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1. BASIC NOTATIONS AND BACKGROUND

Let : N X N — 7 be a function, where T may stand for any
nonempty set and N a set of counting numbers. Then (j, k) —
1(j, k) = x;; can be termed to be a double sequence.

In 2018, see (Polat, 2018), the Pascal sequence
spaces p., p. and p, were introduced. If P denote the Pascal
means, then p.,, p. and p, are sets of all sequences whose
P —transforms were in [, c and c, the spaces of bounded,
convergent and null sequences respectively. In 1991 (see
Moricz, 1991), the sequence spaces c and c, were extended
to double sequence spaces. Motivated by the work of Moricz,
this paper will try to extend the sequence spaces of Pascal,
which are, p.,p. and p, to double sequence spaces; and
study their properties. However, we need to fix some
notations.

Let w? be a vector space of all complex valued
double sequences for which coordinatewise addition and
scalar multiplications are defined. Further, a vector subspace
of w? is termed as a double sequence space. The space [2
denotes the space of all bounded sequences with
norm||x||, = sup |xjk| <o, N={123,..}. Ifx=x;€

j.keN

C, then x is convergent to a number [ in Pringsheim’s sense
if for every € > 0, there exists a number n, = ny(¢) € N and
1 € C such that |x;, — I| < &V j, k >n,, and we write P —
lim x; =1, C being the complex field, see (Pringsheim,

Jj,k—oo

1900). c? is used to denote the space of all convergent double
sequences in Pringsheim’s sense and c? not need to be
bounded. Also, cZ is the space of all double sequences which
are both convergent in Pringsheim’s sense and bounded,; that

is, ¢2=c?n 1. c¢ is the space of all double sequences
converging to zero in Pringsheim’s sense, that is, ¢Z, = ¢Z N
12,. The following sequence spaces, see (Moricz, 1991) will
be useful in the sequel:

15 = {X = (%) € w?: suplag| < 00},
k=1
2 = {x = (x]-k) € w?:31leC > j'lléinoolxjkl = l},

ct = {x = (%) € w?: j‘lng|xjk| = 0},
c2={x= (x]-k) € whxecin 12},
ety ={x=(x) € w:xecin IZ}.

Let X and Y be two double sequence spacesand A =
(@mnji) be any four-dimensional infinite matrix of complex
numbers. Then A is said to define a matrix mapping from X
into ¥ and write A: X - Y, if for every x = (xj;,) € X, the
A —transform Ax = {(AX)mn}mn Of x existsand isin Y, that
is,

mn
A =P = ) Gy (1)
Tk

for eachm,n € N, exists. The v —matrix domain x{” of 4
in X is defined by

Xfxv) =\x = (xjk)
€ w*: P
mmn

- Z AmnjikXjk exists and isinY ;.
jk
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Clearly, (1) suggests that A maps X intoY ifX c Yf’); and
(X:Y) can denote the set of all four-dimensional matrices
transforming X into Y. A = (@i ) € (X:Y) if, and only if
the double series on the right of (1) converges in Pringsheim’s
sense for eachm,n € N, that is, 4,,, € y#® forall j,k € N
and any x € X to have Ax € Y for all x € X.

It is well known that A = (aynx) is a triangular
matrix if a,,,;, = 0 forj >m,k > mor both, and ap,,j, #
0 for allm,n € N. Every triangular matrix has a unique
inverse which also happens to be a triangular matrix too (see
Cooke, 1950).

2. Pascal Double Sequence Spaces

Pascal matrix existed for a very long time. It used to
be of a finite order, not until 2002, see (Aggarwala &
Lamoureux, 2002) where the authors declared that there was
no reason, whatsoever, to stop at a finite matrix of this type
for, one can extend the Pascal matrix of finite order to an
infinite lower triangular matrix. We felt that this extension
aroused Polat in his paper (Polat, 2018) to introduce some
Pascal sequence spaces, each which is a matrix domain via

n

infinite Pascal matrix as follows:
n
D" )| <]
k

— — - . l C n .
(©p =P = fx = (w) € w: lim Z (") exists

(" 5]

This paper will therefore wish to introduce Pascal double
sequence spaces, p3,pZ,pi.andp2 as matrix domains of
four-dimensional Pascal matrix, but, first we define the four-

