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1. BASIC NOTATIONS AND BACKGROUND 

Let 𝜄: ℕ × ℕ → 𝜏 be a function, where 𝜏 may stand for any 

nonempty set and ℕ a set of counting numbers. Then (𝑗, 𝑘) →

𝜄(𝑗, 𝑘) = 𝑥𝑗𝑘 can be termed to be a double sequence. 

In 2018, see (Polat, 2018), the Pascal sequence 

spaces  𝑝∞, 𝑝𝑐  and 𝑝0 were introduced. If  𝑃 denote the Pascal 

means, then 𝑝∞, 𝑝𝑐  and 𝑝0 are sets of all sequences whose 

 𝑃 −transforms were in  𝑙∞, 𝑐 and 𝑐0, the spaces of bounded, 

convergent and null sequences respectively. In 1991 (see 

Moricz, 1991), the sequence spaces 𝑐 and 𝑐0 were extended 

to double sequence spaces. Motivated by the work of Moricz, 

this paper will try to extend the sequence spaces of Pascal, 

which are, 𝑝∞, 𝑝𝑐  and 𝑝0 to double sequence spaces; and 

study their properties. However, we need to fix some 

notations. 

 Let  𝜔2 be a vector space of all complex valued 

double sequences for which coordinatewise addition and 

scalar multiplications are defined. Further, a vector subspace 

of 𝜔2 is termed as a double sequence space. The space  𝑙∞
2  

denotes the space of all bounded sequences with 

norm‖𝑥‖∞ = sup
𝑗,𝑘∈ℕ

|𝑥𝑗𝑘| < ∞,𝑁 = {1,2,3, … }. If 𝑥 = 𝑥𝑗𝑘 ∈

ℂ, then  𝑥 is convergent to a number  𝑙 in Pringsheim’s sense 

if for every 𝜀 > 0, there exists a number 𝑛0 = 𝑛0(𝜀) ∈ ℕ and 

𝑙 ∈ ℂ such that  |𝑥𝑗𝑘 − 𝑙| < 𝜀 ∀ 𝑗, 𝑘 ≥ 𝑛0, and we write 𝑃 −

lim
𝑗,𝑘→∞

𝑥𝑗𝑘 = 𝑙,  ℂ being the complex field, see (Pringsheim, 

1900).  𝑐2 is used to denote the space of all convergent double 

sequences in Pringsheim’s sense and  𝑐2 not need to be 

bounded. Also,  𝑐𝑏
2 is the space of all double sequences which 

are both convergent in Pringsheim’s sense and bounded; that 

is,  𝑐𝑏
2 = 𝑐2 ∩ 𝑙∞

2 .  𝑐0
2 is the space of all double sequences 

converging to zero in Pringsheim’s sense, that is,  𝑐0𝑏
2 = 𝑐0

2 ∩

 𝑙∞
2 . The following sequence spaces, see (Moricz, 1991) will 

be useful in the sequel: 

𝑙∞
2 = {𝑥 = (𝑥𝑗𝑘) ∈  𝜔2 : sup

𝑗,𝑘≥1
|𝑥𝑗𝑘| < ∞}, 

𝑐2 = {𝑥 = (𝑥𝑗𝑘) ∈  𝜔2 : ∃ 𝑙 ∈ ℂ ∋ lim
𝑗,𝑘→∞

|𝑥𝑗𝑘| = 𝑙}, 

𝑐0
2 = {𝑥 = (𝑥𝑗𝑘) ∈  𝜔2 : lim

𝑗,𝑘→∞
|𝑥𝑗𝑘| = 0}, 

 𝑐𝑏
2 = {𝑥 = (𝑥𝑗𝑘) ∈  𝜔2: 𝑥 ∈ 𝑐2 ∩ 𝑙∞

2 }, 

 𝑐0𝑏
2 = {𝑥 = (𝑥𝑗𝑘) ∈  𝜔2: 𝑥 ∈ 𝑐0

2 ∩ 𝑙∞
2 }. 

 Let 𝑋 and 𝑌 be two double sequence spaces and  𝐴 =

(𝑎𝑚𝑛𝑗𝑘) be any four-dimensional infinite matrix of complex 

numbers. Then 𝐴 is said to define a matrix mapping from 𝑋 

into 𝑌 and write 𝐴: 𝑋 → 𝑌, if for every 𝑥 = (𝑥𝑗𝑘) ∈  𝑋, the 

 𝐴 −transform  𝐴𝑥 = {(𝐴𝑥)𝑚𝑛}𝑚𝑛  of 𝑥 exists and is in 𝑌, that 

is, 

(𝐴𝑥)𝑚𝑛 = 𝑃 − ∑𝑎𝑚𝑛𝑗𝑘𝑥𝑗𝑘

𝑚,𝑛

𝑗,𝑘

                (1) 

for each 𝑚, 𝑛 ∈ ℕ, exists. The  𝑣 −matrix domain 𝜒𝐴
(𝑣)

 of  𝐴 

in  𝑋 is defined by 

𝜒𝐴
(𝑣)

