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Article introduces an extension of the approximating functions method, a particular case of the 

finite element method (FEM) with interpolating functions in the form of Lagrange polynomials of a 

special form, to solve electrodynamics problems in a planar waveguide with constant polarization in 

the spatial-temporal domain using the Volterra integral equation method. The main goal of the 

article is to expand the area of applicability of this method to three-dimensional problems in a 

planar waveguide with constant polarization, as well as to obtain general interpolation expressions 

in analytical form, which will be used to construct a system of nonlinear equations for solving 

specific problems. 

KEYWORDS: Approximating functions method, Volterra integral equation method, Planar waveguide 

I. INTRODUCTION 

The Volterra integral equation method is an approach based 

on integral equations equivalent to the Maxwell’s equations 

[1-2] to solve electrodynamics problems in 1-3 dimensional 

space and time domain. Its key features are natural 

description of non-stationary and nonlinear features, unified 

definition of the inner and outer problems, and inclusion of 

initial and boundary conditions in the same equations – the 

equations form is Volterra integral equation of the second 

kind and it is the same for various media and does not 

depend on the initial signal expression. These advantages of 

the Volterra integral equation method significantly simplify 

the problem statement and its solution process, based on the 

universal modeling algorithms for a wide range of 

electrodynamics problems [3-4]. The most qualitative and 

promising solution is based on the analytical-numerical 

method of approximating functions. 

The approximating functions method is a particular case 

of the finite element method [5-7] with partitioning the 

problem definition domain by cells and approximation of 

the desired function by Lagrange polynomials of the second 

order in each of them. Calculation of the Volterra equation 

with such approximation at the mesh points reduces the 

solving of the problem to finding a solution to the 

corresponding system of nonlinear algebraic equations. The 

system is solved by Newton's method or any other method 

suitable for these purposes. 

The approximating functions method was originally 

proposed for general one-dimensional case in [8-9], and was 

extended for solving electrodynamics problems by Volterra 

integral equation method in two-dimensional (1D-spatial 

and time) region in [10-11]. The article [12] proposed an 

approach to construct fault-tolerant computing scheme to 

improve the performance and reliability of the latter, which 

was later used to build a microservice calculation node in a 

microservice application in [13-14].  

In work [15], the approximating functions method was 

extended for modeling problems in the three-dimensional 

space in a planar waveguide with non-magnetic media with 

losses, which makes it possible to solve a much wider range 

of problems, including problems with media with non-

stationary and non-linear properties. 

The present work continues to develop the 

approximating functions method for the planar waveguides 

with non-magnetic media with losses for the case of 

constant polarization inside it. 

 

II. PROBLEM STATEMENT 

As it was shown in work [15], the equation for the problem 

with planar waveguide with non-magnetic media with 
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losses, where signal propagating along z axis only with no 

dependency on a transversal y coordinate, according to the 

Volterra integral equation method has a form: 
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where 0E  is an undisturbed electric field, P  is a 

polarization of the medium inside the slab, which has 

different electromagnetic characteristics than the 

environment outside it, j  is a conductivity current inside the 

slab ,   is the permittivity of medium in the environment, 

/v c   and the SI system of units is used. The 

function   equals 1 inside the waveguide and 0 outside it, 

  is a Hessian matrix, 2 2 2( ') ( ')R x x z z      and 

't t t  . 

Also, in accordance with [15], the field in waveguide is 

expanded into its longitudinal and transverse components, 

presented in Equation (2) and (3) below: 
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These equations describe the electromagnetic field 

evolution in time interval  0,t  . If the observation point 

 ,z x  belongs to the slab  min max,x x x , then they 

formulate the problem for the internal field.  Outside it, the 

expressions are quadrature formulas for calculating the 

fields in the cladding, taking into account the field in the 

waveguide. 

The integrating area for internal problem is specified by 

two inequalities: 
2 2 2 2( ') ( ') ( ') 0v t t x x z z       and 1  , (4) 

and for some point  , ,t x z  is presented on Fig. 1 as a 

semitransparent blue cone with a base that is described by a 

circle 2 2 2 2( ') ( ') ( ')x x z z v t t     . It is clearly seen that 

the integration region is cut off by the waveguide wall 

maxx x  due to the influence of equality 1  . 

