
 

 

2455 Xiaoping Zhou1, IJMCR Volume 09 Issue 11 November 2021 
 

Volume 09 Issue 11 November 2021, Page no. – 2455-2468 

Index Copernicus ICV: 57.55, Impact Factor: 7.184 

DOI: 10.47191/ijmcr/v9i11.02 

 

Manifold Discriminative Learning Inspired Hybrid Beamforming for 

Millimeter-Wave Massive MIMO Systems 
 

Xiaoping Zhou1, Yang Liu2 

1,2 Shanghai Normal University, shanghai200234, China 

 

ARTICLE INFO ABSTRACT 

 

Published Online  

02 November 2021 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Corresponding Author: 

Xiaoping Zhou 

Millimeter-wave (mmWave) massive MIMO (multiple-input multiple-output) is a promising 

technology as it provides significant beamforming gains and interference reduction capabilities 

due to the large number of antennas. However, mmWave massive MIMO is computationally 

demanding, as the high antenna count results in high-dimensional matrix operations when 

conventional MIMO processing is applied. Hybrid precoding is an effective solution for the 

mmWave massive MIMO systems to significantly decrease the number of radio frequency 

(RF) chains without an apparent sum-rate loss. In this paper, we propose user clustering hybrid 

precoding to enable efficient and low-complexity operation in high-dimensional mmWave 

massive MIMO, where a large number of antennas are used in low-dimensional manifolds. By 

modeling each user set as a manifold, we formulate the problem as clustering-oriented multi-

manifolds learning. The manifold discriminative learning seek to learn the embedding low-

dimensional manifolds, where manifolds with different user cluster labels are better separated, 

and the  local spatial correlation  of the  high-dimensional channels within each manifold is 

enhanced. Most of the high-dimensional channels are embedded in the low-dimensional 

manifolds by manifold discriminative learning, while retaining the potential spatial correlation 

of the high-dimensional channels. The nonlinearity of high-dimensional channel is transformed 

into global and local nonlinearity to achieve dimensionality reduction. Through proper user 

clustering, the hybrid precoding is investigated for the sum-rate maximization problem by 

manifold quasi conjugate gradient methods. The high signal to interference plus noise ratio 

(SINR) is achieved and the computational complexity is reduced by avoiding the conventional 

schemes to deal with high-dimensional channel parameters. Performance evaluations show that 

the proposed scheme can obtain near-optimal sum-rate and considerably higher spectral 

efficiency than some existing solutions. 

KEYWORDS: mmWave massive MIMO, manifold discriminant analysis, hybrid precoding, user clustering. 

 

I.  INTRODUCTION 

Millimeter-wave (mmWave) massive MIMO (multiple-input 

multiple-output) communication is a promising technology for 

next generation wireless communication owing to its abundant 

frequency spectrum resource [1-3]. Due to the high carrier 

frequency, mmWave signal suffers from high propagation loss 

so that large-scale antenna arrays are leveraged for path 

compensation [4]. However, a large number of antennas could 

lead to the severe hardware cost and power consumption if each 

antenna requires a radio frequency (RF) chain as in 

conventional fully-digital MIMO systems [5]. To overcome 

this problem, hybrid MIMO has been emerging to trade off 

hardware cost with the spectral efficiency (SE) and energy 

efficiency (EE) [6-8]. Nevertheless, how to design the hybrid 

precoding over broadband channels is challenging. 

   How to obtain the optimal precoding matrix is the key issue 

for hybrid precoding. The large antenna arrays challenge the 

low-complexity design of hybrid precoding [9]. In particular, 

the hybrid precoding may require matrix operations with a scale 

of antenna size, which is generally large in mmWave 

communication [8]. To reduce the complexity of hybrid 

precoding in mmWave massive MIMO system, some advanced 

schemes based on the beamspace hybrid precoding have been 

proposed [10-12]. The key ideas of [13-17] are to efficiently 
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explore the sparsity of beamspace channel by sparse signal 

processing techniques. The problem of finding the optimal 

precoder with a hybrid architecture is posed as a sparse 

reconstruction problem in [13] [14], leading to algorithms and 

solutions based on basis pursuit methods. Specifically, a 

compressive sensing-based hybrid precoding has been 

proposed in [15-16], where the channel sparsity is ingeniously 

exploited to design hybrid precoding with the aid of orthogonal 

matching pursuit (OMP) algorithm.  In multi-user scenario, a 

low-complexity multi-user hybrid precoding for mmWave 

systems has been investigated in [17]. A Kronecker 

decomposition for hybrid beamforming (KDHB) for multi-cell 

multiuser massive MIMO systems over mmWave channels 

characterized by sparse propagation paths is proposed [18]. 

 However, considering the limited beamspace resolution, the 

sparsity of beamspace channel may be impaired by power 

leakage, indicating that the beamspace channel is not ideally 

sparse and there are many small nonzero entries. Therefore, 

some works have considered hybrid precoding for practical 

interference mmWave channels [19] [20]. Handling 

interference is challenging due to the large channel 

dimensionality and the high complexity associated with 

implementing large precoding matrices [21]. To address the 

high interference problem, a closed-form wideband hybrid 

precoding solution was proposed in [22-25]. An analytical 

framework of  hybrid beamforming (AFHB) in multi-cell 

millimeter-wave systems was proposed [26]. The general 

methodology analytically computes the expected per-cell 

spectral efficiency of an mmWave multi-cell single-stream 

system using phase-shifter-based analog beamforming and 

regularized zero-forcing digital beamforming.  

   Very recently, manifold learning has been proposed to 

integrate with mmWave massive MIMO systems. In [27], a 

manifold optimization (MO) based hybrid precoding algorithm, 

as well as some low-complexity algorithms, was proposed. A 

Riemannian conjugate gradient manifold algorithm is proposed 

by viewing the feasible region of the constant envelope problem 

as a complex circle manifold [28]. A Riemannian vector 

perturbation manifold is explored by jointing design of hybrid 

RF-baseband precoding for multi-user massive MIMO systems 

[29]. The nonlinear least squares problem is solved with much 

lower complexity than both gradient descent and constant 

envelope optimization. A Riemannian trust-region Newton 

manifold (RTRNM) is proposed for the optimization 

beamforming in multi-cluster scenarios [30]. The optimization 

beamforming is utilized to mitigate inter-cell interference by 

dividing multi-users into multi-clusters with spatial correlation. 