= {𝑥 = (𝑥𝑗𝑘)

∈  𝜔2: 𝑃

− ∑𝑎𝑚𝑛𝑗𝑘𝑥𝑗𝑘

𝑚,𝑛

𝑗,𝑘

 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎𝑛𝑑 𝑖𝑠 𝑖𝑛 𝑌}. 
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Clearly, (1) suggests that 𝐴 maps 𝑋 into 𝑌 if 𝑋 ⊂ 𝑌𝐴
(𝑣)

; and 

 (𝑋: 𝑌) can denote the set of all four-dimensional matrices 

transforming 𝑋 into 𝑌. 𝐴 = (𝑎𝑚𝑛𝑗𝑘) ∈ (𝑋: 𝑌) if, and only if 

the double series on the right of (1) converges in Pringsheim’s 

sense for each 𝑚, 𝑛 ∈ ℕ, that is, 𝐴𝑚𝑛 ∈ 𝜒𝛽(𝑣) for all 𝑗, 𝑘 ∈ ℕ 

and any 𝑥 ∈ 𝑋 to have 𝐴𝑥 ∈ 𝑌 for all 𝑥 ∈ 𝑋.  

 It is well known that 𝐴 = (𝑎𝑚𝑛𝑗𝑘) is a triangular 

matrix if 𝑎𝑚𝑛𝑗𝑘 = 0 for 𝑗 > 𝑚, 𝑘 > 𝑚 or both, and 𝑎𝑚𝑛𝑗𝑘 ≠

0 for all 𝑚, 𝑛 ∈ ℕ. Every triangular matrix has a unique 

inverse which also happens to be a triangular matrix too (see 

Cooke, 1950). 

 

2. Pascal Double Sequence Spaces 

 Pascal matrix existed for a very long time. It used to 

be of a finite order, not until 2002, see (Aggarwala & 

Lamoureux, 2002) where the authors declared that there was 

no reason, whatsoever, to stop at a finite matrix of this type 

for, one can extend the Pascal matrix of finite order to an 

infinite lower triangular matrix. We felt that this extension 

aroused Polat in his paper (Polat, 2018) to introduce some 

Pascal sequence spaces, each which is a matrix domain via 

infinite Pascal matrix as follows: 

(𝑙∞)𝑃 = 𝑝∞ = {𝑥 = (𝑥𝑘) ∈ 𝜔: sup
𝑛

|∑(
𝑛

𝑛 − 𝑘
)

𝑛

𝑘

𝑥𝑘| < ∞} 

(𝑐)𝑃 = 𝑝𝑐 = {𝑥 = (𝑥𝑘) ∈ 𝜔: lim
𝑛→∞

∑(
𝑛

𝑛 − 𝑘
)

𝑛

𝑘

𝑥𝑘  𝑒𝑥𝑖𝑠𝑡𝑠} 

(𝑐0)𝑃 = 𝑝0 = {𝑥 = (𝑥𝑘) ∈ 𝜔: lim
𝑛→∞

∑(
𝑛

𝑛 − 𝑘
)

𝑛

𝑘

𝑥𝑘 = 0} 

This paper will therefore wish to introduce Pascal double 

sequence spaces,  𝑝∞
2 , 𝑝𝑐

2, 𝑝𝑏𝑐
2  and 𝑝0

2 as matrix domains of 

four-dimensional Pascal matrix, but, first we define the four-

dimensional Pascal matrix  𝑃 = (𝑝𝑚𝑛
𝑗𝑘

) as follows: 

𝑝𝑚𝑛
𝑗𝑘

= {
(

𝑚

𝑚 − 𝑗
) (

𝑛

𝑛 − 𝑘
) , 0 ≤ 𝑗 ≤ 𝑚, 0 ≤ 𝑘 ≤ 𝑛

0                      , 𝑗 > 𝑚 𝑎𝑛𝑑 𝑘 > 𝑛.
         (2) 

with inverse  𝑃−1 = 𝑄 = (𝑞𝑚𝑛
𝑗𝑘

) defined by 

𝑞𝑚𝑛
𝑗𝑘

= {
(−1)(𝑚−𝑗)+(𝑛−𝑘) (

𝑚

𝑚 − 𝑗
) (

𝑛

𝑛 − 𝑘
) , 0 ≤ 𝑗 ≤ 𝑚, 0 ≤ 𝑘 ≤ 𝑛

0                                                     , 𝑗 > 𝑚 𝑎𝑛𝑑 𝑘 > 𝑛.
   

