works: 

• As 𝑓(𝑢𝑖) is odd for each 1 ≤ 𝑖 ≤ 𝑛, then (𝑓(𝑢𝑖), 𝑓(𝑢0)) = (𝑓(𝑢𝑖), 8) = 1. 

• (𝑓𝑢𝑖), 𝑓(𝑢𝑖+1)) = 1 , 1 ≤ 𝑖 ≤ 𝑛 − 1. 

• (𝑓(𝑢𝑛), 𝑓(𝑣𝑛)) = (2𝑛 + 3,5) = (5, 𝑛 − 1) = 1 

Case 2: 𝑛 ≡ 1(𝑚𝑜𝑑5) 

𝑓(𝑢0) = 8 

𝑓(𝑢𝑖) = 2𝑖 + 3  , 1 ≤ 𝑖 ≤ 𝑛 − 2 

𝑓(𝑢𝑛−1) = 2𝑛 + 3 

𝑓(𝑢𝑛) = 2𝑛 + 1 

𝑓(𝑣1) = 2𝑛 + 4 

𝑓(𝑣2) = 6 

𝑓(𝑣𝑗) = 2𝑗 + 4 , 3 ≤ 𝑗 ≤ 𝑛 − 1 

𝑓(𝑣𝑛) = 2𝑛 + 5 

We have to show that the labeling works: 

• As in case 1, (𝑓(𝑢𝑖), 𝑓(𝑢0)) = 1  , 1 ≤ 𝑖 ≤ 𝑛 . 

• (𝑓(𝑢1), 𝑓(𝑢𝑛)) = (5,2𝑛 + 1) = (5,2𝑛 − 4) = (5, 𝑛 − 2) = 1. 

• (𝑓(𝑢1), 𝑓(𝑣1)) = (5,2𝑛 + 4) = (5,2𝑛 − 1) = 1. 

 

Case3: 𝑛 ≢ 0 𝑎𝑛𝑑 1(𝑚𝑜𝑑5) 

𝑓(𝑢0) = 8 

𝑓(𝑢𝑖) = 2𝑖 + 3  , 1 ≤ 𝑖 ≤ 𝑛 

𝑓(𝑣𝑗) = 2𝑗 + 4  , 3 ≤ 𝑗 ≤ 𝑛 

𝑓(𝑣2) = 5 

𝑓(𝑣1) = 2𝑛 + 5 

We must show that the labeling works: 

• (𝑓(𝑢1), 𝑓(𝑢𝑛) = (5,2𝑛 + 3) = (5,2𝑛 − 2) = (5, 𝑛 − 1) = 1, 𝑎𝑠 𝑛 ≢ 1(𝑚𝑜𝑑5). 

• (𝑓(𝑢1), 𝑓(𝑣1)) = (5,2𝑛 + 5) = (5, 𝑛) = 1 , 𝑎𝑠 𝑛 ≢ 0(𝑚𝑜𝑑5).    ∎ 

Theorem 3.5  
n
H  is 6-prime for all 𝑛 ≥ 3. 

Proof We have two cases: 
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Case 1:  𝑛 ≡ 1(𝑚𝑜𝑑7) 

Define 𝑓: V(Hn) → {6,7, … ,2𝑛 + 6} as follow: 

𝑓(𝑢0) = 8 

𝑓(𝑢𝑖) = 2𝑖 + 5  , 1 ≤ 𝑖 ≤ 𝑛 − 2 

𝑓(𝑢𝑛) = 2𝑛 + 3 

𝑓(𝑢𝑛−1) = 2𝑛 + 5 

𝑓(𝑣𝑗) = 2𝑗 + 6  , 2 ≤ 𝑗 ≤ 𝑛 

𝑓(𝑣1) = 6. 

