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The approach for building cloud-ready fault-tolerant calculations by approximating functions 

method, which is an analytical-numerical part of Volterra integral equation method for solving 

1D+T nonlinear electromagnetic problems, is presented. The solving process of the original 

algorithm of the method is modified: it is broken down into the sequential chain of stages with a 

fixed number of sequential or parallel steps, each of which is built in a fault-tolerant manner and 

saves execution results in fault-tolerant storage for high availability. This economizes RAM and 

other computer resources and does not damage the calculated results in the case of a failure, and 

allows stopping and starting the calculations easily after manual or accidental shutdown. Also, the 

proposed algorithm has self-healing and data deduplication for cases of corrupted saved results. The 

presented approach is universal and does not depend on the type of medium or the initial signal. 

Also, it does not violate the natural description of non-stationary and nonlinear features, the unified 

definition of the inner and outer problems, as well as the inclusion of the initial and boundary 

conditions in the same equation as the original approximating functions method. The developed 

approach stress-tested on the known problems, stability checked and errors compared. 
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I. INTRODUCTION 

The interaction of electromagnetic fields with nonlinear 

media has fundamental importance for developing laser 

technologies, technologies of signal processing, optical 

communications, nanocomputers and others, where 

electromagnetic wave interacts with nonlinear media in time 

in bounded spatial regions. Solving process of such problems 

requires the development of adequate mathematical models 

involving new methods for solving initial-boundary 

problems of electrodynamics. The most practical problems 

are now solved using only numerical or analytical-numerical 

methods. 

Currently, methods based on direct digitization of Maxwell 

equations in differential form for constructing numerical 

algorithms for solving electrodynamics problems are very 

popular: FDTD [1], TLM method [2], FVTD [1, 3, 4]. The 

method of finite elements remains important in the time as 

well as in the frequency domains [5, 6]. These methods have 

high universality but often do not take into account particular 

features of the problem that deteriorates the solution quality. 

They also often have a number of essential restrictions when 

solving problems with non-stationary and nonlinear media 

such as the lack of difference schemes, the description of the 

boundary conditions, general stability, the solution accuracy, 

and high demand for computer resources. Exclusively 

numerical nature of these methods also hampers the 

qualitative analysis of the phenomenon under study. 

An alternative approach to the differential formulation of the 

problem is based on integral equations equivalent to Maxwell 

equations [7, 8]. Its key features are natural description of 

non-stationary and nonlinear features, unified definition of 

the inner and outer problems, and inclusion of initial and 

boundary conditions in the same equations – the equations 

form is the same for various media and does not depend on 

the initial signal equation. This significantly simplifies the 

problem statement and its solution process, based on the 

universal modeling algorithms for a wide range of 

electrodynamics problems [9, 10]. 

The one of the most promising analytical-numerical 

approach for obtaining solution in this case is the 
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approximating functions method [11, 12]. It is a particular 

case of the finite elements method that is based on a 

partitioning the definition region by cells and approximation 

of the desired function by orthogonal polynomials in each of 

them. The method reduces the calculation process to the 

problem of solving a system of nonlinear algebraic 

equations, for which there are many well-known methods, 

for example Newton’s method. 

This method in the classical formulation [12] involves 

constructing and solving a problem at once for the entire 

space and time domain. Failure at any stage of the solution 

process: during construction of a system of equations, during 

its solving, during calculation of the fields outside the 

inhomogeneity, etc. – leads to the need to restart the entire 

solution process from the beginning. Also, an increase in the 

size of the domain or a decrease in the simulation step leads 

to an increase in the size of the system of nonlinear equations 

and in the dimensions of the Jacobi matrix in Newton 

method in quadratic proportion. Because of this, the solving 

process may become too demanding on computational 

resources or simply impossible due to their limitations. So, 

all this shows that the original solution scheme is not fault-

tolerant with respect to either software or hardware failures 

and so is not could-ready. 

