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I. INTRODUCTION 

Mathematicians are increasingly interested, especially in 

recent years, in the study of reaction-diffusion systems, due 

to their paramount importance and frequent use in the 

modeling of many diffusion phenomena that we observe in 

nature and which also result from various natural sciences and 

engineering, such as (Coronavirus, hepatitis, population 

dynamics, migration of biological species, quenching). In 

Murray [13,14], we find many real models in different 

scientific fields. 

There are many techniques that can be used to investigate this 

type of problems. The reader can see some of them in the 

works of Alaa and Mesbahi et al. [1,2,10-12,19] and the 

references therein. 

Perhaps the most important class of interaction diffusion 

systems that has received special attention are those that are 

degenerated, due to their wide applications in various 

sciences, particularly in the theory of shells, Brownian motion 

and in many problems of physics, engineering, biology, 

ecology, and others. Among the important works on 

degenerate systems, we mention for example Alaa et al. [2], 

Alvarez et al. [3], Anderson [4], Einav et al. [6], Fitzgibbon 

et al. [7], Saffidine and Mesbahi [19], Wang and Zhao [20]. 

The content of this paper is in this context, we will study the 

existence of positive maximal and minimal solutions for a 

quasilinear elliptic degenerate system, including the 

uniqueness of the positive solution. The elliptic operators of 

the considered system can degenerate in the sense that at least 

one of the operators  𝐷𝑖(𝑢𝑖)  is degenerate. To achieve the 

desired result, we will use a technique based mainly on the 

method of upper and lower solutions. In order to better 

understand this technique, see Deuel and Hess [5], Pao et al. 

[15-18]. 

We shall then study the following system 

(1.1): {
−𝑑𝑖𝑣(𝐷𝑖(𝑢𝑖)𝛻𝑢𝑖) = 𝑓𝑖(𝑥, 𝑢) in Ω

𝑢𝑖(𝑥) = 𝑔𝑖(𝑥) ,  1 ≤ 𝑖 ≤ 𝑁 on ∂Ω,
 

where  Ω  is a bounded domain in  ℝ𝑛   (𝑛 ≥ 2)  with 

boundary  ∂Ω .  𝐷𝑖(𝑢𝑖),  𝑓𝑖 ,  𝑖 = 1, . . . , 𝑁  are prescribed 

functions satisfying the conditions in hypotheses  (𝐻1)  and  

(𝐻3)  which we will mention later. 

The system  (1.1)  can model the circulation of an ideal gas 

in a homogeneous porous medium with an isentropic flow. 

He can also model the steady state of phenomena such as the 

heat propagation in a two-component combustible mixture, 

chemical processes, the interaction of two non-self-limiting 

biological groups, etc. We send the reader to see many models 

and applications in Deuel and Hess [5], Ladyženskaja et al. 

[8], Lei and Zheng [9], especially Pao [16,17] and the 

references therein. 

The rest of this paper is organized as follows: In the next 

section, we state our main result. In the third section, we 

present some preliminary results that we will use later. Next, 

we give some results regarding the approximate problem. The 

fifth section is devoted to prove the main result. Finally, we 

conclude with a conclusion and some perspectives. 

 

II. STATEMENT OF THE MAIN RESULT 

Below, we denote  𝑢 ≡ (𝑢1, . . . , 𝑢𝑁),  𝑢̃𝑠   ≡ (𝑢̃1, . . . , 𝑢̃𝑁),  

𝑢̂𝑠 ≡ (𝑢̂1, . . . , 𝑢̂𝑁) . The inequality  𝑢̂𝑠 ≤ 𝑢̃𝑠  means that  𝑢̂𝑖 ≤

𝑢̃𝑖  for all  1 ≤ 𝑖 ≤ 𝑁. 

A. Assumptions 

Below we will denote  𝐶𝛼(Ω)  to the space of Hölder 

continuous functions in  Ω . We start with the following 
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important definition. 

Definition 1. A pair of functions  𝑢̃𝑠   ≡ (𝑢̃1, … , 𝑢̃𝑁),  𝑢̂𝑠 ≡

(𝑢̂1, … , 𝑢̂𝑁)  in  𝐶2(Ω) ∩ 𝐶(Ω̄)  are called ordered upper and 

lower solutions of  (1.1)  if  𝑢̂𝑠 ≤ 𝑢̃𝑠  and 

(2.1): {
−𝑑𝑖𝑣(𝐷(𝑢̂𝑖)𝛻𝑢̂𝑖) ≤ 𝑓(𝑥, 𝑢̂𝑠) in Ω

𝑢̂𝑖(𝑥) ≤ 𝑔𝑖(𝑥) ,  1 ≤ 𝑖 ≤ 𝑁 on∂Ω, 
 

and  𝑢̃𝑖  satisfies  (2.1)  with inequalities reversed. 