 

Fig.1. Cone of integration in slab for some point  , ,t x z  

 

III. APPLICATION OF THE APPROXIMATING 

FUNCTIONS METHOD 

As is known from [10-11], for application of the 

approximating functions method, the domain of the problem 

D should be divided into cells-cuboids , ,i j kD : 
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   (5) 

where h is a spacing of the mesh. Such an approximation of 

the region D by cuboids , ,i j kD  is shown in Fig. 1 in the form 

of a set of cubes, located on top of each other, which fill the 

cone, but do not go beyond it. 

The solutions to Equation (2) and (3) are constructed 

approximately as a sum of piecewise-smooth functions 

, ,
ˆ ( , , )i j kE t x z  each of which is determined in the 

corresponding mesh cell , ,i j kD , which is presented on Fig. 2.  

To successfully solve Equation (2) and (3) by 

approximating functions method, the integrals in them must 

be calculated as analytical expressions. Eliminating the 
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constants, we can say that only an expression with 

polarization P can affect this.  

Let’s consider this expression separately in one cell of 

the mesh, which will have the following form: 
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For the convenience of further reasoning, let's introduce 

a change of variables:  
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where  ' ''v t t t  , '' 'x x x  , '' 'z z z  , i iT t t  , 

ih iT t t h   , j jX x x  , jh jX x x h   , k kZ z z  , 

kh kZ z z h   . 

 
Fig.2. One cell , ,i j kD  of the mesh 

 

In the general case, the integral in Equation (7) cannot be 

calculated in the form of an analytical expression, so let’s 

consider only the situation with constant polarization 

 ', ', 'P t x z const , and obtain an integral value for it. 

IV. CASE WITH CONSTANT POLARIZATION 

To calculate the integral, we will calculate it sequentially 

from the inside out. Then the innermost integral will have 

the following analytical representation: 
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where used the identity 

 2 2arcsin arcsin arcsin 1 1a b a b b a     . (9) 

Since the mesh step h is a very small value, the next 

expression is applicable: 
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and the final expression for Equation (8) will have the 

following form: 
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Next, consider the integral over the x coordinate. 

Integrating by it gives us: 
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where used the formulae from [16]: 
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where 2 2a b .  

Further, the double integral of x and z will have the 

following analytical representation: 
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When integrating Equation (14) over the third variable, 

we use the following equality for the first four terms with 

arcsin: 
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where used integration by parts  
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and formulae from [16]: 
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The last two terms in Equation (14) are integrated as 

follows. At first, we use integrating by parts: 
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As a result, the final expression for Equation (18) will 

have the following form: 
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For ease of use, let's split the final expression for triple 

integral from Equation (7) into parts according with 

Equation (14): 
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It is important to note that:  

 2I  can be obtained from 1I  by replacing jh jX X ,  

 3I  can be obtained from 1I  by replacing 

, , ,jh kh kh jh j k k jX Z Z X X Z Z X    , 

 4I  can be obtained from 3I  by replacing kh kZ Z , 

 6I  can be obtained from 5I  by replacing kh kZ Z . 
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Thus, it is only necessary to calculate explicitly the 

expressions for Equation (24) and (28). 

The explicit form of 1I  and 5I  are as follows: 
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V. CONCLUSION 

In the article presented the extension of the approximating 

functions method to solve electrodynamics problems in a 

planar waveguide with non-magnetic media with losses for 

the case of constant polarization inside it in three-

dimensional space and time domain using the Volterra 

integral equation method. 

The explicit expression for calculating integral part of 

equation in one mesh cell is obtained. It contains only  

simple arithmetic operations, which are the fastest for 

calculations in computer software, square root, arcsine and 

natural logarithm, which have tables of exact values or 

approximations built into programming languages.  

In addition, the final expression consists of 6 terms, 

which are interrelated, and only two of them need to be 

calculated to get expressions for all the others. 
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