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In this research, we present analytical solution of two phase incompressible flow through a 

homogeneous porous medium.  Water was injected at one end of the porous medium to stimulate oil 

recovery at the other end.  From the modelled equations, we are able to determine pressure variation 

at different depth profiles.  The results revealed increase in pressure as depth increases.  This is in line 

with what is obtainable in practical scenarios. 
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1.  INTRODUCTION 

The study of fluid flow through porous media consists of 

solving the conservation of mass and the balance of 

momentum on a representative elementary volume (REV).  

This is essential to numerous environmental, biological and 

industrial systems; such as the movement of contaminants in 

the subsurface and their remediation, geologic nuclear waste 

disposal, medical application such as brain and liver cancer 

treatment and most notably in oil recovery from petroleum 

reservoirs Arezou et al. (2019) are some examples of porous 

media transport.  In petroleum reservoirs, the inherent 

heterogeneity of subsurface porous media, as well as the 

complexity involved in the multiphase physics, highlights 

some of the most important technological challenges of our 

time (Knut-Andreas, 2015; Pan and Miller 2003; Nagi, 2009).    

One of such complexities is that there are no definite flow 

paths in porous media thereby making porous media flow 

capacity as a function of pressure difficult to estimate.  Due 

to the complex nature of multiphase flow, nonlinearity of 

their governing equations and reservoir intricacies, finding 

analytical solutions to practical fluid flow problems is 

extremely difficult and rarely reported in literature; thereby, 

motivating the present study.   In this study, we analytically 

solve and analyzed one dimensional case of two phase flow 

scenario where water is injected at one end of a cylindrical 

porous slab in form of a pipe to stimulate oil production at the 

other end as shown in figure 2.1. 

 

2. ANALYTICAL SOLUTION OF ONE-

DIMENSIONAL INCOMPRESSIBLE POROUS 

MEDIA FLOW 

In order to determine the analytical solution of one 

dimensional incompressible flow equation through porous 

media, the following assumptions are made (i)   the flow is 

along a single spatial dimension x  (ii) the reservoir model 

has a constant cross-sectional area A  at all locations x   

with length 
Lx  and (iii) the rock and fluids are 

incompressible and there are no sources and sinks.  

Furthermore, water is injected at a specified volumetric flow 

rate Q  at location 0x   which stimulates fluid production 

at 
Lx x .  The effect of capillary pressure is neglected as is 

often done in two-phase reservoir studies; Jiseng and Shuyu 

(2010)  

                           
Figure 2.1: Schematic Reservoir Model 
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The equations describing our system are as follows: 
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Where , , , , , , , , ,w o w o w o rw ros s u u k k K P   refer to as 

water saturation, oil saturation, velocity of the water phase, 

velocity of the oil phase, viscosity of water, viscosity of oil, 

relative permeability of water, relative permeability of oil, 

absolute permeability and pressure respectively Ahmed and 

Mckinney (2005), Aziz and Settari (1979), Cheng (2012), 

Zhengxin et, al (2006) and Darcy (1856). 

adding equations (2.1) and (2.2) results to 
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equation (2.6) implies that the total superficial velocity is 

independent of location ( that is, it is constant throughout the 

domain).  In this study, the total superficial velocity 
tu  is 

known at 0x  (
t

Q
u

A
  ), where Q  is the volumetric flow 

rate injected.  Note that 𝑢𝑡 in this context does not imply 

change in 𝑢 with respect to time 𝑡 but a symbol to represent 

the combine velocity of the two fluids.  Thus the solution of 

equation (2.6) is 

t w ou u u      (2.7) 

Fractional flow of water 
wf by Tore and Eyvind (2008) is 

defined as: 
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Now, using (2.8); equation (2.1) can be written as: 
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Eliminating the pressure gradients in equations (2.3) and (2.4) 

we have: 
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With equation (2.10) the following relation for 
wf is obtained 

using equations (2.7) – (2.9): 
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Since the relative permeabilities are functions of saturation, 

equation (2.9) can be expressed as: 
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Given appropriate initial and boundary conditions, we can 

solve equation (2.12) for saturation distribution ( , )wS x t .  

For brevity, let ,S f  and 'f represent water saturation, 

fractional flow of water and derivative of fractional flow of 

water with respect to saturation respectively.  With these 

notations, equation (2.12) alongside its initial and boundary 

conditions become: 
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where 
roS  is the residual oil saturation.  Now, from equation 

(2.3), we can solve for the pressure ( , )P x t .  From the 

definition of fractional flow of water 
wf  in equation (2.8); 

equation (2.3) can be written as      
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by specifying the pressure at 0x  , the appropriate 

boundary condition on pressure is given as: 
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The solution to equations (2.16) and (2.17) is 
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In this study, we are particularly interested in the pressure 

drop across the reservoir model; thus equation (2.18) is 

written as: 
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3.  PRESSURE GRADIENT DETERMINATION 

This research also help to determine the analytical solution of 

one dimensional incompressible porous media flow as given 

in equation (2.19).  Here we present the numerical values of 

change in pressure with reservoir depth.  The parameter data 

presented in table 3.1 are adopted from Tore and Eyvind 

(2008) to determine the pressure gradient at different depths 

of the reservoir.
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Table 3.1: Test case Parameter values  

S/N Parameter Value 

1 Viscosity of water 
w  [ /kg ms ] 0.001 

2 Viscosity of oil 
o   [ /kg ms ] 0.02 

3 Total superficial velocity 
tu  [ /m s ] 0.02 

4 
Phase permeability of water 

rwkk [
2m  

0.003 

5 Fractional flow of water f  [ /m s ]  0.0105 

6 Initial pressure  [ Psi ]  10000 

7 Reservoir depths  [ m ]  100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 

 

The parameter values from table 3.1 when applied to equation (2.19), gave the following values for ( , )LP x t  as displayed in table 

3.2. 

 

Table 3.2: Determination of total pressure and pressure gradient 

S/N (m)Lx  ( , ) [Psi]LP x t  [ ]P Psi  

1 100 10002.1 2.1 

2 200 10004.2 4.2 

3 300 10006.3 6.3 

4 400 10008.4 8.4 

5 500 10010.5 10.5 

6 600 10012.6 12.6 

7 700 10014.7 14.7 

8 800 10016.8 16.8 

9 900 10018.9 18.9 

10 1000 10021 21 

 

Table 3.2 clearly shows that the pressure ( , )LP x t  has a linear relationship with depth. 

 

 
Figure 3.3: Pressure versus depth line graph 

 

Figure 3.3 is a line graph plotted with the results presented in 

table 3.2.  The graph reveals that as the depth increases, the 

pressure gradient also increases. This result is in line with 

physical reality; that is pressure increases with depth. 

4.  RESULTS AND DISCUSSION 

4.1 CONCLUSION 

In this research, we present analytical solution of two phase 

incompressible flow through a homogeneous porous medium.  
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Water was injected at one end of the porous medium to 

stimulate oil recovery at the other end.  From the modelled 

equation, we are able to determine pressure variation at 

different depth profile.  The results  revealed increase in 

pressure as depth increases.  This is in line with what is 

obtainable in practical scenarios. Sufficient understanding of 

pressure distribution within and the vicinity of production 

wells would be of great asset to oil exploration practitioners. 

This will aid in the establishment of effective reservoir 

monitoring and pressure maintenance plans in order to 

improve ultimate recovery from the target reservoir and other 

reservoir systems alike.   
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