(eo)p = Poo = {x = (%) € w: sup

n

(co)p =po = {x = (xy) € w: rlll_r&

dimensional Pascal matrix P = (pi,) as follows:

AT (") 0sismosksn

P =3 \m —j )
0 ,j>mandk > n.

with inverse P~1 = Q = (g;x,) defined by

Gnn

B m n
—_1)(m=)+(n-k) P
(-1) ( _j)(n_k),OS]Sm,OSkSn

0 ,j>mandk > n.
3)
Now, we introduce the extensions of the spaces
Do, Derand p, denoted by pZ,pZ pi. andpé as the
collections of all double sequences such that each
P —transform of them are in the spaces [2,c?, c? and c?
respectively; as follows:

mn
m n
ps ={x = (%) € wz:snl:,? Z (m—j)(n—k)xjk
Jj,k=0
< o (4)
pé
=<X = (x]'k)
mn
N | " )m
ew.Elle(CBmgglm‘ (m—j (n_k)x]k
Jj,k=0
=1 (5)
Phe
=<X = (xjk)
mmn
m n
€W z<m—j)(n—k)xjk €< ©
jk=0
mmn
. m n
pg =% = (x3) € w2=m¥}£‘m (m —j) (n - k) g
jk=0
=0 7

Let x, = {x = (xjx) € w?: Ax € X} be a matrix
domain of a four-dimensional matrix 4, then the Pascal
sequence spaces in (4), (5), (6) and (7) are also matrix
domains, aspé = (1%)p, pZ =(c*)p, phc = (cj)r and
pé = (c3)p, respectively; while P —transform of a double
sequence space x = (x;;) in (4), (5), (6) or (7) can be defined
as

o Ymn = (PX)mn
DN BIRN

Each of the spaces p2,p?2, pi. and pZ is linear and can be
normed with a norm given as ||Px||;z, and defined by
1Px][ o

mn

o Z (mni j) (s . ) ®)

j k=0

Theorem 1: The double sequence spaces p2, p2, pZ. and p2
are BK spaces.

Before the proof, we look at the following:

Lemma 1: Malkowsky & Racocevic, 2000, P. 178: Let T be
a triangle and (X, [|-]]) be a BK space with ||x||; = |IT(x)I|
with norm defined in (9).

We can now proof Theorem 1.
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Proof: It is sufficient to prove the theorem for p2. Since I2
is a BK space, we define a map Ap: pZ - 12 by Ap(x) =
P(x) V x € p2. Since P is a triangular matrix, then A, is
linear, One-to-one and onto. If Az? is the inverse of Ap, it is
also linear, one-to-one and onto, so that p2 = Ap*(1%) isa
Banach space. It remains to show the coordinates are
continuous in I%. To do this, let x;, — x in pZ. Then y].[,:'s] =
P(xI"1) = y;, = P(x), since 2, is a BK space. Let P~ =
Q be the inverse of P, which is also a triangle. Then x,[,f;f] =
Dl s Qylrsl YTt QYmy = x. This  shows that the

coordinates are continuous on pZ. Hence pZ is a BK space.

Definition 1 [Loganathan & Moorthy, 2016]: A double
sequence (x;;) in an infinite dimensional space X is called
a double basis in X if for every x € X, there exists a unique
double sequence of scalars (a;; ) such that (e ) (x;x) = .
thatisx = Z a’]’kx]'k.

Definition 2 [Loganathan & Moorthy, 2016]: A double
sequence (xjk)szo in a double sequence space X is called
a Schauder double basis if, for every x € X, there exists a
unique double sequence of scalars (Ajk)j,kzo such that x =

ka:o Ajkxjk-

Definition 3 [Rao & Subramanian, 2004 ]: An FK space (or
a metric space) is said to have an AK —property if (&3")is
a Schauder double basis for X or equivalently x[m™ — x,

where  x[mnl =3 x 85 vV mmn,j,k€N,  and
[0 0, =, 0, 0, -

[0, 0, -, 0, 0, -]
(87m) = &) = l R S with 1 in the
0, o -, 1, 0O,
o, o, -, 0, O
(m,n)™ position and 0 elsewhere.

Theorem 2: Let m,n,j, k € N and define qU% = {qU"}

by
T

0 ,j >mand k > n or both,
= {(—1)<m-f>+<n-k> (mni j) (, n k),o <k<nand0<j<m.