                       (3) 

 Now, we introduce the extensions of the spaces 

𝑝∞, 𝑝𝑐 , 𝑎𝑛𝑑 𝑝0 denoted by 𝑝∞
2 , 𝑝𝑐

2, 𝑝𝑏𝑐
2  and 𝑝0

2 as the 

collections of all double sequences such that each 

 𝑃 −transform of them are in the spaces  𝑙∞
2 , 𝑐2, 𝑐𝑏

2 and 𝑐0
2 

respectively; as follows: 

𝑝∞
2 = {𝑥 = (𝑥𝑗𝑘) ∈ 𝜔2: sup

𝑚,𝑛
| ∑ (

𝑚

𝑚 − 𝑗
) (

𝑛

𝑛 − 𝑘
) 𝑥𝑗𝑘

𝑚,𝑛

𝑗,𝑘=0

|

< ∞}                                        (4) 

𝑝𝑐
2

= {𝑥 = (𝑥𝑗𝑘)

∈ 𝜔2: ∃𝑙 ∈ ℂ ∋ lim
𝑚,𝑛→∞

∑ (
𝑚

𝑚 − 𝑗
) (

𝑛

𝑛 − 𝑘
) 𝑥𝑗𝑘

𝑚,𝑛

𝑗,𝑘=0

= 𝑙}                        (5) 

𝑝𝑏𝑐
2

= {𝑥 = (𝑥𝑗𝑘)

∈ 𝜔2: ( ∑ (
𝑚

𝑚 − 𝑗
) (

𝑛

𝑛 − 𝑘
)𝑥𝑗𝑘

𝑚,𝑛

𝑗,𝑘=0

) ∈ 𝑐𝑏
2}           (6) 

𝑝0
2 = {𝑥 = (𝑥𝑗𝑘) ∈ 𝜔2: lim

𝑚,𝑛→∞
∑ (

𝑚

𝑚 − 𝑗
) (

𝑛

𝑛 − 𝑘
) 𝑥𝑗𝑘

𝑚,𝑛

𝑗,𝑘=0

= 0}                                          (7) 

 Let 𝜒𝐴 = {𝑥 = (𝑥𝑗𝑘) ∈ 𝜔2: 𝐴𝑥 ∈ 𝑋} be a matrix 

domain of a four-dimensional matrix 𝐴, then the Pascal 

sequence spaces in (4), (5), (6) and (7) are also matrix 

domains, as 𝑝∞
2 = (𝑙∞

2 )𝑃, 𝑝𝑐
2 = (𝑐2)𝑃 ,  𝑝𝑏𝑐

2 = (𝑐𝑏
2)𝑃 and 

 𝑝0
2 = (𝑐0

2)𝑃, respectively; while  𝑃 −transform of a double 

sequence space  𝑥 = (𝑥𝑗𝑘) in (4), (5), (6) or (7) can be defined 

as 

𝑦𝑚𝑛 = (𝑃𝑥)𝑚𝑛

= ∑ (
𝑚

𝑚 − 𝑗
) (

𝑛

𝑛 − 𝑘
) 𝑥𝑗𝑘

𝑚,𝑛

𝑗,𝑘=0

                                    (8) 

Each of the spaces 𝑝∞
2 , 𝑝𝑐

2, 𝑝𝑏𝑐
2  and 𝑝0

2 is linear and can be 

normed with a norm given as ‖𝑃𝑥‖𝑙∞
2  and defined by 

‖𝑃𝑥‖∞

= sup
𝑚,𝑛

| ∑ (
𝑚

𝑚 − 𝑗
) (

𝑛

𝑛 − 𝑘
) 𝑥𝑗𝑘

𝑚,𝑛

𝑗,𝑘=0

|                            (9) 

 

Theorem 1: The double sequence spaces 𝑝∞
2 , 𝑝𝑐

2, 𝑝𝑏𝑐
2  and 𝑝0

2 

are 𝐵𝐾 spaces. 

Before the proof, we look at the following: 

Lemma 1: Malkowsky & Racocevic, 2000, P. 178: Let 𝑇 be 

a triangle and  (𝑋, ‖∙‖) be a 𝐵𝐾 space with ‖𝑥‖𝑇 = ‖𝑇(𝑥)‖ 

with norm defined in (9). 

We can now proof Theorem 1. 
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Proof: It is sufficient to prove the theorem for 𝑝∞
2 . Since 𝑙∞

2  

is a  𝐵𝐾 space, we define a map  A𝑃:  𝑝∞
2 → 𝑙∞

2  by Α𝑃(𝑥) =

𝑃(𝑥) ∀ 𝑥 ∈  𝑝∞
2 . Since 𝑃 is a triangular matrix, then Α𝑃 is 

linear, 0ne-to-one and onto. If A𝑃
−1 is the inverse of A𝑃, it is 

also linear, one-to-one and onto, so that  𝑝∞
2 = A𝑃

−1( 𝑙∞
2 ) is a 

Banach space. It remains to show the coordinates are 

continuous in 𝑙∞
2 . To do this, let  𝑥𝑗𝑘 → 𝑥 in 𝑝∞

2 . Then 𝑦𝑗𝑘
[𝑟,𝑠] =

𝑃(𝑥[𝑟,𝑠]) ⟹ 𝑦𝑗𝑘 = 𝑃(𝑥), since 𝑙∞
2  is a 𝐵𝐾 space. Let  𝑃−1 =

𝑄 be the inverse of 𝑃, which is also a triangle. Then 𝑥𝑚𝑛
[𝑟,𝑠] =

∑ 𝑄𝑦𝑚𝑛
[𝑟,𝑠]𝑚,𝑛

𝑗,𝑘=0 → ∑ 𝑄𝑦𝑚𝑛
𝑚,𝑛
𝑗,𝑘=0 = 𝑥. This shows that the 

coordinates are continuous on 𝑝∞
2 . Hence  𝑝∞

2  is a 𝐵𝐾 space.  