However, the multi-user high-dimensional channels are not 

embedded in the low-dimensional subspaces to achieve 

dimensionality reduction. A manifold learning two-tier fully-

digital beamforming scheme optimizes resource management 

in massive MIMO networks [31]. The manifold learning 

algorithm is used to reduce the multi-user high-dimensional 

channels. It reduces the computational complexity while 

mitigating inter-cell interference-based fully-digital 

beamforming. It focuses on the local linear spatial structure 

between user channels, and ignores the global spatial 

characteristics. 

   In this paper, we propose user clustering hybrid precoding to 

enable efficient and low-complexity operation in mmWave 

massive MIMO, where a large number of antennas are 

embedded in low-dimensional subspaces. The mmWave 

channel measurement results show that the mmWave has a 

diffuse scattering phenomenon on the surface of the rough 

scatterer, and the scattering range will increase as the 

wavelength decreases [32]. For scenarios where users are dense, 

when there is not enough space between users, diffuse 

scattering may cause adjacent users to receive signals of the 

same path. Therefore, it causes serious inter-user interference. 

Our objective is to design the hybrid precoding matrices, such 

that (i) they manage the intra-cell and inter-cell interferences 

with low requirements on the channel knowledge, and (ii) they 

can be implemented using low complexity hybrid analog/digital 

architectures, i.e., with a small number of RF chains compared 

to the number of antennas. A discriminative learning method is 

presented, called manifold discriminant analysis (MDA) [33], 

to solve the problem of set classification. By modeling each 

user set as a manifold, we formulate the problem as clustering-

oriented multi-manifolds learning. The manifold discriminative 

learning seek to learn the embedding low-dimensional 

manifolds, where manifolds with different user cluster labels 

are better separated, and the  local spatial correlation  of the  

high-dimensional channels within each manifold is enhanced. 

Most of the high-dimensional channels are embedded in the 

low-dimensional manifolds by manifold discriminative 

learning, while retaining the potential spatial correlation of the 

high-dimensional channels. The nonlinearity of high-

dimensional channel is transformed into global and local 

nonlinearity to achieve dimensionality reduction. In low-

dimensional manifolds, the intra-cluster channels become more 

clustered and the separability of embedded features is enhanced. 

Through proper user clustering, the hybrid precoding is 

investigated for the sum-rate maximization problem by 

manifold quasi conjugate gradient methods [34]. In order to 

improve the spectral efficiency of the system, the design of each 

cluster analog RF precoder should strike a balance between 

optimizing self-transmission and the interference. The digital 

precoding matrix is obtained by Karush Kuhn Tucker (KKT) 

[35-39]. The high signal to interference plus noise ratio (SINR) 

is achieved and the computational complexity is reduced by 

avoiding the conventional schemes to deal with high-

dimensional channel parameters. Performance evaluations 

show that the proposed scheme can obtain near-optimal sum-

rate and considerably higher spectral efficiency than the 

conventional schemes. 

The remainder of this paper is organized as follows. Section 

II introduces system model and channel models. We focus on 

dimensionality reduction based on multiuser high-dimension 

channel in Sections III, and Sections IV describes hybrid 

precoding algorithm based on channel dimensionality reduction. 
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Some simulation results are provided in Section V. Finally, we 

conclude this paper in Section VI. 

Notations: Upper and lower-case boldface letters represents 

matrices and vectors, respectively.  
H

,  
1

 ,  
T

,  
*

 , 

 tr , and 
F

 are the Hermitian transpose, inverse, transpose, 

complex conjugate, trace, and Forbenius norm of a matrix, 

respectively.   E  is the expectation. ( )diag  denotes 

diagonal matrix. G is the cardinality of the set G . indicates 

the Kronecker product.  20,CN  represents the zero-mean 

complex Gaussian distribution with zero mean and the variance 

2 .  span Y  denotes the subspace spanned by the column 

vectors of Y .     indicates gradient. Finally, NI denotes the 

N N  identity matrix.  

  

II. SYSTEM MODEL AND CHANNEL MODELS 

A. SYSTEM MODEL 

We consider a hybrid mmWave massive MIMO system model 

consisting of B cells. We assume that a base station (BS) 

equipped with tN antenna and RFN  RF chains (  t RFN N K ) 

serves K  single-antenna users, as shown in Fig. 1.  To manage 

the interference and improve the data rate for users, the users 

are partitioned into L  clusters 1, , LG G with =i ig G ,

1

L

i

i

g K


 and ,
    ii i iG G . iG  is the thi  cluster, 

where 1, ,i L  . The sets 1{ , , }LG G  are all user clusters.  

 
FIGURE 1.  Hybrid mmWave massive MIMO system model 

Let 
, , , 1, , b i k iu k g  denote the thk  user of iG  in the thb cell 

( 1,2, ,b B ). The hybrid precoding is performed in two 

stages: digital precoding in the baseband domain and analog 

precoding in the RF domain. In a downlink system, the transmit 

symbols are first applied with digital precoders and the 

resulting signals are fed to RF chains. The output of the RF 

chains is processed using analog precoding and subsequently 

fed to the antenna elements. The transmitted signal vector , ,b i kx  

at the BS is firstly precoded with a digital precoding , ,b i kW . The 

resulting signals are fed to analog precoding , ,b i kF . The 

received signal , ,b i ky of user 
, ,b i ku  can be given by  

, , , , , , , , , , , , , , , , , ,

1,
Desired signal

Intra-cluster interference

, , , ,

1,

Inter-cluster interferenc

         

  

  

   

  

  



i

H H

b i k b i k b i k b i k b i k b i k b i k b i k b i k

k k k

L
H

b i b i b i b i

i i i

y h F W x h F W x

h F W x

G

, , , , , ,

1,

e Inter-cell interference

       

  

 
B

H

b i b i b i b i b i k

b b b

h F W x n

(1) 

 

Where , ,  tN

b i kh is the channel vector between the BS and 

user
, ,b i ku . , ,  t

b i k

N
x represents the transmit signal of user 

, ,b i ku .  2

, , 0,b i kn CN is the spatially white additive 

Gaussian noise. ,

, ,
t RF iN n

b i kF


  is the analog precoding matrix 

that adaptively steers an ,RF in dimensional RF beamspace for 

the coverage of iG with ,  iRF in g . ,

, ,  RF in

b i kW is the digital 

precoding matrix.  is the set of complex numbers. 

,, , , , , , ,

1,
  

  


i

i k

H

b i k b b i k b i k

k k k

h F W x

G

G are intra-cluster interference. 