Then the following statements are correct:
a) The set {qU®} is a double basis for the double
sequence space p2 such that any x € p3 has a

unigue representation of the form

x= ) 8qU; (10)
ik

where {j = (Px)jx V j,k €N,
b) The set {e,qU®} is a double basis for the double

sequence space pZ, such that any x € p2 has a
unigue representation of the form

Proof:
a)

b)

x = le +ij(<jk -

1)qUo

where [ = ,lkim (Px) jik (12)
J‘ —00

pé has AK property.

We want to show that {qU®} < p3. Since Pq/* =
ek ect forjk=012., e* is a double
sequence whose non-zero term is 1 in the (j, k)"

place  for eachj k. Now, letx € pj.
For every r and s, we write
xlrsl —

Z;:Ismo Gk Pq(jk)
P is continuous. So, we can apply P to (10) to have

s
xlrsl = Z (jk Pq(jk) = x[rs]
jk=0

7S
= > ot (s
j k=0

— ylrsl —

and {P(x — xS )}it =
{0,0SiSr&OStSs
(Px);t ,i>r&t>s
Then there exist 7, and s, such that |(Px),| <

~ Vr>rpands > s,. Therefore,

Let € >0 be given.

[l = <1, = sup |(P) jm|
Po Lt>r,s

< sup |(Px)jk|S§<£

m,n>ry,So

Vr>r,ands > s,. Clearly, this shows that x €
pé asin (10).

Next, we show the uniqueness of the representation
of x in (10). For this, suppose on the contrary that
there exists another representation ofx =
¥k €1 qY"). The linear transformation P: pg — c?
is continuous. It implies that we can have

(PO, = D E(PUD), = gjee®
Jk J.k

=&k U,k €N),
which is a clear contradiction to the fact that
(P(x))mn = (jx. So, the representation (10) is
unique. This completes the proof of (a).
Clearly, {gU®} c p2 and Pq = e € c?. Hence, the
inclusion {e, qU®} c p2. Next, we take x € p?
arbitrary. Then there exists a unique [ satisfying
(12). Letus set z = ¥ ;5 (¢jx — 1)qY", then z € p3
whenever z = x — lq. Thus, the representation of z
is also unique like x in (10).
Let x = (x;;) € p? and take the (r,s)™ sectional
sequence of x, i.e.

s

x[r,s] — Z xjk6jk vV rseN.
J,j=0
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Then we have ||x — x[s||_, = sup|x;,| - 0,
Do r.s

which implies that x[™1 = x in pZ asr,s — oo.
Thus, pZ has AK property.

Definition 4 [Basar & Sever, 2009]: A double sequence space
Xissolid if, and only if X = {u = () € 0?13 x = (x,) €
X such that || < |xi| for all j, k € N} c X.

Definition 5 [Yesilkayagil & Basar, 2016]: The space X of
double sequence spaces is monotone if xu = (xjw;) € X
fore very x = (x) € X andu = (uj,) € x% where 2
denotes the double sequence space of Os and 1s.

Theorem 3: The double sequence spaces p2, p2, pi. and p?

are not monotone.

Proof: We prove for p3 and that of the rest can be done

similarly. So, x = (xjk) and u = (ujk) by xj, =
PAVAL _ (1,ifj + kis even
(_) and w;, = {0, otherwise

z=(zy) = (xjk)(ui'r’:?)l

respectively. Then

mmn
=@ -DE =D ) we
j,k=0
Xp = lim 2™ -1D@2"-1) =00
m,n—-oo
Therefore, zj, = (xj;)(w)  p2. Hence, p} is not
monotone.
Theorem 4: The sets pZ and pZ, are linear spaces with
coordinatewise addition and scalar multiplication, and are
Banach spaces with the norm

1%[leo = sup [(Px)nl (15)

mneN

which are linearly isomorphic to the spaces [% and cZ,
respectively. That is, p = [2 and p?. = c?.