For any given pair of ordered upper and lower solutions  𝑢̃𝑠  

and  𝑢̂𝑠, we define for all  1 ≤ 𝑖 ≤ 𝑁, 

𝑆𝑖
∗ = {𝑢𝑖 ∈ 𝐶(Ω̄) | 𝑢̂𝑖 ≤ 𝑢𝑖 ≤ 𝑢̃𝑖}, 

and 

𝑆∗ = {𝑢 ∈ 𝐶(Ω̄) | 𝑢̂𝑠 ≤ 𝑢 ≤ 𝑢̃𝑠} 

 

We will study our problem under the following hypotheses, 

we assume for each  1 ≤ 𝑖 ≤ 𝑁 :  

(𝐻1) 𝑓𝑖(𝑥, . ) ∈ 𝐶
𝛼(Ω̄)  and  𝑔𝑖 ≡ 𝑔𝑖(𝑥) ∈ 𝐶

𝛼(∂Ω) . 

(𝐻2) 𝐷𝑖(𝑢𝑖) ∈ 𝐶
2([0,𝑀𝑖]),  𝐷𝑖(𝑢𝑖) > 0  for  𝑢𝑖 ∈ [0,𝑀𝑖], and  

𝐷𝑖(0) ≥ 0, where  𝑀𝑖 = |𝑢̃𝑖|𝐶(𝛺̄). 

(𝐻3) 𝑓𝑖(. , 𝑢) ∈ 𝐶
1(𝑆∗), and 

𝜕𝑓𝑖
𝜕𝑢𝑗

(. , 𝑢) ≥ 0,  𝑖 ≠ 𝑗  for all u ∈ 𝑆∗ 

 

(𝐻4) There exists a constant  𝛿0 > 0  such that for any  𝑥0 ∈

𝜕Ω  there exists a ball  𝐾  outside of  Ω  with radius  𝑟 ≥

𝛿0  such that  𝐾 ∩ Ω̄ = {𝑥0}. 

  

In the above system, we further assume  𝐷𝑖(0) = 0  for some 

or all  1 ≤ 𝑖 ≤ 𝑁  and  𝐷𝑖(0) ≥ 0  for the remaining  𝑖. Let  

𝛾𝑖(𝑥)  be smooth positive functions satisfying for all  1 ≤

𝑖 ≤ 𝑁, 

𝛾𝑖(𝑥) ≥ 𝑚𝑎𝑥 {−
𝜕𝑓𝑖
𝜕𝑢𝑖

(𝑥,  𝑢) ;  𝑢 ∈ 𝑆∗} 

𝛾𝑖(𝑥) ≥ 𝐶𝑖(𝑥) + 𝛿𝑖 , 

for some constants  𝛿𝑖 > 0, where  𝐶𝑖(𝑥)  are analogous to  

𝐶(𝑥)  defined in section 3 by the relations  (3.5). We define 

for all  𝑢 ∈ 𝑆∗  

𝐹𝑖(𝑥, 𝑢) = 𝛾𝑖(𝑥)𝑢𝑖 + 𝑓𝑖(𝑥, 𝑢), 1 ≤ 𝑖 ≤ 𝑁. 

 

If we take, for example, 

𝐷1(𝑢1) = 𝜆𝑢1
𝜆−1  ,  𝐷2(𝑢2) = 𝜇𝑢2

𝜇−1
 

𝐷3(𝑢3) = 𝜐𝑢3
𝜐−1  ,  𝑓1 = 𝑝(𝑥)𝑢1

𝑗1𝑢2
𝑘1𝑢3

ℓ1  

𝑓2 = 𝑞(𝑥)𝑢1
𝑗2𝑢2

𝑘2𝑢3
ℓ2  ,  𝑓3 = 𝑟(𝑥)𝑢1

𝑗3𝑢2
𝑘3𝑢3

ℓ3 , 

we get the following typical example, where the result of this 

paper can be applied to it 

{
 
 

