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This paper explores the use of the software package, Matlab and Excel in the implementation of the 

finite difference method to solve partial differential equations (PDE’s.). It aimed to examine the 

strength of the forward explicit method and backward implicit method in solving PDE’s. A 

comparison was made between the forward explicit method and the backward implicit method for 

their stability. The FDM method was used to solve partial differential equations of heat. Numerical 

examples were also created and analysed to show the strengths of each method. The results shows that 

the forward explicit method is conditionally stable because the stability it requires a small step size of  

time ‘t’ compared to space ‘x’ for stability. The backward implicit method is unconditionally stable 

because it depends on the local truncation error considerations. 
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1.  INTRODUCTION 

Many years ago, numerical simulation of engineering 

problems has been successfully implemented (de Campos, 

2014). In recent years, the study of fractional derivatives has 

added a significant improvement in both ordinary and partial 

differential equations. 

The idea of fractional calculus is considered as a situation of 

widespread activity in the fields of physics, mathematics, and 

engineering (Baleanu et al., 2010 and Uchaikin, V. V., 2013). 

The method allows us to solve various problems of applied 

mechanics. Due to successful solutions of the difficulties 

discussed, in particular, for problems with physical or 

geometrical nonlinearities, optimization and time and/or 

temperature dependence the forward difference method at 

irregular meshes is customary ample to be aggressive with the 

finite element approach (Liszka and Orkisz, 1980). Many 

time-dependent partial differential equations are observed 

combining low-order nonlinear with higher-order linear 

terms (Owolabi and Patidar, 2016). They in additional 

discretized the governing models in space with the usage of a 

fourth-order central finite difference scheme and integrating 

the resulting ODEs with the exponential time differencing 

schemes whose formulations were totally Runge-Kutta based 

and multistep techniques of Adams-type. 

A considerable number of physical problems are 

mathematically modelled by the systems of differential 

equations (Owolabi, 2017). An active research undertaken in 

this paper is nothing but finding efficient and accurate 

methods to numerically simulate partial differential 

equations. Among many authors that have studied the 

numerical simulations of such problems can be found in 

Bhrawy, et al. (2015) and Owolabi and Atangana, (2016). 

 

2.  FINITE DIFFERENCE APPROXIMATIONS 

The finite difference method involves using discrete 

approximation like 

𝜕𝜙

𝜕𝑥
≈

𝜙𝑖+1 − 𝜙𝑖

∆𝑥
 

Where 
𝜕𝜙

𝜕𝑥
 are define on the finite dfference mesh. 

Approximation to the behaviour of differential equation is 

obtained by replacing derivatives formulas such as those in 

the above equation. Observe that finding   𝜙𝑖
𝑚 from the finite 

difference model is a distinct stage from translating the 

continuous problem to the discrete problem. 

Finite difference formulas are initially developed with the 

dependent variable 𝜙 as a function of only one independent 

variable,𝑥 i.e 𝜙 = 𝜙(𝑥) the formula obtained are the use to 

approximate derivatives with respect to either space or time. 
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2.1 First order Forward Difference  

Consider a Taylor series expansion of 𝜙(𝑥) about the point 

𝑥𝑖   

𝜙(𝑥𝑖 + 𝛿𝑥) = 𝜙(𝑥𝑖) + 𝛿𝑥
𝜕𝜙(𝑥𝑖)

𝜕𝑥
 +𝛿𝑥2 𝜕𝜙2(𝑥𝑖)

𝜕𝑥2  

+𝛿𝑥3 𝜕3𝜙(𝑥𝑖)

𝜕𝑥3 + ⋯           (2) 

Where  𝛿𝑥 is a change in 𝑥 relative to 𝑥𝑖 . Let  𝛿𝑥 = ∆𝑥 in 

equation (2) 

Consider the value of 𝜙 at the location of 𝑥𝑖+1 mesh line. 