Definition 1 [Loganathan & Moorthy, 2016]: A double 

sequence  (𝑥𝑗𝑘) in an infinite dimensional space  𝑋 is called 

a double basis in  𝑋 if for every 𝑥 ∈ 𝑋, there exists a unique 

double sequence of scalars  (𝛼𝑗𝑘) such that ∑(𝛼𝑗𝑘)(𝑥𝑗𝑘) → 𝑥, 

that is 𝑥 = ∑𝛼𝑗𝑘𝑥𝑗𝑘. 

Definition 2 [Loganathan & Moorthy, 2016]: A double 

sequence  (𝑥𝑗𝑘)𝑗,𝑘=0

∞
 in a double sequence space  𝑋 is called 

a Schauder double basis if, for every 𝑥 ∈ 𝑋, there exists a 

unique double sequence of scalars (𝜆𝑗𝑘)𝑗,𝑘=0

∞
  such that 𝑥 =

∑ 𝜆𝑗𝑘𝑥𝑗𝑘
∞
𝑗,𝑘=0 . 

Definition 3 [Rao & Subramanian, 2004 ]: An  𝐹𝐾 space (or 

a metric space) is said to have an  𝐴𝐾 −property if  (𝛿𝑗𝑘
𝑚𝑛)is 

a Schauder double basis for 𝑋 or equivalently  𝑥[𝑚,𝑛] → 𝑥, 

where 𝑥[𝑚,𝑛] = ∑ 𝑥𝑗𝑘𝛿𝑗𝑘
𝑚,𝑛
𝑗,𝑘=0   ∀  𝑚, 𝑛, 𝑗, 𝑘 ∈ ℕ, and  

 (𝛿𝑗𝑘
𝑚𝑛) = 𝛿𝑗𝑘 =

[
 
 
 
 
0, 0, ⋯ , 0, 0, ⋯
0, 0, ⋯ , 0, 0, ⋯
⋮
0,
0,

⋮
0,
0,

⋮
⋯ ,
⋯ ,

⋮
1,
0,

⋮ ⋮
0, ⋯
0, ⋯]

 
 
 
 

 with 1 in the 

(𝑚, 𝑛)th position and 0 elsewhere. 

Theorem 2: Let 𝑚, 𝑛, 𝑗, 𝑘 ∈ ℕ and define  𝑞(𝑗𝑘) = {𝑞(𝑗𝑘)}
𝑚𝑛

 

by  

𝑞𝑚𝑛
𝑗𝑘

= {
0                                                            , 𝑗 > 𝑚 𝑎𝑛𝑑 𝑘 > 𝑛 𝑜𝑟 𝑏𝑜𝑡ℎ,

(−1)(𝑚−𝑗)+(𝑛−𝑘) (
𝑚

𝑚 − 𝑗) (
𝑛

𝑛 − 𝑘
) , 0 ≤ 𝑘 ≤ 𝑛 𝑎𝑛𝑑 0 ≤ 𝑗 ≤ 𝑚.

 

Then the following statements are correct: 

a) The set  {𝑞(𝑗𝑘)} is a double basis for the double 

sequence space 𝑝0
2 such that any  𝑥 ∈ 𝑝0

2 has a 

unique representation of the form 

 𝑥 = ∑𝜁𝑗𝑘𝑞(𝑗𝑘)

𝑗𝑘

;                                            (10) 

where 𝜁𝑗𝑘 = (𝑃𝑥)𝑗𝑘   ∀  𝑗, 𝑘 ∈ ℕ. 

b) The set  {𝑒, 𝑞(𝑗𝑘)} is a double basis for the double 

sequence space  𝑝𝑐
2, such that any  𝑥 ∈ 𝑝𝑐

2 has a 

unique representation of the form  

𝑥 =  𝑙𝑒 + ∑ (𝜁𝑗𝑘 −𝑗𝑘

𝑙)𝑞(𝑗𝑘)                                                                                                   (11) 

where 𝑙 = lim
𝑗,𝑘→∞

(𝑃𝑥)𝑗𝑘                           (12) 

c) 𝑝0
2 has 𝐴𝐾 property. 

Proof: 

a) We want to show that {𝑞(𝑗𝑘)} ⊂ 𝑝0
2. Since  𝑃𝑞𝑗𝑘 =

𝑒𝑗𝑘 ∈ 𝑐0
2 for 𝑗, 𝑘 = 0,1,2, …,  𝑒𝑗𝑘 is a double 

sequence whose non-zero term is 1 in the  (𝑗, 𝑘)𝑡ℎ 

place for each 𝑗, 𝑘. Now, let 𝑥 ∈ 𝑝0
2. 