 
 −𝛥𝑢1

𝜆 = 𝑝(𝑥)𝑢1
𝑗1𝑢2

𝑘1𝑢3
ℓ1 in Ω

−𝛥𝑢2
𝜇
= 𝑞(𝑥)𝑢1

𝑗2𝑢2
𝑘2𝑢3

ℓ2 in Ω

−𝛥𝑢3
𝜐 = 𝑟(𝑥)𝑢1

𝑗3𝑢2
𝑘3𝑢3

ℓ3 in Ω

𝑢1 = 𝑢2 = 𝑢3 = 0 on ∂Ω,

 

where  𝜆,  𝜇,  𝜐 > 1 ,  𝑗𝑠 ,  𝑘𝑠 ,  ℓ𝑠 > 0 ,  1 ≤ 𝑠 ≤ 3, and  𝑝(𝑥),  

𝑞(𝑥),  𝑟(𝑥) > 0  in  Ω. 

 Lemma 1. 𝐹𝑖(𝑥, 𝑢)  are nondecreasing functions in  𝑢  for 

all  𝑢 ∈ 𝑆∗,  1 ≤ 𝑖 ≤ 𝑁. 

 Proof. According to  (𝐻3)  and  (2.3), we have for all  1 ≤

𝑖 ≤ 𝑁  and  𝑢 ∈ 𝑆∗,  
𝜕𝑓𝑖
𝜕𝑢𝑗

(. , 𝑢) ≥ 0,  𝑖 ≠ 𝑗. 

 

By  (2.2) − (2.3), we get 

𝜕𝐹𝑖
𝜕𝑢𝑖

(𝑥, 𝑢) = 𝛾𝑖(𝑥) +
𝜕𝑓𝑖
𝜕𝑢𝑖

(𝑥, 𝑢) ≥ 0, 

and that is exactly what we want to get. 

B. The main result 

The main result of this paper is what the following theorem 

states. 

 Theorem 1. Let  𝑢̃𝑠 ,  𝑢̂𝑠  be ordered positive upper and lower 

solutions of  (1.1), and let hypotheses  (𝐻1) − (𝐻4)  hold. 

Then problem  (1.1)  has a minimal solution  𝑢𝑠  and a 

maximal solution  𝑢𝑠  such that  𝑢̂𝑠 ≤ 𝑢𝑠 ≤ 𝑢𝑠 ≤ 𝑢̃𝑠. If   𝑢𝑠 =

𝑢𝑠(≡ 𝑢𝑠
∗)  then  𝑢𝑠

∗  is the unique positive solution in  𝑆∗. 

 

III.  PRELIMINARY RESULTS 

All. We first consider the following scalar problem 

(3.1): {
−𝑑𝑖𝑣(𝐷(𝑤)𝛻𝑤) = ℎ(𝑥, 𝑤) in Ω

𝑢(𝑥) = ℎ(𝑥) on ∂Ω,
 

where  𝐷  and  ℎ  satisfy the above hypotheses  (𝐻1) − (𝐻4) 

. 

The following Theorem ensures the existence of positive 

solutions to problem  (3.1) . The proof of this theorem and 

some important clarifications can be found in Ladyženskaja 

et al. [8], Pao and Ruan [15]. 

 Theorem 2. Let  𝑤̃𝑠(𝑥) ,  𝑤̂𝑠(𝑥)  be a pair of upper and lower 

solutions of  (3.1)  such that  𝑤̃𝑠(𝑥) ≥ 𝑤̂𝑠(𝑥) > 0  in  𝛺 , and 

let hypotheses  (𝐻1)  and  (𝐻3)  hold. Then problem  (3.1)  

has a classical solution  𝑤𝑠(𝑥)  such that  𝑤̂𝑠(𝑥) ≤ 𝑤𝑠(𝑥) ≤

𝑤̃𝑠(𝑥)  in  Ω . Furthermore, there are maximal and minimal 

solutions  𝑤𝑠(𝑥)  and  𝑤𝑠(𝑥)  such that every solution  𝑤𝑠 ∈

𝑆0
∗  satisfies  𝑤𝑠(𝑥) ≤ 𝑤𝑠(𝑥) ≤ 𝑤𝑠(𝑥). 