, , , ,

1,
  

  

 i

L
H

b i b b i b i

i i i

h F W xG are inter-cluster interference. 

, , , ,

1,
      

  

 i

B
H

b i b b i b i

b b b

h F W xG  are inter-cell interference. Although 

the hybrid method is more accurate than the statistical approach, 

while generating faster and more generalized results than the 

deterministic approach, nevertheless it does not provide 

sufficient intra-cluster angular modeling accuracy necessary for 

beamforming and inter-cluster interference 

optimizations[29][40]. 

B. CHANNEL MODEL 

To capture the limited scattering features of multipath fading 

wideband mmWave channels, the high-dimensional channel 

vector 
,i kh  between the BS and the user 

,i ku can be expressed as 

[41] 

1/2

, , , ,
 i k i k i k i kh U h                   (2) 

Where , ~
i kh  

t
0, NICN is represents the small-scale Rayleigh 

fading channel.
tNI is the t tN N  identity matrix. ,


 t iN r

i kU C is 

a matrix of eigenvectors corresponding to ir ( tir N ) non-

zero eigenvalues of 
,i kR . 

,i k  is the transmit correlation 

matrix composed of r non-zero eigenvalues of ,
t tN N

i kR


 , 

satisfying r

k

r  . 
,i kR  is channel covariance matrix for 

users
,i ku . According to the one-ring channel model, 

H

, , ,
   i k i k i khR E h is  the covarsancei matrix of the thk iiuser in 

the thi cluster.  Users in the same cluster have the similar 

transmit covarsanceimatrix, hence,
,i kR , i.e., 

, , , ,

H

i k i k i k i kR U U                   (3) 
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Since users in the same user cluster have similar spatial 

correlations, they have similar local scattering,

, ,i k iiR R k  G . The correlation coefficient between BS 

antennas  ( , ) 
RF RFa a  is given by: 

 
 -

,

2
( )sin1

2


 






 

 










 
RF ii i

i

RF

RF RF i

a a

i a a

d

i

R e d             (4) 

where  indicates the signal wavelength, d indicates the 

distance between the antennas,  represents the Angle of 

Arrival (AoA), 
i represents the average value of  AoA  in the 

cluster, i represents angle spread (AS) .  

 

III. OUR PROPOSED USER CLUSTERING HYBIRD 

PRECODING SCHEME 

Our objective is to design the hybrid precoding matrices,  such 

that (i) they manage the intra-cluster, inter-cluster and inter-cell 

interference with low requirements on the channel knowledge, 

and (ii) they can be implemented using low complexity hybrid 

analog/digital architectures, i.e., with a small number of RF 

chains compared to the number of antennas. Next, we present 

the main idea of hybrid precoding based on manifold 

discriminative learning, a potential solution to achieve these 

objectives.   

A.  MANIFOLD DISCRIMINANTIVE LEARNING FOR 

USER CLUSTERS 

As the number of service antennas and users tend to infinity in 

the mmWave massive MIMO system, the performance is 

limited by directed inter-cell and intra-cell interferences. The 

high-dimensional channel matrix requires high complexity 

hybrid analog/digital architectures. By modeling each user set 

as a manifold, we formulate the problem as clustering-oriented 

manifold discriminative learning.  

The undirected similarity graph of multi-users is represented 

by graph embedding method. By modeling each user set as a 

manifold, the user channel characteristic graphs   ,
1

,


,i k k j
i

L

h m  

are constructed, as shown in Fig. 2.  

 
FIGURE 2.  User cluster undirected characteristic graph 

 0

,' i k represents the intra-cluster channel weight function 

between user k  and user j . , , k jm represents the inter-cluster 

channel weight function between user k  and j . The sets of the 

cluster channel weight functions are 

  : , 1, ,  ,k jM k jm K  . The weight function , , k jm  of 

the intra-cluster is defined as follows 

      
, , in the intra-cluste0 1,   ,  

0,  otherwise

r

 

 



k j k jm
      (5) 

The weight functions of the intra-cluster show that when user 

k  and j  are the same cluster, the weight is larger; when user 

k  and j  are the different cluster, the weight is 0. 

The weight function , , k jm  of the inter-cluster is defined as 

follows 

      
, , in the inter-cluster0 1,  ,  

0,  otherwise 

 



k jm k j
(6) 

The weight functions of the inter-cluster show that when user k  

and j are different cluster, the weight is larger; when user k  and

j are the same cluster, the weight is 0. The manifold 

discriminative learning seek to learn the embedding low-

dimensional manifolds, where manifolds with different user 

cluster labels are better separated, and the  local spatial 

correlation  of the  high-dimensional channels within each 

manifold is enhanced. 

 

 

FIGURE 3.  Schematic diagram of dimension reduction 

 

Some existing manifold learning algorithms, such as LLE 

[42], can't retain the complete global nonlinear channel 

structure of user clusters.  

We propose to perform the manifold discriminative learning 

for global dimensionality reduction. The high-dimensional 

channels are embedded in the low dimensional manifolds, as 

shown in Fig. 2. In order to reveal the potential non-linear 

manifold structure of high-dimensional channels, intra-cluster 

graph and inter-cluster graph are constructed by using the label 

information of user characteristics. In addition, it can make the 

low-dimensional channels more clustered, and enhance the 

separability of embedded low dimensional channels. The RF 

eigen-beamformers are shown as an optimal solution for user 

cluster transmission. The channel eigenvector learning 

corresponding to the maximum eigenvalue is taken as the 

spatial direction. In theory, the main direction learned is the 
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beamforming. Multi-users of the same cluster have highly 

correlated transmission paths. We seek to learn a generic 

mapping A that is defined as: 

= T

k kh A h                             (7 ) 

Where A is projection matrix, kh  is the thk user low-

dimensional mapping ofithe high-dimensional channels kh . The 

original high-dimensional channels kh  can be transformed into 

a low-dimensional channels kh .The relative spatial relationship 

of neighboring users in high-dimensional channels remains 

unchanged in low-dimensional manifolds. In order to maintain 

the manifold structure of the high-dimensional channels, the 

optimization problem is the projection direction of manifold, 

i.e.,  , k jh h k j of the intra-cluster, the objective function 

of the intra-cluster can be obtained as 

 
2

,

, ,max  k

k

j

j

k j
A

mh h                          (8) 

Therefore, the projection is posed as a solution maximizing the 

sum across all uses of the intra-cluster, i.e., 

 

 

, ,

2

,

2

,

T

, ,

local

T T T

T

max

1
max

2

max

max





 





 

 







,

k k j

T T

j
A

k j

j
A

k j

A

A

k k j

h h m

h h m

A HD H A

A A

MA H H A

A S A

               (9) 

where  a

T

loc l =  , D MS H H is local manifold structure of 

the intra-cluster, D is diagonal matrix and ( , ) 



k j

D M k j . 