Proof: To avoid repetition of same sense in different words,
the proof of the theorem is only given for pZ. The first part
of the theorem is a routine verification, where it can be easily
seenthat (i) p2 is not empty; (ii) the sum of any two elements
in pZ isalso in p2; and (iii) the scalar multiplication ax €
pE Va €C and x € p2. Thus, pZ is a linear space with
coordinatewise addition and scalar multiplication. Now, we
can show that p2 is a Banach space with the norm defined by
(15). Let (x%),ey be any Cauchy sequence in the space p2,

where x® = {xjk(“)};okzo for every fixed @ € N. Then for a

given € > 0, there exists a positive integer N = N (&) such
that

mmn
m n
e =2l = sup | D" (=) (2 ) Cof = xf)
! J,k=0
<& Va >N
which yields for each m,n € N that

mn mn
m m
Zo(m—j) (nfk)x;" - Zo(m—j) (nfk)xﬁf
Jk= jk=
< E&.

. mn m n @ .
This means that (ZLk:O (m —j) (n _ k) x]-k)aEN is a
Cauchy sequence with complex terms for every fixed m,n €
N. Since C is complete, it converges, i.e.

mn
m
2 () G 2 )i
j,k=0
mmn
m
DN RAERE
fk=
- (16)
It can now be seen by (16) that
mn
m
gltl—r}c}o Z (m—j) (nﬁk)xlq
j,k=0
mmn
m
=2 = )G 2| =0
J,k=0 2

Poo

Since (27};10 (mﬂi j) (n n k) xﬁ()m'nEN € p2 for each

fixed @ € N, there exists a positive real number K, such that

mn

s [ ()" ) < ke

MEN |
mn fr=o

Therefore, taking supremum over m,n in the following
relation

> )6 )
2 GG Y G )G )
DN AR

IA
3

| 3
~.
N—r
Vot
s

| S
-
N—
\..>.<

&

|
3
|3
~.
N—
N
s

| S
=
N—
?‘:{a

Jj,k=0 Jj,k=0
mn
m
H D e ) )%
Jj,k=0
<e+K,.
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This shows thatx = (x;,) € p3. Since {x%},ey is an
arbitrary Cauchy sequence, then the space p2 is complete.
Thus, pZ is a Banach space with the norm llx|l,,z, =
sup| (Px)yn|.

mn

To prove the fact that p2 is linearly isomorphic to 2, we
have to show the existence of a linear bijection between the
spaces pZ and [%. Consider the transformation 7 defined
from p2 to 12 byx » vy =1x = {(Px),y,,}. Clearly, 7 is
linear, t(w)+tw)=t(u+v) for allu= (ujk),v =
(Vi) €p%; and K -t(x) =t(Kx) for all KeCx=
(xjx) € p5. Further, we can see that x = 6 whenever tx =
6 which shows that 7 is injective. Now, let y = (y;) € 12
and define a sequence x = (x;;.) via y by

)5 o v
€ N.

Hence, by taking into account the hypothesis y € 2, one can
derive by taking supremum over m,n € N on the following
equality

Jj.k
Xk = z (_1)(j—u)+(k—v)<i J

u,v=0

|(Px) mn
mn Jk
m n . _ ] k

= ; —1)U-w+(k-v)

Z(m—])(n—k)z( D (i— )(k—v

Jj,k=0 u,v=0
= |ymn|-
That is, ||IPx|le = |l¥ll, Which implies that x € p2.

Therefore, T is surjective. Hence, p2 = [2.

Theorem 5: The sets p2 and p2 become linear spaces with
the coordinatewise addition and scalar multiplication which
are linearly isomorphic to the spaces c? and cZ respectively;
and p? and p2 are complete seminormed spaces with the
seminorm

Il = Jim | sup [(Px)al|
=% Ilmnzk
Proof: The proof is similar to the proof of theorem 4.

Theorem 6: The inclusions 12 c pZ and ¢ c p? strictly
holds.

Proof: Suppose we take any x = (x;,) € 12, then there exists
a positive real number K such that sup|x;, | < K. Therefore,
jk

one can see that
mmn

.;0 (m”i j) (n . k) Xk

sup |(Px)mn| = sup

mneN m,neN

)yuv

mn
— m+n
= sup (2 Z Xjk
mneN :
J,k=0
mn
m+n
<2 sup Z Xji| < K.
m,neN | :
k=0

That means that x € p%. Now, consider the sequence x =
(xjx ) defined by
= {(—l)fZ‘f,k =0,j€EN
Ik 0 , otherwise.
It is obvious that x € p2 \ 12 which shows that the inclusion
12, < p2 strictly holds. The other part can similarly be shown.
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