The construction of a cloud-ready fault-tolerant calculation 

scheme for approximating functions method for solving 

nonlinear integral equations that represents electromagnetic 

problems by Volterra integral equation method is 

demonstrated in this paper. 

 

II. THE APPROXIMATING FUNCTIONS METHOD 

The subject for consideration is the 2D Volterra integral 

equation of the second kind that describes electromagnetic 

processes in the space-time domain (1D+T) [9], which in the 

dimensionless variables [12] can be presented as follows 

   

 

 

 

 

min

min

0

0

0

, ,

1
,

1

2 1
,

1
,

.
1

,

L

H

E E

P

d

E

P

d

E









   

   



 

   


   





   


 

  
     

    
  

    
 

 
     

  
 

     
  





 (1) 

Here ( , )E    is the electric field inside or outside an 

inhomogeneity located in the spatial interval [0,1]  , 

0 ( , )E    is an undisturbed electric field without the 

inhomogeneity, ( , )P     is the polarization of the medium 

inside the inhomogeneity which has different 

electromagnetic characteristics than the environment outside 

of interval  [0,1]  ,    is the permittivity of the medium 

in the environment, 0  is the permittivity of vacuum, and 

lower limits are  

min

min

max(0, ),

max(0, 1).
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Equation contains the initial and boundary conditions and 

describes the electromagnetic field evolution in the time 

interval  0,T  . For points [0,1]   this integral 

equation formulates the problem for the inner field, the inner 

problem. Otherwise, it is the formula for calculation of the 

outer field through the inner one, the outer problem.    

Nonlinearity is introduced to Equation (1) by the features of 

the material inside the inhomogeneity which are described 

by the polarization 
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where  1 0 1 1    . The linear feature of the medium 

inside the inhomogeneity is described by the permittivity 

1 , the nonlinear features of the i-th order ( 2i  ) by 

nonlinear susceptibilities i .  

For solving Equation (1) by approximating functions 

method a mesh of semi-closed squares in the rectangle 

   0, 0,1D T   is constructed 
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where h is a square side, a spacing of the mesh. The solution 

to Equation (1) is constructed approximately as a sum of 

piecewise-smooth functions ,
ˆ ( , )i jE    each of which is 

determined in the corresponding grid cell ijD :  
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These functions are constructed from the four approximating 

polynomials of the special form [12] that can be written in 

general as follows: 

     1 2 1 2,
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with corresponding weighting coefficients ,i jc  that in fact 

are approximated values for the function Ê  from Equation 

(5) at the vertexes (i, j) of the cell:  ,
ˆ ,i jc E ih jh . 

Substitution of Equation (5) in (1) and calculation of the 

whole Equations (1) at the points  

 , , 0,n, 0,mi jih jh i j       (8) 

give the system of algebraic equations for the weighting 

coefficients ,i jc , that is solved by classical Newton method. 
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For the obtaining solution for an outer problem the fields of 

the reflected wave as well as of the transmitted one are 

represented in similar forms 
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where refm  and transm  are the minimal and maximal 

magnitudes of the spatial variable in the index units.  

The accuracy of the calculations is ensured by checking the 

energy balance, which is calculated after obtaining the 

solution to the inner problem. The energy flow on the 

inhomogeneity boundaries  0,1b   (0 for the left side 

boundary and 1 for the right one) is calculated according to 

[12] after which energy balance is calculated. 

 

III. FORMULATION OF THE APPROACH 

To build a cloud-ready scheme of solving process of the 

problem described above, the following approach is 

proposed.  

The actions of the described method of solving the problem 

must be divided into stages, each of which has only 

backward dependency. Each stage should be broken down 

into steps with no dependencies on each other or only with 

backward dependency on the results of previous steps. Steps 

can be executed in sequence or, if possible, in parallel mode. 

The results of execution of each stage step should be stored 

in fault-tolerant storage systems.  