We consider the scalar problem  (3.1)  for  𝑤 . This will lead 

to 

(3.2) :   − 𝑑𝑖𝑣(𝐷(𝑤̂)𝛻𝑤̂) ≤ ℎ(𝑥, 𝑤̂) , in Ω 

 

(3.3) :   − 𝑑𝑖𝑣(𝐷(𝑤̃)𝛻𝑤̃) ≥ ℎ(𝑥, 𝑤̃) , in Ω, 

and therefore 

−𝑑𝑖𝑣 [𝐷1(𝑤̂)𝛻(𝑤̂ − 𝑤̃) + 𝛻𝑤̃ (
𝐷(𝑤̂) − 𝐷(𝑤̃)

𝑤̂ − 𝑤̃
(𝑤̂ − 𝑤̃))] 

≤
ℎ(𝑥, 𝑤̂) − ℎ(𝑥, 𝑤̃)

𝑤̂ − 𝑤̃
(𝑤̂ − 𝑤̃). 

 

The mean value theorem states that there exist  𝜃1, 𝜃2 ∈

[0,𝑀], where  𝑀 = ‖𝑤̃‖𝐶(𝛺̄)  such that 

−𝑑𝑖𝑣[𝐷(𝑤̂)𝛻𝑧 + 𝛻𝑤̃(𝐷′(𝜃1)𝑧)] ≤ ℎ𝑤(𝑥, 𝜃2)𝑧, 

with  𝑧 = 𝑤̂ − 𝑤̃, then 

−𝑑𝑖𝑣(𝛻𝑧)(𝐷(𝑤̂)) − 𝛻(𝐷(𝑤̂))𝛻𝑧

−𝑑𝑖𝑣(𝛻𝑤̃(𝐷′(𝜃1)𝑧))

−𝛻(𝑤̃)𝐷′(𝜃1)𝛻𝑧 − ℎ𝑤(𝑥, 𝜃2)𝑧 ≤ 0.

 

 



“Mathematical Analysis of a Degenerate Reaction-Diffusion Model” 

2548 Salim Mesbahi1, IJMCR Volume 10 Issue 01 January 2022 

 

We obtain 

−𝐷(𝑤̂)𝛥𝑧 + [−𝛻𝐷(𝑤̂) − 𝐷′(𝜃1)𝛻(𝑤̃)]𝛻𝑧

+[−𝛻. 𝛻(𝑤̃)𝐷′(𝜃1) − ℎ𝑤(𝑥, 𝜃2)]𝑧 ≤ 0
 

 

We denote 

(3.4):   𝐵(𝑥) = −𝛻𝐷(𝑤̂) − 𝐷′(𝜃1)𝛻(𝑤̃) 

 

(3.5):   𝐶(𝑥) = −𝑑𝑖𝑣𝛻(𝑤̃)𝐷′(𝜃1) − ℎ𝑤(𝑥, 𝜃2). 

 

We will also need the following lemma. 

 Lemma 2. If  𝑧 ,  𝑧  are in  𝐶2(Ω) ∩ 𝐶(Ω̄)  and satisfy the 

relation 

{
−𝛤[𝑧] + 𝛾𝑧 ≤ −𝛤[𝑧] + 𝛾𝑧 in Ω

𝑧(𝑥) ≤ 𝑧(𝑥) on ∂Ω,
 

with  𝛤[𝑢] = 𝑑𝑖𝑣(𝐷(𝑤)𝛻𝑤) , then  𝑧(𝑥) ≤ 𝑧(𝑥)  on  Ω. 

 Proof. Let  𝑧(𝑥) = 𝑧(𝑥) − 𝑧(𝑥) , we have 

−𝛤[𝑧] + 𝛾𝑧 ≤ −𝛤[𝑧] + 𝛾𝑧 = 𝛾𝑧 + ℎ(𝑥, 𝑧̄) ≡? (𝑥, 𝑧̄), 

then 

(3.6) :   − 𝛤[𝑧] + 𝛾(𝑧 − 𝑧̄) − ℎ(𝑥, 𝑧̄) ≤ 0, 

and 

(3.7):       𝛤[𝑧] + 𝛾(𝑧 − 𝑧) + ℎ(𝑥, 𝑧) ≤ 0. 

 

Adding  (3.6)  and  (3.7), we get 

−𝑑𝑖𝑣 [𝐷(𝑧)𝛻(𝑧 − 𝑧) + 𝛻𝑧 (
𝐷(𝑧) − 𝐷(𝑧)

𝑧 − 𝑧
(𝑧 − 𝑧))]

+2𝛾(𝑧 − 𝑧̄) +
ℎ(𝑥, 𝑧) − ℎ(𝑥, 𝑧)

𝑧 − 𝑧
(𝑧 − 𝑧) ≤ 0.