Case 2: 𝑛 ≢ 1(𝑚𝑜𝑑7) 

𝑓(𝑢0) = 8 

𝑓(𝑢𝑖) = 2𝑖 + 5  , 1 ≤ 𝑖 ≤ 𝑛 

𝑓(𝑣1) = 6 

𝑓(𝑣𝑗) = 2𝑗 + 6 , 2 ≤ 𝑗 ≤ 𝑛 .       ∎ 

 

Theorem 3.6  
n
H  is 7-prime for all 𝑛 ≥ 3. 

Proof We have three cases: 

Case 1:  𝑛 ≡ 1(𝑚𝑜𝑑7) 

Define 𝑓: V(Hn) → {7,8, … ,2𝑛 + 7} as follow: 

𝑓(𝑢0) = 8 

𝑓(𝑢𝑖) = 2𝑖 + 5  , 1 ≤ 𝑖 ≤ 𝑛 − 2 

𝑓(𝑢𝑛) = 2𝑛 + 3 

𝑓(𝑢𝑛−1) = 2𝑛 + 5 

𝑓(𝑣𝑗) = 2𝑗 + 6  , 2 ≤ 𝑗 ≤ 𝑛 − 1 

𝑓(𝑣1) = 2𝑛 + 6 

𝑓(𝑣𝑛) = 2𝑛 + 7 

Case 2: 𝑛 ≡ 0(𝑚𝑜𝑑7) 

𝑓(𝑢0) = 8 

𝑓(𝑢𝑖) = 2𝑖 + 5  , 1 ≤ 𝑖 ≤ 𝑛 

𝑓(𝑣1) = 2𝑛 + 6 

𝑓(𝑣𝑗) = 2𝑗 + 6 , 2 ≤ 𝑗 ≤ 𝑛 − 1  

𝑓(𝑣𝑛) = 2𝑛 + 7 
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Case 3: 𝑛 ≢ 0, 1(𝑚𝑜𝑑7) 

𝑓(𝑢0) = 8 

𝑓(𝑢𝑖) = 2𝑖 + 5  , 1 ≤ 𝑖 ≤ 𝑛 

𝑓(𝑣𝑗) = 2𝑗 + 6 , 2 ≤ 𝑗 ≤ 𝑛 

𝑓(𝑣1) = 2𝑛 + 7.  ∎ 

 

Theorem 3.7 
n
H  is 8-prime for all 𝑛 ≥ 3 . 

Proof We have two cases: 

Case 1: 𝑛 ≡ 1(𝑚𝑜𝑑3) 

𝐷𝑒𝑓𝑖𝑛𝑒 𝑓: V(Hn) → {8,9, … ,2𝑛 + 8} 𝑎𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑠: 

𝑓(𝑢0) = 8 

𝑓(𝑢𝑖) = 2𝑖 + 7  , 1 ≤ 𝑖 ≤ 𝑛 − 2 

𝑓(𝑢𝑛) = 2𝑛 + 5 

𝑓(𝑢𝑛−1) = 2𝑛 + 7 

𝑓(𝑣𝑗) = 2𝑗 + 8 

Case 2: 𝑛 ≢ 1(𝑚𝑜𝑑3) 

𝑓(𝑢0) = 8 

𝑓(𝑢𝑖) = 2𝑖 + 7  , 1 ≤ 𝑖 ≤ 𝑛 

                                           𝑓(𝑣𝑗) = 2𝑗 + 8  ∎ 

Theorem 3.8  
n
H  is 9-prime for all 𝑛 ≥ 3. 

Proof We have three cases: 

Case 1:  𝑛 ≡ 0(𝑚𝑜𝑑3)  

a) If  𝑛 > 3 : 

Define 𝑓: V(Hn) → {9,10, … ,2𝑛 + 9} as follow: 

𝑓(𝑢0) = 16 

𝑓(𝑢𝑖) = 2𝑖 + 7  , 1 ≤ 𝑖 ≤ 𝑛 

𝑓(𝑣1) = 2𝑛 + 8 

𝑓(𝑣𝑗) = 2𝑗 + 6 , 2 ≤ 𝑗 ≤ 4 

𝑓(𝑣𝑗) = 2𝑗 + 8  , 5 ≤ 𝑖 ≤ 𝑛 − 1 

𝑓(𝑣𝑛) = 2𝑛 + 9 
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This labeling is work since: 

• (9,2𝑛 + 8) = (9, 𝑛 + 4) = 1 . 