A computational process built on such principles will save 

its state up to the current step of the current stage, which 

means that by fact it will be journaling for high-availability, 

the basic principles of which are described, for example, by 

the authors of Apache Kafka [13]. This means that if 

calculations are interrupted and restarted at an arbitrary 

time, they will automatically resume exactly from the last 

correctly executed and completely saved stage’s step before 

the moment of interruption. This will happen due to the 

automatic full restoration of the state of the computational 

process after a reload of all previously correctly executed 

stages and their steps from the storage of the results. In case 

of missing or corrupted saved results, only the results up to 

the first correct one should be loaded, and the rest should be 

discarded. Execution will continue as if the discarded results 

have not yet been obtained. 

It is also important to keep in mind that in cases of short-

term interruption of the network connection or other 

reasons, duplicate data may appear in storage due to their 

repeated sending. To solve this problem, it is necessary to 

load the calculation results in a way that relies on the 

unambiguous difference between the results of two arbitrary 

stages and stage steps, which will provide automatic data 

deduplication on the client side of the storage system. 

IV. APPLICATION OF THE APPROACH TO THE PROBLEM 

To apply the approach discussed in the previous section for 

the approximation functions method let’s break down its 

algorithm into the following stages: 

1. Calculating the initial field values at all mesh points 

necessary for the solving inner and outer problems; 

2. Solving inner problem; 

3. Solving outer problem; 

4. Calculating the energy flow and balance and checking 

the accuracy of the obtained solution. 

Stage 1 is trivial. The calculation of the initial field value at 

one mesh point is a stage step, which, obviously, can be 

performed in parallel. Also the storage of stage results must 

allow random or at least sequential access for using the 

results in the stages 2 and 3. 

To solve the inner problem at stage 2 it is necessary to split 

the whole domain D from Equation (4) into subdomains 

(windows) 
wD  

,

0, n/K 1,

wD D

w



   

 (10) 

where K is the window size in index units, a multiple of the 

step h, w is a window number.  

The size in time domain of each window must be a multiple 

of the mesh step h, and in spatial domain it must fill the 

entire area  0,1  : 
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The solving of whole inner problem then is divided into its 

sequential solving in windows 
wD . The system of nonlinear 

equations for the coefficients ,i jc  now is constructed for a 

window and solved in the same way as it was done for the 

entire region D, because all the values of the coefficients 

,i jc  in the previous windows are already known.  

The solution of Equation (1) for one window 
wD  is the 

stage’s step.  

It is recommended to choose the size of the window K 

guided by the principle: the computer process of problem 

solving should use the most of the available computer 

resources without overfilling them. 

Let's designate w wh   as the beginning of the current 

window 
wD . Due to the peculiarities of integration paths in 

Equation (1), the minimum time coordinate of the known 

coefficients ,i jc  until the moment w , which are used to 

solve the problem in the current window 
wD , will be 

calculated by the formula 

1use

w w    (12) 

or the same in the index units 
use

wi w m  . (13) 
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So, at each step, only the results of the 
wn  previous steps 

need to be loaded into the RAM, where 
wn  is calculated by 

the formula 

/wn m K    . (14) 

The same applies to the case of restarting interrupted 

computations of this stage. 

Stages 3 and 4 are just calculations based on Equation (1) 

with all known coefficients ,i jc . Since the calculation of the 

external fields can be performed sequentially for each mesh 

point outside the inhomogeneity, starting from its 

boundaries b , for all  0,i T  , such a calculation will be 

a stage’s step. 

Stage 4 has only one step because its result is a only 

number – the problem calculation error.  

 

V. VERIFICATION 

For verification of the developed approach for the cloud-

ready fault-tolerant approximation functions method 

execution and for the error comparison purposes the original 

paper’s [12] problems of interaction of electromagnetic 

waves with a dielectric layer was used: the problem of 

reflection and transmission of a plane electromagnetic wave 

from a dielectric layer and the problem of passing the 

Gaussian pulse through the layer with the quadratic 

nonlinear medium. The simulation parameters were chosen 

the same as the original work. 