 

 

The mean value theorem confirms the existence of  𝜃1, 𝜃2  in  

[0,𝑀]  such that 

−𝑑𝑖𝑣[𝐷(𝑧)𝛻𝑧 + 𝛻𝑧(𝐷′(𝜃1)𝑧)] +

2𝛾(𝑧 − 𝑧̄) +
ℎ(𝑥, 𝑧) − ℎ(𝑥, 𝑧)

𝑧 − 𝑧
(𝑧 − 𝑧) ≤ 0

 

with  𝑧 = 𝑧 − 𝑧, then we have 

−𝑑𝑖𝑣(𝛻𝑧) (𝐷(𝑧)) − 𝛻 (𝐷(𝑧)) 𝛻𝑧

−𝑑𝑖𝑣(𝛻𝑧(𝐷′(𝜃1)𝑧))

−𝛻(𝑧)𝐷′(𝜃1)𝛻𝑧 + ℎ𝑤(𝑥, 𝜃2)𝑧 ≤ 0,

 

and therefore 

−𝐷(𝑧)𝛥𝑧 − [𝛻𝐷(𝑧) − 𝐷′(𝜃1)𝛻(𝑧)]𝛻𝑧

−𝑑𝑖𝑣𝛻(𝑧)𝐷′(𝜃1)𝑧 + 2𝛾𝑧 + ℎ𝑤(𝑥, 𝜃2)𝑧 ≤ 0
 

 

−𝐷(𝑧)𝛥𝑧 + [−𝛻𝐷(𝑧) − 𝐷′(𝜃1)𝛻(𝑧)]𝛻𝑧

+[𝛾 + 𝑑𝑖𝑣𝛻(𝑧)𝐷′(𝜃1) + ℎ𝑤(𝑥, 𝜃2)]𝑧 ≤ 0
 

which give 

−𝐷(𝑧)𝛥𝑧 + (𝐵(𝑥))𝛻𝑧 + (𝛾 − 𝐶(𝑥))𝑧 ≤ 0, 

where  𝐵(𝑥)  and  𝐶(𝑥)  are defined in the same way as  𝐵(𝑥)  

and  𝐶(𝑥)  of relations  (3.4)  and  (3.5) , i.e., 

𝐵(𝑥) = −𝛻𝐷(𝑧) − 𝐷′(𝜃1)𝛻(𝑧) 

𝐶(𝑥) = −𝑑𝑖𝑣𝛻(𝑧)𝐷′(𝜃1) + ℎ𝑤(𝑥, 𝜃2). 

 

Assume, by contradiction, that  𝑧(𝑥)  has a positive maximum 

at some point  𝑥0 ∈ Ω. Then  𝑥0 ∈ Ω,  𝛥𝑧(𝑥0) ≤ 0  and  

𝛻𝑧(𝑥0) = 0. This leads to  (𝛾 − 𝐶)𝑧(𝑥0) ≤ 0,  which 

contradicts the fact that  𝛾 − 𝐶 = 𝛿 > 0. 

 

IV.  APPROXIMATING SCHEME 

To prove the main Theorem, we use the method of upper and 

lower solutions. Using then either  𝑢̂𝑠  or  𝑢̃𝑠  as the initial 

iteration we construct a sequence  {𝑢𝑠
(𝑚)}  from the iteration 

process for 

(4.1): {
−𝛷𝑖[𝑢𝑖

(𝑚)] + 𝛾𝑖𝑢𝑖
(𝑚) = 𝐹𝑖(𝑥, 𝑢𝑠

(𝑚−1)) in Ω

𝑢𝑖
(𝑚)(𝑥) = 𝑔𝑖(𝑥) ,  1 ≤ 𝑖 ≤ 𝑁 on ∂Ω,

 

with 

𝛷𝑖[𝑢𝑖] = 𝑑𝑖𝑣(𝐷𝑖(𝑢𝑖)𝛻𝑢𝑖). 

 

We denote the sequence by  {𝑢𝑠
(𝑚)}  if  𝑢𝑠

(0) = 𝑢̂𝑠, and by  

{𝑢𝑠
(𝑚)
}  if  𝑢𝑠

(0) = 𝑢̃𝑠. We call them as minimal and maximal 

sequences, respectively. 