 

𝜙(𝑥𝑖 + ∆𝑥) = 𝜙(𝑥𝑖) + ∆𝑥
𝜕𝜙(𝑥𝑖)

𝜕𝑥
 +∆𝑥2 𝜕2𝜙(𝑥𝑖)

𝜕𝑥2  

+∆𝑥3 𝜕3𝜙(𝑥𝑖)

𝜕𝑥3 + ⋯  

Solve for (
𝜕𝜙

𝜕𝑥
)𝑥𝑖  

𝜕𝜙

𝜕𝑥
=

𝜙(𝑥𝑖 + ∆𝑥) − 𝜙(𝑥𝑖 )

∆𝑥
−

Δ𝑥

2

𝜕2𝜙

𝜕𝑥2
−

Δ𝑥2

3!

𝜕3𝜙

𝜕𝑥
+ ⋯ 

Observe that the powers of ∆𝑥 multiplying the partial 

derivatives on the right hand side have been reduced by one. 

Replacing the approximate solution for exact solution,  

That is, use ≈ 𝜙(𝑥𝑖) and 𝜙𝑖+1 ≈ 𝜙(𝑥𝑖 + ∆𝑥) 

𝜕𝜙(𝑥𝑖 )

𝜕𝑥
=

𝜙𝑖+1 − 𝜙𝑖

∆𝑥
−

∆𝑥

2

𝜕2𝜙

𝜕𝑥2
−

Δ𝑥2

3!

𝜕3𝜙

𝜕𝑥3
+ ⋯         (3) 

The mean value theorem can be used to replace the higher 

order derivatives. 

∆𝑥2

2

𝜕2𝜙(𝑥𝑖 )

𝜕𝑥2
+

Δ𝑥3

3!

𝜕3𝜙(𝑥𝑖 )

𝜕𝑥3
+ ⋯   =    

Δ𝑥2

2
  

𝜕2𝜙(𝜉)

𝜕𝑥2
  

Where 𝑥𝑖 ≤ 𝜉 ≤ 𝑥𝑛+1 known 

⇒
𝜕𝜙(𝑥𝑖 )

𝜕𝑥
≈

𝜙𝑖+1 − 𝜙𝑖

∆𝑥
+ 

Δ𝑥2

2
  

𝜕2𝜙(𝜉)

𝜕𝑥2
  

𝑜𝑟 
𝜕𝜙(𝑥𝑖 )

𝜕𝑥
−

𝜙𝑖+1 − 𝜙𝑖

∆𝑥
≈  

Δ𝑥2

2
  

𝜕2𝜙(𝜉)

𝜕𝑥2
                      (4) 

The term on the right-hand side (R.H.S) of equation of (4) is 

the truncation error of finite difference approximation. It is 

the resulting error from truncating the series in equation (3). 

Generally  𝜉 is not known. Moreover since the function 

𝜙(𝑥, 𝑡) is also unknown, 
𝜕2𝜙

𝜕𝑥2  cannot be computed. Despite 

the fact the magnitude of the truncation error cannot be 

known. The big ‘O’ notation can be used to express the 

dependence of the truncation error on the mesh spacing. 

Observe that the right hand side of the equation (4) contain 

mesh Parameter, ∆𝑥 , using the finite difference simulation 

parameter is choosing by the individual. 

The truncation error is written as 

Δ𝑥2

2
  

𝜕2𝜙(𝜉)

𝜕𝑥2
= 𝑂(  Δ𝑥2)                    

The above equation implies that the left hand side is a product 

of an unknown and Δ𝑥2. Although the expression does not 

give us the exact magnitude of   
Δ𝑥2

2
  

𝜕2𝜙(𝜉)

𝜕𝑥2  , it gives us an 

idea on how quickly the term approaches zero as ∆𝑥  is 

reduced. 

Equation (4) can be written, in terms of the big ‘O’ notation 

𝜕𝜙(𝑥𝑖 )

𝜕𝑥
=

𝜙𝑖+1 − 𝜙𝑖

∆𝑥
+  𝑂(Δ𝑥)                                 (5) 

The resulting equation (5) is called the forward difference 

formula for  
𝜕𝜙(𝑥𝑖 )

𝜕𝑥
  because it involves nodes 𝑥𝑖 and  𝑥𝑖+1 . 

The forward difference approximation has a truncation error 

that is 𝑂(Δ𝑥). Mostly the part of the truncation error is under 

control because we can choose the mesh size Δ𝑥.while the 

|
𝜕𝜙

𝜕𝑥
|  is not under control. 