The criteria of measuring the similarity degree between users 

is the distance function and the similarity coefficient function. 

Since ( ) Tspan U UU , , ,,   i k i kU U , the similarity 

measurement function between any two users based on the 

distance of subspace projection matrix can be expressed as 

    

 

 

2

, ,

,

1

2

1
=

2
 

 

T T

pm i

T T

F

T

k i k

k k i

k k i

i

i

U U V

t

U

V

r

U VV

d

                 (10) 

Where kU  is eigenvectors matrix of kR  in any cluster, i.e., 

H

k k k kR U U  , and 
iV  is eigenvectors matrix of the thi cluster 

center 
iR . , = k k i

T T

k i iU U VV is the symmetric positive 

semidefinite matrix that needs to be learned. The global 

manifold structure ,globalS  of intra-cluster is measured as 

 ,glo , ,bal

1

1

2

1
  

 


i

T

k

L

i k i

i k i

S tr
gG

               (11) 

To effectively utilize the global characteristics and local 

manifold structure of intra-cluster channels, we can get the 

intra-cluster dispersion
 by combining equations (9) and 

(11)[33] 

,global local(1 )       ,S S            (12) 

Where  are constants.  

The weight functions , , k jm  of the intra-cluster can be 

obtained as 

 , ,, =exp /
 kk j jdm s                       (13) 

Where s  is constants, 
,k jd is the similarity measurement 

function between user k  and user j . 

In order to maintain the manifold structure of the inter-cluster 

user channels, the optimization problem is the projection 

direction of manifold, i.e.,  , k jh h k j of the inter-cluster, 

the objective function of the inter-cluster can be obtained as 

 
2

,

, ,max  k

k

j

j

k j
A

mh h                    (14) 

Therefore, the projection is posed as a solution maximizing the 

sum across all uses of the inter-cluster, i.e., 

 

 

, ,

, ,

,l

2

,

2

,

T

ocal

T T T

T

max

1
   max

2

   max

   max





 





 

 







k k j

T T

k k

j
A

k j

j
A

j

A

A

j

k

m

A A

h h

h h

A H H A A HM H

A S

m

D A

A

                           (15) 

Where  l

T

,loca =  S MH D H is local manifold structure of 

the inter-cluster, D  is diagonal matrix and ( , ) 



k j

D M k j . 

The global inter-cluster ,globalS is measured as 

 ,glo , ,bal

1

1

2

1
  

  





i

T

k i k i

i k i

L

S tr
K gG

           (16) 

To effectively utilize the global characteristics and local 

manifold structure of inter-cluster channels, we can get the 

inter-cluster dispersion  by combining equations (15) and (16) 

,global ,local(1 )     S S                 (17) 

Where are constants.  

The weight functions , , k jm  of the inter-cluster can be 

obtained as 

 , ,, =exp /
 kk j jm s d                       (18) 

where s  is constants. 

The discriminative function  J A  is transformed as: 

  max







T

TA

A
J

A
A

A A
                                            (19) 

 
 
 

,whole local

,whole ,local

, ,

T

T

(1 )
max

(1 )

. . 

 

 

  


  



,

A

i

T

k i k

A S S A
J A

A S S A

s t h A h

             (20) 
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According to equation (20), the low-dimensional mapping of 

the thk user channel matrix ,i kh  is determined by the projection 

matrix A . By solving the generalized eigenvalues of the 

discriminative function, we can obtain the projection matrix

 1, , nA A A  . n is the dimensionality reduction of user 

channel matrix. After user clustering, the channel correlation of 

users in the same cluster is enhanced. 

Then, according to the intra-cluster graph and inter-cluster 

graph constructed by using the label information of user 

characteristics, the user clusters can be divided more accurately 

with lower complexity. Based on the maximum and minimum 

distances and the weighted likelihood similarity criterion, an 

improved spatial fuzzy c-means clustering algorithm is 

proposed. The algorithm is an iterative optimization that 

minimizes the cost function defined as follows: 

 , , ,

1 1

 

 


K L

i k i k i k

k i

J d                   (21) 

Where  , ,,
2

=
1

  T

k ii k k itd r is the similarity measurement 

function between the thk  user and the thi  cluster center.
,i k

 

represents the membership function of user 
,i ku  in the thi

cluster, and  is a constant. The parameter  controls the 

fuzziness of the resulting partition, and =2  is used in this 

study. The cost function  ,i kJ  is minimized when user 
,i ku  

close to the cluster center is assigned high membership values, 

and low membership values are assigned to user 
,i ku   far from 

the cluster center. The membership function represents the 

probability that a user 
,i ku belongs to a specific cluster. The 

membership functions and cluster centers are updated by the 

following: 

 ,

,
1/ ( 1)

,

1

1

/













i k

i ik

i

L

id d

                (22) 

and 

,

1

,

1

,

,

,

,
















K

i k i k

T

i k
T k

i k i k

i k

K

k

VV

U U

                      (23) 

Where  , ,,

1

2
=   

T

i ii i iid tr  is the similarity measurement 

function between the thi  cluster center and the thi  cluster 

center. One of the important characteristics of the intra-cluster 

is that neighboring users are highly correlated. In other words, 

these neighboring users possess similar feature values, and the 

probability that they belong to the same cluster is great. This 

spatial relationship is important in clustering. To exploit the 

spatial information, a spatial membership function ,i k  is 

defined as 

, ,=  




i

i k i k

k G

                              (24) 

The spatial membership function ,i k  represents the 

probability that user 
,i ku  belongs to the thi  cluster. The spatial 

membership function of a pixel user a cluster is large if the 

majority of its neighborhood belongs to the same clusters. The 

spatial membership function is incorporated into membership 

function as follows: 

, ,

,

, , ,

1





 


 





 



 



i k i k

i k

i k k

i

L

i

                          (25) 

where  and   are parameters to control the relative 

importance of both functions.  