 

b) If 𝑛 = 3 : 

Define 
3

: ( ) {9,10,...,15}f V H  as follows: 

c) 

0

1 2 3

1 2 3

( ) 13

( ) 9, ( ) 11, ( ) 14

( ) 10, ( ) 12, ( ) 15. 

f u

f u f u f u

f v f u f u

 

 

Case 2: 𝑛 ≡ 2(𝑚𝑜𝑑3) 

The same as in Case 1(a)  except for 𝑓(𝑣1), 𝑓(𝑣𝑛) . 

Define 𝑔: V(Hn) → {9,10, … ,2𝑛 + 9} as follow: 

𝑔(𝑣) = 𝑓(𝑣), ∀ 𝑣 ∈ 𝑉(
n
H ) ∶ 𝑣 ≠ 𝑣1 , 𝑣𝑛 .  

𝑔(𝑣1) = 2𝑛 + 9  

𝑔(𝑣𝑛) = 2𝑛 + 8 

Case 3: 𝑛 ≡  1(𝑚𝑜𝑑3 ) 

𝑓(𝑢0) = 16 

𝑓(𝑢𝑖) = 2𝑖 + 7  , 1 ≤ 𝑖 ≤ 𝑛 − 2 

𝑓(𝑢𝑛−1) = 2𝑛 + 7  

𝑓(𝑢𝑛) = 2𝑛 + 5 

𝑓(𝑣1) = 2𝑛 + 9 

𝑓(𝑣𝑗) = 2𝑗 + 6   , 2 ≤ 𝑗 ≤ 4 

𝑓(𝑣𝑗) = 2𝑗 + 8   , 5 ≤ 𝑗 ≤ 𝑛 

This labeling is work since: 

• (9,2n+9)=(9,2n)=(9,n)=1 , as n=1 (mod3). 

• (9,2n+5)=(9,2n-4)=(9,n-2)=1 

• (2n+5,2n+8)=(2n+5,3)=1.                        ∎ 

 

Theorem 3.9  
n
H  is 10-prime for all 𝑛 ≥ 3. 
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Proof We have two cases: 

Case 1: 1(mod11)n    

Define : V( ) {10,11,...,2 10}
n

f nH   as follow: 

0
16f u  

( ) 2 9  ,  1
i

f u i i n  

( ) 2 8 ,  1 3
j

f v j j  

( ) 2 10  ,  4
j

f v j j n  

This labeling is work since: 

• 
1

( ( ), ( )) (11,2 9) (11,2 2) (11, 1) 1 
n

f u f u n n n . 

• ( ( ), ( )) (2 9,2 8) 1, 1  3
i i

f u f v i i j . 

• ( ( ), ( )) (2 9,2 10) 1,  4 . 
i j

f u f v i i i n  

Case 2: 1(mod11)n   

( ) 16
o

f u  

2 9  ,   1 2

( )   2 9 ,                  1

2 7 ,                        
i

i i n

f u n i n

n i n

 

2 8 ,                  1 3   

2 10 ,   4 2
( )

2 10,                     1

2 8 ,                           

j

j j

j j n
f v

n j n

n j n

 

This labeling is work since: 

• 
1

( ( ), ( )) (11,2 7) (11,2 4) (11, 2) 1
n

f u f u n n n  

 

 

• 

(2 9,2 8) 1,                   1 3   

(2 9,2 10) 1,          4 2
( ( ), ( ))

(2 9,2 10) 1,                   1

(2 7,2 8) 1,                          

i i

i i i

i i i n
f u f v

n n i n

n n i n

 

2335

"New Results on k -prime Labeling"



 

• 
1

( ( ), ( )) (2 7,2 9) (2 7,2) 1.
n n

f u f u n n n  

• 
2 1

( ( ), ( )) (2 5,2 9) (2 5,4)) 1.
n n

f u f u n n n  ∎ 

Theorem 3.10  
n
H  is 11-prime for all 𝑛 ≥ 3. 