2.2 First order Backward Difference 

Another way to find the first order if the Taylor series in the 

equation 2 is written with 

𝛿𝑥 = −∆𝑥. 

by using the discrete mesh variables in place of the unknowns 

we get 

𝜙𝑖−1 = 𝜙𝑖 −  Δ𝑥
𝜕𝜙(𝑥𝑖 )

𝜕𝑥
+

Δ𝑥2

2

𝜕2𝜙(𝑥𝑖)

𝜕𝑥2 −

Δ𝑥3

3!

𝜕3𝜙(𝑥𝑖)

𝜕𝑥3 + ⋯  

Solving 
𝜕𝜙(𝑥𝑖 )

𝜕𝑥
 to get 

𝜕𝜙(𝑥𝑖 )

𝜕𝑥
=

𝜙𝑖+1 − 𝜙𝑖

∆𝑥
+

Δ𝑥

2

𝜕2𝜙(𝑥𝑖)

𝜕𝑥2
−

Δ𝑥2

3!

𝜕3𝜙(𝑥𝑖)

𝜕𝑥3
+ ⋯ 

Using the big ‘O’ notation 

𝜕𝜙(𝑥𝑖 )

𝜕𝑥
=

𝜙𝑖 − 𝜙𝑖−1

∆𝑥
+ 𝑂(Δ𝑥)                       (6) 

The resulting formula is called the backward difference 

because of 𝜙 at 𝑥𝑖 and  𝑥𝑖−1. The order of magnitude of the 

truncation error for the backward difference approximation is 

the same as that of the forward difference approximation. We 

can find the first order difference formula for 
𝜕𝜙(𝑥𝑖 )

𝜕𝑥
  with 

smaller truncation error. 

2.3 First order central difference 

Writing the Taylor series expansions for  𝑥𝑖+1 and  𝑥𝑖−1 

𝜙𝑖+1 = 𝜙𝑖 + Δ𝑥
𝜕𝜙(𝑥𝑖)

𝜕𝑥
+

Δ𝑥2

2

𝜕2𝜙(𝑥𝑖)

𝜕𝑥2
+

Δ𝑥3

3!

𝜕3𝜙(𝑥𝑖)

𝜕𝑥3

+ ⋯          (7) 

𝜙𝑖−1 = 𝜙𝑖 − Δ𝑥
𝜕𝜙(𝑥𝑖)

𝜕𝑥
+

Δ𝑥2

2

𝜕2𝜙(𝑥𝑖)

𝜕𝑥2
−

Δ𝑥3

3!

𝜕3𝜙(𝑥𝑖)

𝜕𝑥3

+ ⋯          (8) 

Subtracting (8) from (7), we have  

𝜙𝑖+1 − 𝜙𝑖−1 = 2 Δ𝑥
𝜕𝜙(𝑥𝑖)

𝜕𝑥
+ 2

Δ𝑥3

3! 

𝜕3𝜙(𝑥𝑖)

𝜕𝑥3
+ ⋯ 

Solving for  
𝜕𝜙(𝑥𝑖 )

𝜕𝑥
 gives  

𝜕𝜙(𝑥𝑖 )

𝜕𝑥
=

𝜙𝑖+1 − 𝜙𝑖−1

2 Δ𝑥
−

Δ𝑥3

3! 

𝜕3𝜙(𝑥𝑖)

𝜕𝑥3
+ ⋯ 

Or  
𝜕𝜙(𝑥𝑖 )

𝜕𝑥
=

𝜙𝑖+1−𝜙𝑖−1

2 Δ𝑥
+

𝑂(Δ𝑥2)                                                             (9) 

Equation (9) is the central difference approximation to 
𝜕𝜙(𝑥𝑖 )

𝜕𝑥
 

.In order to obtain a very good approximation to the 

continuous problem, we choose small value for Δ𝑥. the 

truncation error goes to zero much faster than the truncation 

error in equation (5). Equation (9) involve complication 

because it does not include the value for 𝜙𝑖 . When the central 

difference approximation is included in an approximation to 

a differential equation it may cause problem. 
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2.4 Second Order Central Difference 

Finite difference approximations to higher order derivatives 

can be evaluated with the additional manipulations of the 

Taylor series expansion about 𝜙(𝑥𝑖). Adding equation (7) 

and equation (8) yields 

𝜙𝑖+1 + 𝜙𝑖−1 = 2𝜙𝑖 + 𝛿𝑥2
𝜕2𝜙(𝑥𝑖)

𝜕𝑥2
+ 2

δ𝑥4

4! 