In summary, by modeling each user set as a manifold, the 

process of clustering-oriented manifold discriminative learning 

is as follows: 

   Step 1: Construct the user channel characteristic graphs

  ,
1

,


,i k k j
i

L

h m ;  

Step 2: Find out the two most distant iU  and iU , and use them 

as the central point of the initial user clusters, i.e., 

 0 (0)

1 2,  i iV U V U .The number of the  user clusters is 2i ; 

Step 3: According to Euclidean distance criterion 

   , ,

1
,

2
 T T T

pm i k i k ik k id V trU U V , all users are clustered into 

i  user clusters; 

Step 4: In the i user clusters that completed the clustering, the 

weakest similar point (i.e., the point with the largest distance) is 

found in each user cluster, and i user clusters are obtained. Then 

we calculate the sum distance ,i kd  between the user

( 1, 2,..., )k k K , the membership functions 
 0

,i k and the center 

point (0) ( 1,2,..., )iV i L of each user cluster in turn. 

Step 5:  Calculate the spatial membership function
 0

,i k ,
 0

,' i k

and update the center point (0) ( 1,2,..., )iV i L of each user cluster 

with

 

 

,

1

, ,

,

1

, ,





















T

i k
T k

i k i k

i k

K

i k i k

K

k

U U

VV ; 

Then the maximum value among ,i kd  is found. 

(0)

1 ,arg max i i k
k

V d . All users into ( 1)i  are redivided into 

different user clusters; 

Step 6: When the current number of user groups 1  i i L  

is true, perform step 5; otherwise repeat step 3; 

Step 7: 1/2
2

( ) H

k Fk iU V  is computed, and each user is assigned 

to the user clusters with the largest similarity coefficient; 

Step 8: Output cluster result, and the number of users in each 

cluster; 



“Manifold Discriminative Learning Inspired Hybrid Beamforming for Millimeter-Wave Massive MIMO Systems” 

2461 Xiaoping Zhou1, IJMCR Volume 09 Issue 11 November 2021 
 

   Step 9: Calculate the , , k jm and , , k jm  according to 

equation (13) and (18); Construct intra-cluster graph and inter-

cluster graph by using the label information of user 

characteristics; 

   10: Calculate the 
,wholeS , local ,S ,

,localS and 
,wholeS  

according to equation (9), (11), (15)and (16); 

    Step 11: Calculate the  and 
  according to equation (12) 

and (17); 

   Step 12: Optimize the discriminative function  J A  

according to equation (20); 

Step 13: According to the obtained projection matrix, get the 

projection in low-dimensional subspace ,i kh . 

B.  MANIFOLD DISCRIMINANTIVE LEARNING 

FOR HYBRID PRECODING  

On the basis of manifold discriminative learning for global 

dimensionality reduction and user clustering, we investigate the 

sum-rate maximization problem for hybrid precoding.  

1).  Single cell scenario 

In the special case where only one cell of users is scheduled 

for transmission, eigen-beamforming satisfies such a stronger 

condition. Our objective is to design the precoding matrices

i i
F WG G , such that they manage intra-cluster interference and 

inter-cluster interference. In order to improve the spectral 

efficiency of the systems, the design of each cluster analog 

precoding should strike a balance between optimizing self-

transmission and the interference.  By modeling each user set 

as a manifold, the received signal of the thi cluster can be 

represented as 

 

, , , ,

1,
Desired signal

Intra-cluster interference

Inter-cluster int erference

1

+

i i i i i i i

i i i i

i i

i

i

H

k k k k

k k k

L

H

H

i i i

y F H F WH W x

H F W

x

x n
   

 

 



  







 


,

G

G G G G G G G G G

G G G G G

 

                         (26) 

Where ,1 ,,, 
  

i ii i

T
T T

gy yyG G G  represents the received signal,  

,1 ,,,
 

i i i igH H HG G G  represents the channel matrix for the 

thi  cluster, ,1 ,, ,   i i i igF F FG G G and

 ,1 ,, , 
i i i igW diag W WG G G .

,, , ,

1,
  

  

 i i i

i

i k

H

k k k

k k k

H F W x

G

G G G G  are the 

intra-cluster interference,
1

   

  


,

i i i i

L
H

i i i

H F W xG G G G  are the inter-

cluster interference after the low-dimensional mapping. In 

order to adapt to special scenarios and requirements, the hybrid 

precoding matrix can be determined by per-cluster processing 

(PCP). The goal of PCP is to balance the performance and 

complexity by effectively separating the clusters in the RF 

beam domain.  

In PCP mode, the analog precoding matrix 
i

FG of each cluster 

is calculated according to manifold quasi-conjugate gradient 

algorithm, while the digital precoding matrix
i

WG  is calculated 

by each user cluster according to their equivalent channel 

matrix. Let  H

eqH H F denote the equivalent channel matrix 

after analog precoding, and it is an approximate block diagonal 

matrix, which can be expressed as 

1

1

1 1 2 1

2 2 2 2

1 2

 
 
 

  
 
 
 

L

L

L L L L

H H H

H H H

eq

H H H

H H H

H H H

F F F

F F F

F F F

H

H H H

G G G G G G

G G G G G G

G G G G G G

               (27) 

Where =
i ii

H

eqH H F
G G G  represents the diagonal elements of the 

matrix in (22), off-diagonal elements of the matrix

 



i i

H FH i iG Gj represents the interference channel matrix 

between user clusters. After analog precoding, the inter-cluster 

interference is eliminated, that is, 0
i j

H FHG Gj . eqH  can be 

expressed as 

1

2

1

2

0 0

0 0

0 0

 
 
 

  
 
 
 L L

H

H

eq

H

F

F

F

H

H
H

H

G G

G G

G G

              (28) 

 

The digital precoding matrix W is a block diagonal matrix, 

which can be expressed as 

 
1

diag , , 
L

W W WG G
                              (29) 

With scalar equalization
1 

iG , the signal estimate ˆ
i

xG for iG can 

be expressed as 

,, , ,

,

1

1

ˆ +=
i

i i i i i i i i ii k

H

k k k

H

k k k

x F H F WH x xW
  

 











G

G G G G G G G G G G
 

1
i i i i i

L
H

i i i

H F W x n
   
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




,

G G G G G                              (30) 

 

Where 
iG  is a scaling equalization that is jointly optimized 

with the hybrid precoding. The conditional mean square error 

(MSE) for iG  is defined as 

 

 

2

2
1

ˆ, =

             =

, 

 

 
  

 
  

i i i i i

i i i i i i

H

W E x x

E x

F

H W xF

G G G G G

G G G G G G

 

,, , ,

,

1

1

 
  