Computational resources were specially limited to create 

conditions when the problem cannot be solved with saving 

the results of all stages in RAM and in one window on 

stage 2. Apache Kafka content delivery platform, formed 

from three nodes cluster, was used as a storage system that 

is fault-tolerant to a one node failure. The name of saved 

result of each step of each stage contained the name of the 

entity it stores and the coordinates of the mesh point. For 

example: "E0[i, j]" is the name for a value of initial wave   

in mesh point (i, j). So, data deduplication was done 

automatically in the client-side application due of these 

unique names. The correctness of the loaded results was 

checked inside the application when loading the results of 

steps. 

For the problems under consideration, the following formula 

was obtained empirically for choosing the optimal window 

size: 

45K h M     , (15) 

where M is the amount of RAM available for the process in 

GB. 

The developed approach was tested according to the 

following scheme. After the calculation start, at an arbitrary 

moment of execution of a random step of each stage: at the 

beginning, in the middle, or during the saving of the result to 

the storage, – an error was artificially introduced that 

interrupted the execution of the program. After that, 

damages were added also to the saved results of the random 

step of the random stage and evaluation process was rerun 

from the start with reload the state from the storage as 

described above.  

The system built using the developed approach showed 

good stability in loading data and correct continuation of 

calculations. The results are the same as in the original paper 

[12], but the margin of error is different. It increased by 

0.07% for a plane electromagnetic wave and by 0.73% for a 

Gaussian pulse. This happened due to the fact that the first 

problem is for a layer with a linear medium, and the second 

one with a quadratic nonlinear medium, and the error in 

Newton method accumulates in different ways. 

 

VI. CONCLUSION 

The approach for building cloud-ready fault-tolerant 

calculations by approximating functions method, as an 

analytical-numerical component of the Volterra integral 

equation method, for solving 1D+T nonlinear 

electromagnetic problems is developed. 

The solving process is broken down into the stages, with 

backward dependency only, with fixed number of steps, 

each of which is built in fault-tolerant manner and saves 

execution results in fault-tolerant storage. This allows 

stopping and starting the algorithm easily after manual or 

accidental shutdown.  

The domain for solving the inner problem is divided into 

disjoint adjacent subdomains, windows. The solving process 

of the whole problem then is divided into its sequential 

solving of sub-problems in these windows. The formula for 

calculating the window size depending on the modeling step 

and the amount of computer RAM is shown. Due to the fact 

that the developed algorithm inside inhomogeneity is always 

working in a window a certain number of values calculated 

beforehand are used. The rest is stored on outside the RAM 

that allows making the calculation step smaller. The formula 

for determining the exact number of windows that must be 

loaded from storage to calculating the field inside the 

inhomogeneity in the current window is given.  

Also the reflected and transmitted fields, as well as energy 

flow and balance, are calculated after the field inside the 

structure is calculated and its results are stored. This 

significantly economizes RAM and other computer 

resources and does not damage the calculated results in the 

event of a failure. 

The original software for computer modeling of the 

algorithm is developed and the reliability and fault-tolerance 

of the proposed approach are verified through its stress 

testing. 

Comparison of errors for problems of the transformation of 

a plane wave and a Gaussian pulse by a layer with nonlinear 

features is shown. Due to the accumulation of error by 

Newton method, the presented approach is less accurate than 

the original one, but shows good results. 
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VII. MATERIALS AND METHODS 

To implement the calculation experiments Wolfram 

Mathematica was used. The Mathematica document had its 

own kernel of the mathematical processor, which was 

allocated its own CPU core for guaranteed independent 

processing. The connection to the Apache Kafka cluster was 

performed as described in [14-16]. Cloud technologies of 

DigitalOcean were chosen as a platform for deployment, 

where servers based on Ubuntu 20.04 LTS x64 OS were 

located. 

All tests were run at least 10 times for each electromagnetic 

problem to check the stability of the errors. The median was 

chosen from all error values. 
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