𝜕4𝜙(𝑥𝑖)

𝜕𝑥4
+ ⋯ 

Solving for 
𝜕2𝜙(𝑥𝑖)

𝜕𝑥2   , 

𝜕2𝜙(𝑥𝑖)

𝜕𝑥2
=

𝜙𝑖+1 − 2𝜙𝑖 + 𝜙𝑖−1

Δ𝑥2
+

δ𝑥4

4! 

𝜕4𝜙(𝑥𝑖)

𝜕𝑥4
+ ⋯ 

 

Or  

𝜕2𝜙(𝑥𝑖)

𝜕𝑥2
=

𝜙𝑖+1 − 2𝜙𝑖 + 𝜙𝑖−1

Δ𝑥2

+ 𝑂(Δ𝑥2)                                       (10) 

This is called the central approximation to the second 

derivative, where (9) is the central approximations to the first 

derivative. 

 

3. APPLICATIONS 

Consider 𝑓(𝑥) = 𝑠𝑖𝑛22𝜋𝑥 with the boundary condition 

𝜙(0, 𝑡) = 𝜙(1, 𝑡) = 0 for all time. 

 
Fig.1 approximate solution of heat equation with step sizes h =0.1, k = 0.004. Method is stable. 

 

With time the initial temperature should diffuse away, 

resulting to a graph like the one shown in fig 1. In the graph 

the forward scheme is used with step size h = 0.1 along the 

rod and k = 0.004 in time. The explicit forward difference 

method gives the approximate solution. In fig.a, the smooth 

flow of heat is shown to a near equilibrium after less than one 

time units. This corresponds to the temperature of the rod 𝑢 →

0 as 𝑡 → ∞. 

 
Fig. 2. Approximate solution of heat equation with step sizes h =0.1, k = 0.004. Method is unstable. 
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In fig. 2 is slightly large time step, at the beginning, the heat 

bumps start to die down as expected but after additional time 

steps, small lapses in the estimate get to be amplified by the 

forward difference method, causing the answer for move far 

from right equilibrium of zero. This is a sign that the 

technique is unstable. If the recreation were permitted to 

continue further, these errors would develop without bound. 

Therefore, we are forced to keep the time step k somewhat 

little to ensure convergence. 

Applying the backward difference method to heat equation, 

𝜙𝑡 = 𝜙𝑥𝑥 for all 0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0 

𝜙(𝑥, 0) = 𝑠𝑖𝑛22𝜋𝑥 for all 0 ≤ 𝑥 ≤ 1 

𝜙(0, 𝑡) = 0 for all 𝑡 ≥ 0 

𝜙(1,0) = 0 for all 𝑡 ≥ 0 

Using the step sizes h=k=0.1 we have the approximate 

solution in figure below 

 
Fig. 3. Approximate solution of example 1 by the backward Difference Method. 

 

The step sizes ℎ = 𝑘 = 0.1 and the diffusion coefficient D = 1. 

Applying the backward difference method to the problem in 2. Above. With homogeneous Neumann boundary conditions. 

 
Fig. 4. Approximate solution of example (1) by Backward Difference Method with step sizes ℎ = 𝑘 = 0.05. 

Fig.4 shows that the boundary conditions are no longer fixed at zero with Neumann condition. 

 

4. CONCLUSION 

In this research we study numerical techniques to solve partial 

differential equations. The finite difference method was 

implemented with forward time centred space (FTCS) 

scheme and numerical examples were also created on excel 
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and Matlab and examined to investigate the accuracy and 

strength of the method. 

The backward time space scheme implemented in Matlab and 

numerically analysed to investigate the strength and accuracy 

of this method. 

The results revealed that with a numerical analysis, the 

backward difference method are preferred over the forward 

difference method since the forward difference method 

require a very small time step in comparison to space step 

sizes and will only converge if  𝛼2 𝑘

ℎ2  ≤
1

2
. 
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