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
 

  
  
 i i i

i

ii k

H

k k k

k k k

H F W xE

G

G G G G G  
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2
1 2

1 ,

 
   

 

  

 
 

 

,

i i i i i i i

H

i

L

i i

FE H W x nG G G G G G G
          (31) 

The conditional MSE in (26) is simplified as  

     1 2
,, = +   

i i i i i
F WG G G G G

                         (32) 

Where 

   
2

1 1    
  i i i i i i i

HE x H W xFG G G G G G G
                (33) 

 

,, ,

1

,

,

2

1

= + 
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 





 
 
  
i i i i

i

i k i

H

k k k

k k k

H F WE x

G

G G G G G G
 

2
1 2

1 ,

 
   

 

  

 
 

 

,

i i i i i i i

H

i

L

i i

FE H W x nG G G G G G G
      (34) 

Therefore, the hybrid precoding based on interference leakage 

is jointly optimized with
i

FG
,

i
WG

 , 
iG . According to the 

literature [20],
i

WG can be decomposition into

 
i i i

W WG G G
,where 

i
WG

is an unnormalized digital precoding 

matrix, which can be obtained by KKT conditions as 

 

 

1
1

1
1    











  
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i i ii i i

i i i i i i i i

H

H H

e

H H

q eq eqW H H I H

F H H F I F H

G G GG G G

G G G G G G G G

                (35) 

Where 
1 

iG  is regularization factor, which depends on noise 

variance and base station transmit power. 
i

IG  can be expressed 

as 

,, , ,

1, 1 ,

= +
i

i i i i i ik ii i i

L
H

k k k

H

i ik k ik

H F WI W x nFHx
    

   

 
,

G

G G G G G G G G G G    (36) 

The optimal value given in [13] is 
1 2/  

i tolP KG . tolP  is the 

total power of the transmitted signal. The optimal scaling factor 


iG can be obtained from the base station transmission power 

with   H H

toltr FWW F P  as 

 
1








i

i i i i

L
H H

i

tolP

tr F W W F
G

G G G G

                       (37) 

Accordingly, equation (33) can be expressed as 

   
2

1 1-   
  i i i i i i i

HE x H W xFG G G G G G G
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      1 1= tr - -   
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E x H W x x H W xF FG G G G G G G G G G G G
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 i i i i i i i i

H H HE x x E xFx H WG G G G G G G G  

       1 2

 

  tr + tr     
      i i i i i i i i i i i i i i i

H H
H H

HE H W x x E H WF HF x W xFG G G G G G G G G G G G G G G

 

(38) 

After simple mathematical derivation, equation (34) can be 

expressed as 

 
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Let  
i

J FG
represent the objective function. The hybrid 

precoding optimization problem based on interference leakage 

under orthogonal constraints is 

     1 2

1 1

arg min +   s.t.  
 

 i i i i i t
i

n

i i
F

L L
HFJ IF F

G

G G G G G      (40) 

It can be seen that the solution of the objective function is a 

convex optimization problem. It is essentially to find a radio 

frequency precoding matrix so that the objective function 

obtains a minimum value. This problem can be equivalent to an 

unconstrained optimization problem, which can be solved by 

using manifold optimization algorithms [35]. The Euclidean 

conjugate gradient of  
i

J FG
 can be expressed as 

 
 

*
=





i

i

i

J F
J F

F

G

G

G

                                (41) 

In the next step, the direction vector is updated by using 

gradient as 

 , , 1 , ,+1=- + 
i i i it tt tZ F ZJG G G G

        (42) 

where 

 

 

2

, 1

, 2

,

=





i

i

i

t
F

t

t
F

J

J

F

F

G

G

G

                    (43) 

The manifold quasi-conjugate gradient algorithm based on 

implicit vector transmission applied is as follows: 

Step 1: Initialize the analog precoding matrix
,1i

FG
, error 

threshold (0,1)ò , the initial gradient  ,1 ,1- 
i i

Z J FG G
, the 

number of initialization iterations 1t ; 

Step 2: If  ,1  
i

J FG
， stop; Otherwise, search ,

i tG  

satisfying    
,

, , , , ,
0

,min=
 

 
i i i i i i

i t
t t t t t tZJ F J FZ

G
G G G G G G ; 

Step 3: Update the analog precoding matrix 
, 1i tFG

 using 

, 1 , , ,  
i i i it t ttF ZFG G G G ; 
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Step 4: If t n , perform step 5; otherwise repeat step 6; 

Step 5: Update  , , 1 , ,+1=- + 
i i i it tt tZ F ZJG G G G

, where 

 

 

2

, 1

, 2

,

=





i

i

i

t
F

t

t
F

J

J

F

F

G

G

G

; Update the number of iterations 1 t t , 

repeat step 2; 

Step 6. Update 
,1 , 1= i i tF FG G

,  1, ,1=-
i i

Z J FG G
, 1t , repeat step 

2. 

Update the analog precoding matrix until convergence to 

satisfy the error threshold condition, the algorithm ends. 

2)  Multi-cell scenario 

In order to adapt to different scenarios and requirements, the 

hybrid precoding matrix can be determined by joint processing 

(JCP) and PCP.  

The received signal for the thb cell is given as 

1,
Cell signal

Inter-cell interference

+    

  

 H

b b b

B
H

b b b b b b

b b b

bF W H F W xy H x n    (44) 

Where 
1 1, , ,, ,   L

T
T T T

b b b by y y yG G G  represents the received 

signal,  
1, ,, ,   ib b bH H HG G  represents the channel matrix 

for the thb cell, 
1 2, , ,, , ,   ib bb bF F F FG G G and

 
1, ,, , 

ib b bW diag W WG G represent analog precoding matrix 

and digital precoding matrix respectively. Thus, the estimation 

of the received signal in the thb cell is given as 

1,

1    

 





 
 

 
 

B
H

b b b b

H
b b b b b b

b b b

bx H x nF W H F W x      (45) 

Where
1 

b  is the thb cell scaling factor that is jointly 

optimized with the hybrid precoding. The design of precoding 

is jointly derived across all L  user clusters. 

 
2

2

1

1,

ˆ

               

, ,

      



    

  



 
 

 
  

 
 

 
 

 



b b b b

B
H

b b b b b b b

b b b

b b

H

b b b b

E x x

E x H x

F W

F W nH F W x

E

(46) 

In order to eliminate intra-cluster interference, inter-cluster 

interference and inter-cell interference, the precoding is 

conducted as a multiplication of two precoding, i.e., 

(1) (2)=b b bW W W . (1)

bW and (2)

bW represent the first and the second 

precoding matrix of the thb cell respectively. Therefore, 

equation (44) can be rewritten as 

(1) (2) (1

1,
Cell sign

) (

al

Inter-cell interfe

)

rence

2+
B

H

b b b b b b b

H

b b bb

b b

b

b

y WH W HF x F W x nW    

  

  (47) 

Where
bF  represents the analog precoding matrix of the thb cell. 