Proof We have three cases : 

Case 1:  𝑛 ≡ 0(𝑚𝑜𝑑11) 

  Define 𝑓: V(Hn) → {11,12, … ,2𝑛 + 11} as follow:  

𝑓(𝑢0) = 16 

𝑓(𝑢𝑖) = 2𝑖 + 9  , 1 ≤ 𝑖 ≤ 𝑛 

𝑓(𝑣𝑗) = 2𝑗 + 8 , 𝑗 = 2,3 

𝑓(𝑣𝑗) = 2𝑗 + 10 , 4 ≤ 𝑗 ≤ 𝑛 − 1 

𝑓(𝑣1) = 2𝑛 + 10   

𝑓(𝑣𝑛) = 2𝑛 + 11   

This labeling is work since: 

• (𝑓(𝑢1), 𝑓(𝑢𝑛)) = (11,2𝑛 + 9) = (11,2𝑛 − 2) = (11, 𝑛 − 1) = 1  

• (𝑓(𝑢1), 𝑓(𝑣1)) =  (11,2𝑛 + 10) = (11,2𝑛 − 1) = 1  

Case 2: 𝑛 ≡ 1(𝑚𝑜𝑑11) 

𝑓(𝑢0) = 16 

𝑓(𝑢𝑖) = 2𝑖 + 9  , 1 ≤ 𝑖 ≤ 𝑛 − 1 

𝑓(𝑢𝑛) = 2𝑛 + 11 

𝑓(𝑣𝑗) = 2𝑗 + 8 , 𝑗 = 2,3 

𝑓(𝑣𝑗) = 2𝑗 + 10 , 4 ≤ 𝑗 ≤ 𝑛 − 1 

𝑓(𝑣1) = 2𝑛 + 10   

𝑓(𝑣𝑛) = 2𝑛 + 9 

This labeling is work since: 

• 
1

( ( ), ( )) (11,2 11) (11,2 ) (11, ) 1 
n

f u f u n n n   

• 
1 1

( ( ), ( )) (11,2 10) (11,2 1) 1f u f v n n  

• Case 3: 0 ,1 (mod11)n   

0
( ) 16f u  
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( ) 2 9  ,  1
i

f u i i n  

( ) 2 8 ,   2,3
j

f v j j  

( ) 2 10 ,  4
j

f v j j n  

1
( ) 2 11f v n  

This labeling is work since: 

• 
1

( ( ), ( )) (11,2 9) (11,2 2) (11, 1) 1,
n

f u f u n n n  as 

1(mod11)n . 

• 
1 1

( ( ), ( ))  (11,2 11) (11, ) 1,f u f v n n  as 0 (mod11)n .     

  

Theorem 3.11  If 2( 1)k n  and 2k n  are twin primes where 3n  and 1k , then 

n
H  is k -prime. 

Proof Clearly, k  must be an odd integer, define  

: ( ) { , 1,..., 2 }
n

f V H k k k n  as follows: 

( ) 2( 1)  , 1 
i

f u k i i n  

0
( ) 2f u k n  

( ) 2( 1) 1 2 1  ,  1
j

f v k j k j j n  

( ) ( ) 1 ( ( ), ( )) 1. 
i i i i

f u f v f u f v ∎ 

 Our previous results about the k -prime labeling of the helms for 2 11k  

motivated us to arise the following conjecture. 

Conjecture All helms are k -prime for every positive integer k . 
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