For every r and s, we write 

𝑥[𝑟,𝑠] =

∑ 𝜁𝑗𝑘
𝑟,𝑠
𝑗,𝑘=0 𝑃𝑞(𝑗𝑘)                                                                                                          (13)

 𝑃 is continuous. So, we can apply  𝑃 to (10) to have 

𝑥[𝑟,𝑠] = ∑ 𝜁𝑗𝑘

𝑟,𝑠

𝑗,𝑘=0

𝑃𝑞(𝑗𝑘) = 𝑥[𝑟,𝑠]

= ∑ (𝑃𝑥)𝑗𝑘𝑒
𝑗𝑘

𝑟,𝑠

𝑗,𝑘=0

          (14) 

and  {𝑃(𝑥 − 𝑥[𝑟,𝑠])}
𝑖𝑡

=

{
0 , 0 ≤ 𝑖 ≤ 𝑟 & 0 ≤ 𝑡 ≤ 𝑠
(𝑃𝑥)𝑖𝑡          , 𝑖 > 𝑟 & 𝑡 > 𝑠

. Let 𝜀 > 0 be given. 

Then there exist  𝑟0 and 𝑠0 such that |(𝑃𝑥)𝑟,𝑠| <
𝜀

2
  ∀ 𝑟 > 𝑟0 and 𝑠 > 𝑠0. Therefore,  

‖𝑥 − 𝑥[𝑟,𝑠]‖
𝑝0

2 = sup
𝑖,𝑡>𝑟,𝑠

|(𝑃𝑥)𝑗𝑚|

≤ sup
𝑚,𝑛>𝑟0,𝑠0

|(𝑃𝑥)𝑗𝑘| ≤
𝜀

2
< 𝜀  

 ∀ 𝑟 > 𝑟0 and 𝑠 > 𝑠0. Clearly, this shows that 𝑥 ∈

𝑝0
2 as in (10). 

Next, we show the uniqueness of the representation 

of  𝑥 in (10). For this, suppose on the contrary that 

there exists another representation of 𝑥 =

∑ 𝜉𝑗𝑘𝑞(𝑗𝑘)
𝑗𝑘 . The linear transformation  𝑃: 𝑝0

2 → 𝑐0
2 

is continuous. It implies that we can have 

(𝑃(𝑥))
𝑚𝑛

= ∑ 𝜉𝑗𝑘(𝑃𝑞(𝑗𝑘))
𝑚𝑛

𝑗,𝑘

= ∑𝜉𝑗𝑘𝑒
𝑗𝑘

𝑗,𝑘

= 𝜉𝑗𝑘           (𝑗, 𝑘 ∈ ℕ), 

which is a clear contradiction to the fact that 

 (𝑃(𝑥))
𝑚𝑛

= 𝜁𝑗𝑘. So, the representation (10) is 

unique. This completes the proof of (a).  

b) Clearly,  {𝑞(𝑗𝑘)} ⊂ 𝑝0
2 and 𝑃𝑞 = 𝑒 ∈ 𝑐2. Hence, the 

inclusion {𝑒, 𝑞(𝑗𝑘)} ⊂ 𝑝𝑐
2. Next, we take  𝑥 ∈ 𝑝𝑐

2 

arbitrary. Then there exists a unique  𝑙 satisfying 

(12). Let us set 𝑧 = ∑ (𝜁𝑗𝑘 − 𝑙)𝑞(𝑗𝑘)
𝑗𝑘 , then  𝑧 ∈ 𝑝0

2 

whenever 𝑧 = 𝑥 − 𝑙𝑞. Thus, the representation of  𝑧 

is also unique like  𝑥 in (10).  

c) Let  𝑥 = (𝑥𝑗𝑘) ∈ 𝑝0
2 and take the  (𝑟, 𝑠)𝑡ℎ sectional 

sequence of  𝑥, i.e. 

𝑥[𝑟,𝑠] = ∑ 𝑥𝑗𝑘𝛿𝑗𝑘

𝑟,𝑠

𝑗,𝑗=0

  ∀  𝑟, 𝑠 ∈ ℕ. 
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Then we have ‖𝑥 − 𝑥[𝑟,𝑠]‖
𝑝0

2 = sup
𝑟,𝑠

|𝑥𝑗𝑘| → 0, 

which implies that  𝑥[𝑟,𝑠] → 𝑥 in  𝑝0
2 as 𝑟, 𝑠 → ∞. 

Thus,  𝑝0
2 has  𝐴𝐾 property.  

Definition 4 [Basar & Sever, 2009]: A double sequence space 

𝑋 is solid if, and only if �̃� = {𝑢 = (𝑢𝑗𝑘) ∈ 𝜔2: ∃ 𝑥 = (𝑥𝑗𝑘) ∈

𝑋 such that |𝑢𝑗𝑘| ≤ |𝑥𝑗𝑘| 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗, 𝑘 ∈ ℕ} ⊂ 𝑋. 