To obtain (47), the signal space of (1)

bW s  mapped to the channel 

null space of all remaining user groups b , namely: 

(1) { ( )}b bW Span U b B 


 % %               (48) 

Where 


bU%  is a matrix comprising dominant eigenvectors 

corresponding to the 
 b br r  dominant eigenvalues of 

bR . 

[ ] H

b b bR E H H% % is the channel covariance matrix of the thb cell.  



bU%  is the dominant eigenspaces of the corresponding channel 

covariance matrix bR . bR  is the covariance matrix of the inter-

cell channels. The idea of formula (48) is to design the pre-

beamforming matrix to concentrating the inter-cell transmission 

energy in the specific direction. The inter-cell interference is 

reduced by leaving slots in the spatial domain. 

  In order to realize (48) based on the approach of block 

diagonalization [30], we define a matrix of eigenmodes of 

equivalent interference channel covariance for the thb cell as 

follows: 

1 2 1 1[ , ,..., , ,..., ]    

  b b b BU U U U U% % % % %                    (49) 

where b
 is rank ( 1)

  br B ,


br s  the  dominant eigenvalues of

bR . For the singular value decomposition (SVD) of b
, let 

(0)b  

denote the left eigenvectors corresponding to the zero singular 

values. And 
(0)b  can be approximated as the orthogonal basis of 

null space of the channel vectors for other user cells. 
(0) ( )  b bnull . Based on the Karhunen-Loeve decomposition, 

the equivalent channel covariance matrix bR%  is given by: 

(0) (0)( )   H H

b b b b b bR U U% % %                         (50) 

Then, the SVD of (28) is carried out. Let bU%  contains the 

dominant 


br  eigenmodes of bR . The first precoding matrix 

(1)

bW  is given by: 

(1) (0)

b b bW U                                       (51) 

(2)

bW  can be obtained by KKT  conditions as 

 

 
H H

1
(2) 1

1
H H 1

, , ,   

H H

b b

b b

eq eq eq b

b b b b b b b bb

H H H I

F

W

HH H F F I











  

 
 

(52) 

 

 

 

Where 1

b
  is regularization factor, which depends on noise 

variance and base station transmit power. bI  can be expressed 

as 

1,

=
B

H

b b b b

b b b

b bH F W xI n   

  

                   (53) 

Therefore, the optimization problem under the multi-cell 

scenario can be transformed into 

   
(2)

Hmin  s.t. =
b

tb b b b b
F

n

b B

F F IJ F F


E               (54) 
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Where 
1

= , ,
ibF F F 

 G G
. The analog precoding matrix bF is 

design to avoid the intra-cluster interference and inter-cluster 

interference based on  bJ F optimization problem in single 

cell scenario. The Euclidean conjugate gradient of  bJ F  can 

be expressed as 

 
 

*
=

b

b

b

J F
J F

F





                            (55) 

In the next step, the direction vector is updated by using 

gradient as 

 , , ,+1 ,1=- +b bt bt b tt ZJZ F                      (56) 

Where 

 

 

2

, 1

, 2

,

=
b t

F
b t

b t
F

J F

J F





                       (57) 

    The manifold quasi-conjugate gradient algorithm based on 

implicit vector transmission applied is as follows: 

Step 1: Initialize the analog precoding matrix

1b,1 ,1 ,1= , ,
i

F F F 
 G G

, error threshold (0,1)  , the initial 

gradient 
1,1 ,1 ,1, ,   ibZ Z ZG G

 ,where  ,1 ,1- 
i i

Z J FG G
, the 

number of initialization iterations 1t ; 

Step 2: If  ,1  
i

J FG
, 1, ,i L , stop; otherwise, search

1, , ,, ,     
ib t t tG G

satisfying 

   
,

, , , , ,
0

,min=
 

 
i i i i i i

i t
t t t t t tZJ F J FZ

G
G G G G G G

, 1, ,i L ; 

Step 3: Update the analog precoding matrix ,tbF 1  using (43)

, 1 , , ,  
i i i it t ttF ZFG G G G , 1, ,i L ; 

Step 4: If t n , perform step 5; Otherwise repeat step 6; 

Step 5: Update  , , 1 , ,+1=- + 
i i i it tt tZ F ZJG G G G

, 1 , ，i L , 

where 

 

 

2

, 1

2

, 1

=







i

i

i

t
F

t
F

J

J

F

F

G

G

G

, and
1, , ,= , ,    Lb t t tG G

; Update the 

number of iterations 1 t t , repeat 2; 

Step 6: Update 
,1 , 1= i i tF FG G

,  1, ,1=-
i i

Z J FG G
, 1t , 1, ,i L , 

repeat step 2. 

Update the analog precoding matrix until convergence meets 

the error threshold condition, the algorithm ends. 

For the intra-cluster, it has been proved that the channel 

correlation between the intra-cluster users. And its nearby inter-

cluster users are much larger than that of the non-adjacent 

clusters. The interference intensity is the same. Therefore, the 

interference caused by remote user clusters to intra-cluster users 

is negligible. Therefore, the SINR for a user cluster iG  in the 

thb cell is given by: 

2

2 2
2

, ,

1, 1

i i i i

i i i i i

i i L

k k
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i ik i
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


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 (58) 

  

Where 
,, , ,=

i ki i i

H

k k kIN H F W
 G G G G

,
i i i i

H FIN H W
   
G G G G

 ，
i

PG are the 

transmit power of the thiG  cluster, , i kPG and 
i

PG  are the transmit 

power of the thk iuser in the thi cluster and the transmit power 

of the thiG  cluster respectively. For the inter-cell, its nearby 

inter-cell users are much larger than that of the non-adjacent cells. 

The interference intensity is the same. Therefore, the SINR for a 

thb cell from inter-cell interference is expressed as: 
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   The capacity of mmWave massive MIMO system can be 

expressed as 

1

2 2
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(60)ican be written as 
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V. SIMULATION RESULTS  

In this section, we will investigate the SE, and BER 

performance of the proposed hybrid precoder design.  We 

compare our proposed solution with some existing solutions i.e., 

OMP, KDHB, AFHB, MO and RTRNM. The basic simulation 

parameters are as follows. 

The carrier frequency is 60 GHz. The AoAs and AoDs are 

uniformly distributed in  0,2 , and a common AS =8 . The 

complex gain of each path follows the distribution  0,1CN . 

The uniform linear array (ULA) is adopted in simulations [27]. 

In this setting, there is considerable overlap between channel 

power azimuth spectra, which results in strong inter-cluster 

interference. 
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Fig. 4 presents the achievable sum-rate achieved by the 

proposed hybrid precoding compared with some existing 

solutions for the mmWave massive MIMO system in single-

cell scenario. We set 128tN , 32RFN ,and 32K . From 

Fig. 4 we can observe that the proposed hybrid precoding can 

achieve considerably higher sum-rate than other existing 

precodings against different signal-to-noise ratio (SNR). This is 

mainly because the performance of other schemes is limited by 

the resolution of the multi-user high-dimensional channels 

nonlinearity. By modeling each user set as a manifold, we 

formulate the problem as clustering-oriented multi-manifolds 

learning. A clustered user geometry model is researched for some 

high-density hotspot scenarios of the cell. The proposed scheme 

can better eliminate intra-cluster and inter-cluster interferences in 

single-cell scenario. The achievable sum-rate of mmWave 

massive MIMO systems is improved by user clustering hybrid 

precoding. 

 
FIGURE 4. Achievable sum-rate comparison of different 

hybrid precoding in single-cell scenario. 

 

 
FIGURE 5. BER performance comparison of different 

hybrid precoding in single-cell scenario 

 

In Fig. 5, we compare the BER performance of different 

hybrid precoder schemes, where the same channel parameters 

as considered in Fig. 4 are used for single-cell scenario. From 

Fig. 5, similar conclusions to those observed for Fig.4 can be 

obtained with different SNR. In particular, it can be seen that 

our proposed-based manifold discriminative learning scheme 

achieve a better BER performance than other schemes. The 

proposed scheme improves beamspace resolution and reduces 

the influence of power leakage on beamspace channel. 

 

FIGURE 6. Achievable sum-rate comparison of different 

hybrid precoding in multi-cell scenario. 

In Fig. 6, we set 256tN , 64RFN ,and 64K  in multi-cell 

scenario. Fig. 6, clearly shows that the proposed solution can 

achieve a considerably higher sum-rate than other existing 

hybrid precodings. This is because most of the high-

dimensional channels are embedded in the low-dimensional 

manifolds by manifold discriminative learning in multi-cell 

scenario, while retaining the potential spatial correlation of the 

high-dimensional channels. The nonlinearity of high-

dimensional channel is transformed into global and local 

nonlinearity to achieve dimensionality reduction. The proposed 

scheme can better eliminate intra-cluster, inter-cluster and 

inter-cell interferences. We propose user clustering hybrid 

precoding to enable efficient operation in high-dimensional 

mmWave massive MIMO, where a large number of antennas 

are used in low-dimensional manifolds. 

 

 
FIGURE.7.BER performance comparison of different 

hybrid precoding schemes in multi-cell scenario 
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In Fig. 7, we compare the BER performance of different hybrid 

precoder schemes in multi-cell scenario, where the same 

channel parameters as considered in Fig. 6 are used. From Fig. 

7, similar conclusions to those observed for Fig.4 can be 

obtained in multi-cell scenario. In low-dimensional manifolds, 

the intra-cell channels become more clustered and the 

separability of embedded features is enhanced. The proposed 

scheme not only reduces the computational complexity in 

mmWave massive MIMO system, but also performs well in 

inter-user interference. 

 

FIGURE 8. Average sum rate of two-tier system with 

different precoding 

 

As shown in Fig. 8, we compare the average sum rate for the 

proposed scheme, and other existing precodings with different 

numbers of users in multi-cell scenario. We set ,  iRF in g in 

each cluster. It is observed from Fig. 8 that the proposed scheme 

outperforms other schemes. This is mainly because as users 

increase, the performance of other schemes is limited by the 

resolution of the multi-user high-dimensional channels 

nonlinearity. The proposed scheme can better eliminate intra-

cluster, inter-cluster and inter-cell interferences. The average 

sum rate of mmWave massive MIMO systems is improved by 

user clustering hybrid precoding. 

 

FIGURE .9. Average SE. versus cell edge SNR. 

Fig. 9 shows the effect of SNR on the system average SE is 

given with increasing cell edge SNR. Fig. 10 presents the 

average SE for different numbers of BS antennas . It can be 

observed that the proposed scheme provides a significantly 

higher average SE than other existing schemes in multi-cell 

scenario. From Fig. 9, we find that each user high-dimensional 

channels and its neighbor user high-dimensional channels are 

located in a global and local nonlinear neighborhood by the 

proposed scheme with manifold discriminative learning. The 

clustered user geometry model is researched for some high-

density hotspot scenarios of the cell. The proposed scheme 

manages the multi-user and inter-cell interference and improves 

the data rate for cell-edge users. From Fig. 10, the proposed 

scheme enables efficient and where a large number of antennas 

are used in multiple low-dimensional manifolds. 

 

FIGURE 10. Average SE. versus number of BS antennas, 

high SNR. 

 

VI. CONCLUSION AND FUTURE WORK  

A user clustering hybrid precoding scheme is proposed to enable 

efficient and low-complexity operation in large 

scale dimensional mmWave massive MIMO, where a large 

number of antennas are used in multiple low-dimensional 

manifolds. For the BS of mmWave massive MIMO, manifold 

discriminative learning is used to obtain low-dimensional 

channel matrix. Then user clustering hybrid precoding is studied 

for the transmitted signal based on the low-dimensional channel 

matrix. The manifold discriminative learning seek to learn the 

embedding low-dimensional subspace, where manifolds with 

different user cluster labels are better separated, and the  local 

spatial correlation  of the  high-dimensional channels within each 

manifold is enhanced. Through proper user clustering, the hybrid 

precoding is investigated for the sum-rate maximization problem 

by manifold quasi conjugate gradient methods. The simulation 

results show that the proposed techniques not only reduce the 

computational complexity in mmWave massive MIMO system, 

but also perform well in robustness. 

In the future, the time correlation of the channel is considered 

in future work. The proposed scheme studies uniformly 

distributed users, while the actual user distribution has a 
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uniformly distributed scenario. These questions will be further 

studied by us. 
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