Definition 5 [Yesilkayagil & Basar, 2016]: The space  𝑋 of 

double sequence spaces is monotone if  𝑥𝑢 = (𝑥𝑗𝑘𝑢𝑗𝑘) ∈ 𝑋 

for𝑒 very  𝑥 = (𝑥𝑗𝑘) ∈ 𝑋 and 𝑢 = (𝑢𝑗𝑘) ∈ 𝜒2, where 𝜒2 

denotes the double sequence space of 0s and 1s. 

Theorem 3: The double sequence spaces 𝑝∞
2 , 𝑝𝑐

2, 𝑝𝑏𝑐
2  and 𝑝0

2 

are not monotone. 

Proof: We prove for  𝑝0
2 and that of the rest can be done 

similarly. So, 𝑥 = (𝑥𝑗𝑘) and  𝑢 = (𝑢𝑗𝑘) by  𝑥𝑗𝑘 =

(
1

2
)

𝑗+𝑘

 and  𝑢𝑗𝑘 = {
1, if 𝑗 + 𝑘 is even
0,        otherwise

  respectively.  Then  

 𝑧 = (𝑧𝑗𝑘) = (𝑥𝑗𝑘)(𝑢𝑗𝑘)

= ∑ (
𝑚

𝑚 − 𝑗) (
𝑛

𝑛 − 𝑘
) (

1

2
)

𝑗+𝑘

𝑢𝑗𝑘

𝑚,𝑛

𝑗,𝑘=0

 

= ∑(
𝑚

𝑚 − 𝑗) (
1

2
)

𝑗𝑚

𝑗=0

∑ (
𝑛

𝑛 − 𝑘
)

𝑛

𝑘=0

(
1

2
)

𝑘

∑ 𝑢𝑗𝑘

𝑚,𝑛

𝑗,𝑘=0

 

= 2𝑚+𝑛 ∑(
1

2
)

𝑗𝑚

𝑗=0

∑ (
1

2
)

𝑘𝑛

𝑘=0

∑ 𝑢𝑗𝑘

𝑚,𝑛

𝑗,𝑘=0

 

= 2𝑚 (1 −
1

2𝑚
) 2𝑛 (1 −

1

2𝑛
) ∑ 𝑢𝑗𝑘

𝑚,𝑛

𝑗,𝑘=0

 

= (2𝑚 − 1)(2𝑛 − 1) ∑ 𝑢𝑗𝑘

𝑚,𝑛

𝑗,𝑘=0

 

𝑥𝑗𝑘 = lim
𝑚,𝑛→∞

(2𝑚 − 1)(2𝑛 − 1) = ∞ 

Therefore, 𝑧𝑗𝑘 = (𝑥𝑗𝑘)(𝑢𝑗𝑘) ∉ 𝑝0
2. Hence, 𝑝0

2 is not 

monotone. 

Theorem 4: The sets  𝑝∞
2  and 𝑝𝑏𝑐

2  are linear spaces with 

coordinatewise addition and scalar multiplication, and are 

Banach spaces with the norm 

 

 ||𝑥||̃
∞ = sup

𝑚,𝑛∈ℕ
|(𝑃𝑥)𝑚𝑛|                                              (15) 

which are  linearly isomorphic to the spaces  𝑙∞
2  and 𝑐𝑏

2, 

respectively. That is, 𝑝∞
2 ≅ 𝑙∞

2  and 𝑝𝑏𝑐
2 ≅ 𝑐𝑏

2. 

Proof: To avoid repetition of same sense in different words, 

the proof of the theorem is only given for 𝑝∞
2 . The first part 

of the theorem is a routine verification, where it can be easily 

seen that (i)  𝑝∞
2  is not empty; (ii) the sum of any two elements 

in  𝑝∞
2  is also in  𝑝∞

2 ; and (iii) the scalar multiplication  𝛼𝑥 ∈

𝑝∞
2   ∀ 𝛼 ∈ ℂ and 𝑥 ∈ 𝑝∞

2 . Thus,  𝑝∞
2  is a linear space with 

coordinatewise addition and scalar multiplication. Now, we 

can show that 𝑝∞
2  is a Banach space with the norm defined by 

(15). Let  (𝑥𝛼)𝛼∈ℕ be any Cauchy sequence in the space 𝑝∞
2 , 

where  𝑥𝛼 = {𝑥𝑗𝑘
(𝛼)}

𝑗,𝑘=0

∞
 for every fixed 𝛼 ∈ ℕ. Then for a 

given 𝜀 > 0, there exists a positive integer  𝑁 = 𝑁(𝜀) such 

that  

‖𝑥𝛼 − 𝑥𝛽‖
𝑝∞

2 = sup
𝑚,𝑛∈ℕ

| ∑ (
𝑚

𝑚 − 𝑗) (
𝑛

𝑛 − 𝑘
) (𝑥𝑗𝑘

𝛼 − 𝑥𝑗𝑘
𝛽
)

𝑚,𝑛

𝑗,𝑘=0

|

< 𝜀   ∀ 𝛼, 𝛽 > 𝑁 

which yields for each  𝑚, 𝑛 ∈ ℕ that  

| ∑ (
𝑚

𝑚 − 𝑗) (
𝑛

𝑛 − 𝑘
)𝑥𝑗𝑘

𝛼

𝑚,𝑛

𝑗,𝑘=0

− ∑ (
𝑚

𝑚 − 𝑗) (
𝑛

𝑛 − 𝑘
)𝑥𝑗𝑘

𝛽

𝑚,𝑛

𝑗,𝑘=0

|

< 𝜀. 

This means that  (∑ (
𝑚

𝑚 − 𝑗) (
𝑛

𝑛 − 𝑘
)𝑥𝑗𝑘

𝛼𝑚,𝑛
𝑗,𝑘=0 )

𝛼∈ℕ
 is a 

Cauchy sequence with complex terms for every fixed 𝑚, 𝑛 ∈

ℕ. Since  ℂ is complete, it converges, i.e. 

∑ (
𝑚

𝑚 − 𝑗) (
𝑛

𝑛 − 𝑘
) 𝑥𝑗𝑘

𝛼

𝑚,𝑛

𝑗,𝑘=0

→ ∑ (
𝑚

𝑚 − 𝑗) (
𝑛

𝑛 − 𝑘
) 𝑥𝑗𝑘

𝑚,𝑛

𝑗,𝑘=0

 𝑎𝑠 𝛼

→ ∞                                               (16) 

It can now be seen by (16) that 

lim
𝛼→∞

‖ ∑ (
𝑚

𝑚 − 𝑗) (
𝑛

𝑛 − 𝑘
) 𝑥𝑗𝑘

𝛼

𝑚,𝑛

𝑗,𝑘=0

− ∑ (
𝑚

𝑚 − 𝑗) (
𝑛

𝑛 − 𝑘
) 𝑥𝑗𝑘

𝑚,𝑛

𝑗,𝑘=0

‖

𝑝∞
2

= 0. 

Since (∑ (
𝑚

𝑚 − 𝑗) (
𝑛

𝑛 − 𝑘
) 𝑥𝑗𝑘

𝛼𝑚,𝑛
𝑗,𝑘=0 )

𝑚,𝑛∈ℕ
∈ 𝑝∞

2  for each 

fixed 𝛼 ∈ ℕ, there exists a positive real number  𝐾𝛼  such that  

sup
𝑚,𝑛∈ℕ

| ∑ (
𝑚

𝑚 − 𝑗) (
𝑛

𝑛 − 𝑘
) 𝑥𝑗𝑘

𝛼

𝑚,𝑛

𝑗,𝑘=0

| ≤ 𝐾𝛼 . 

Therefore, taking supremum over  𝑚, 𝑛 in the following 

relation 

| ∑ (
𝑚

𝑚 − 𝑗) (
𝑛

𝑛 − 𝑘
)𝑥𝑗𝑘

𝑚,𝑛

𝑗,𝑘=0

| 

= | ∑ (
𝑚

𝑚 − 𝑗) (
𝑛

𝑛 − 𝑘
) 𝑥𝑗𝑘

𝑚,𝑛

𝑗,𝑘=0

− ∑ (
𝑚

𝑚 − 𝑗) (
𝑛

𝑛 − 𝑘
) 𝑥𝑗𝑘

𝛼

𝑚,𝑛

𝑗,𝑘=0

+ ∑ (
𝑚

𝑚 − 𝑗) (
𝑛

𝑛 − 𝑘
) 𝑥𝑗𝑘

𝛼

𝑚,𝑛

𝑗,𝑘=0

| 

≤ | ∑ (
𝑚

𝑚 − 𝑗) (
𝑛

𝑛 − 𝑘
) 𝑥𝑗𝑘

𝑚,𝑛

𝑗,𝑘=0

− ∑ (
𝑚

𝑚 − 𝑗) (
𝑛

𝑛 − 𝑘
) 𝑥𝑗𝑘

𝛼

𝑚,𝑛

𝑗,𝑘=0

|

+ | ∑ (
𝑚

𝑚 − 𝑗) (
𝑛

𝑛 − 𝑘
)𝑥𝑗𝑘

𝛼

𝑚,𝑛

𝑗,𝑘=0

| 

       ≤ 𝜀 + 𝐾𝛼 . 
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This shows that 𝑥 = (𝑥𝑗𝑘) ∈ 𝑝∞
2 . Since  {𝑥𝛼}𝛼∈ℕ is an 

arbitrary Cauchy sequence, then the space  𝑝∞
2  is complete. 

Thus,  𝑝∞
2  is a Banach space with the norm  ‖𝑥‖𝑝∞

2 =

sup
𝑚,𝑛

|(𝑃𝑥)𝑚𝑛|. 

To prove the fact that  𝑝∞
2  is linearly isomorphic to 𝑙∞

2 , we 

have to show the existence of a linear bijection between the 

spaces 𝑝∞
2  and 𝑙∞

2 . Consider the transformation  𝜏 defined 

from 𝑝∞
2  to 𝑙∞

2  by 𝑥 ↦ 𝑦 = 𝜏𝑥 = {(𝑃𝑥)𝑚𝑛}. Clearly, 𝜏 is 

linear,  𝜏(𝑢) + 𝜏(𝑣) = 𝜏(𝑢 + 𝑣) for all 𝑢 = (𝑢𝑗𝑘), 𝑣 =

(𝑣𝑗𝑘) ∈ 𝑝∞
2 ; and  𝐾 ∙ 𝜏(𝑥) = 𝜏(𝐾𝑥) for all  𝐾 ∈ ℂ, 𝑥 =

(𝑥𝑗𝑘) ∈ 𝑝∞
2 . Further, we can see that  𝑥 = 𝜃 whenever  𝜏𝑥 =

𝜃 which shows that  𝜏 is injective. Now, let  𝑦 = (𝑦𝑗𝑘)  ∈  𝑙∞
2  

and define a sequence 𝑥 = (𝑥𝑗𝑘) via 𝑦 by 

𝑥𝑗𝑘 = ∑ (−1)(𝑗−𝑢)+(𝑘−𝑣)

𝑗,𝑘

𝑢,𝑣=0

(
𝑗

𝑗 − 𝑢
) (

𝑘
𝑘 − 𝑣

) 𝑦𝑢𝑣   ∀ 𝑢, 𝑣

∈ ℕ. 

Hence, by taking into account the hypothesis 𝑦 ∈ 𝑙∞
2 , one can 

derive by taking supremum over  𝑚, 𝑛 ∈ ℕ on the following 

equality 

|(𝑃𝑥)𝑚𝑛|

= | ∑ (
𝑚

𝑚 − 𝑗) (
𝑛

𝑛 − 𝑘
)

𝑚,𝑛

𝑗,𝑘=0

∑ (−1)(𝑗−𝑢)+(𝑘−𝑣)

𝑗,𝑘

𝑢,𝑣=0

(
𝑗

𝑗 − 𝑢
) (

𝑘
𝑘 − 𝑣

)𝑦𝑢𝑣|

= |𝑦𝑚𝑛|. 

That is, ‖𝑃𝑥‖∞ = ‖𝑦‖∞, which implies that  𝑥 ∈ 𝑝∞
2 . 

Therefore,  𝜏 is surjective. Hence,  𝑝∞
2 ≅ 𝑙∞

2 .  

Theorem 5: The sets  𝑝𝑐
2 and 𝑝0

2 become linear spaces with 

the coordinatewise addition and scalar multiplication which 

are linearly isomorphic to the spaces  𝑐2 and  𝑐0
2 respectively; 

and 𝑝𝑐
2 and 𝑝0

2 are complete seminormed spaces with the 

seminorm 

 

 ‖𝑥‖ = lim
𝑘→∞

[ sup
𝑚,𝑛≥𝑘

|(𝑃𝑥)𝑚𝑛|]. 

Proof: The proof is similar to the proof of theorem 4. 

Theorem 6: The inclusions  𝑙∞
2 ⊂ 𝑝∞

2  and 𝑐𝑏
2 ⊂ 𝑝𝑐

2 strictly 

holds. 

Proof: Suppose we take any 𝑥 = (𝑥𝑗𝑘) ∈ 𝑙∞
2 , then there exists 

a positive real number  𝐾 such that sup
𝑗𝑘

|𝑥𝑗𝑘| ≤ 𝐾. Therefore, 

one can see that 

sup
𝑚,𝑛∈ℕ

|(𝑃𝑥)𝑚𝑛| = sup
𝑚,𝑛∈ℕ

| ∑ (
𝑚

𝑚 − 𝑗) (
𝑛

𝑛 − 𝑘
) 𝑥𝑗𝑘

𝑚,𝑛

𝑗,𝑘=0

| 

        = sup
𝑚,𝑛∈ℕ

|2𝑚+𝑛 ∑ 𝑥𝑗𝑘

𝑚,𝑛

𝑗,𝑘=0

| 

                  ≤ 2𝑚+𝑛 sup
𝑚,𝑛∈ℕ

| ∑ 𝑥𝑗𝑘

𝑚,𝑛

𝑗,𝑘=0

| ≤ 𝐾. 

That means that 𝑥 ∈ 𝑝∞
2 . Now, consider the sequence  𝑥 =

(𝑥𝑗𝑘) defined by 

𝑥𝑗𝑘 = {
(−1)𝑗2−𝑗 , 𝑘 = 0, 𝑗 ∈ ℕ
0              , otherwise.

 

It is obvious that  𝑥 ∈ 𝑝∞
2 ∖ 𝑙∞

2  which shows that the inclusion 

𝑙∞
2 ⊂ 𝑝∞

2  strictly holds. The other part can similarly be shown. 
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