 Lemma_3. The minimal and maximal sequences  

{𝑢𝑠
(𝑚)}, {𝑢𝑠

(𝑚)
}  exist and possess the monotone property 

(4.2):  𝑢̂𝑠 ≤ 𝑢𝑠
(𝑚) ≤ 𝑢𝑠

(𝑚+1) ≤ 𝑢𝑠
(𝑚+1)

≤ 𝑢𝑠
(𝑚)

≤ 𝑢̃𝑠 

for all 𝑚 ≥ 1 

 Proof. Firstly, we consider the following scalar problem  

(4.3): {
−𝛷𝑖[𝑢𝑖

(𝑚)] + 𝛾𝑖𝑢𝑖
(𝑚) = 𝐹𝑖(𝑥, 𝑢𝑠

(𝑚−1)) in Ω

𝑢𝑖
(𝑚)(𝑥) = 𝑔𝑖(𝑥) ,  1 ≤ 𝑖 ≤ 𝑁 on ∂Ω.

 

 

We will use the technique of proof by induction. Starting 

from  𝑚 = 1  and  𝑢𝑠
(0) = 𝑢̂𝑠. Since by Definition 1, the 

components  𝑢̂𝑖  of  𝑢̂𝑠  satisfy the relations   

(4.4): {
−𝛷𝑖[𝑢̂𝑖] + 𝛾𝑖𝑢̂𝑖 ≤ 𝐹(𝑥, 𝑢̂𝑠) = 𝐹(𝑥, 𝑢𝑠

(0)) in Ω

𝑢̂𝑖(𝑥) ≤ 𝑔𝑖(𝑥) ,  1 ≤ 𝑖 ≤ 𝑁 on ∂Ω,
 

and therefore  𝑢̃𝑖  of  𝑢̃𝑠  satisfy 

{
−𝛷𝑖[𝑢̃𝑖] + 𝛾𝑖𝑢̃𝑖 ≥ 𝐹(𝑥, 𝑢̃𝑠) ≥ 𝐹(𝑥, 𝑢𝑠

(0)) in Ω

𝑢̃𝑖(𝑥) ≥ 𝑔𝑖(𝑥) ,  1 ≤ 𝑖 ≤ 𝑁 on ∂Ω
 

 

Similarly, by considering the case  𝑚 = 1  and  𝑢𝑠
(0) = 𝑢̃𝑠, we 

get 

(4.5): {

−𝛷𝑖[𝑢̂𝑖] + 𝛾𝑖𝑢̂𝑖 ≤ 𝐹(𝑥, 𝑢̂𝑠) ≤  

𝐹(𝑥, 𝑢̃𝑠) = 𝐹 (𝑥, 𝑢𝑠
(0)
) in Ω

𝑢̂𝑖(𝑥) ≤ 𝑔𝑖(𝑥) ,  1 ≤ 𝑖 ≤ 𝑁 on ∂Ω,

 

and therefore  𝑢̃𝑖  of  𝑢̃𝑠  satisfy 

{
−𝛷𝑖[𝑢̃] + 𝛾𝑖𝑢̃𝑖 ≥ 𝐹(𝑥, 𝑢̃𝑠) = 𝐹 (𝑥, 𝑢𝑠

(0)
) in Ω

𝑢̃𝑖(𝑥) ≥ 𝑔𝑖(𝑥) ,  1 ≤ 𝑖 ≤ 𝑁 on ∂Ω.
 

 

We see that  𝑢̃𝑖  and  𝑢̂𝑖  are ordered upper and lower solutions 

of  (4.3)  for the case  𝑚 = 1. By Theorem 2, problem  (4.3)  

has also a minimal solution  𝑢𝑖  and a maximal solution  𝑢𝑖  

such that  𝑢̂𝑖 ≤ 𝑢𝑖 ≤ 𝑢𝑖 ≤ 𝑢̃𝑖. We choose  𝑢𝑖  (or  𝑢𝑖 ) as  𝑢𝑖
(1)
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if  𝑢𝑠
(0) = 𝑢̂𝑠  and  𝑢𝑖  (or  𝑢𝑖 ) as  𝑢𝑖

(1)
  if  𝑢𝑠

(0) = 𝑢̃𝑠. So we 

get  𝑢̂𝑖 ≤ 𝑢𝑖
(1) ≤ 𝑢𝑖

(1)
≤ 𝑢̃𝑖 . 

This proves that  𝑢𝑠
(1) ≡ (𝑢1

(1), . . . , 𝑢𝑁
(1))  and  𝑢𝑠

(1)
≡

(𝑢1
(1)
, . . . , 𝑢𝑁

(1)
)  are solutions of  (4.1)  for  𝑚 = 1  and satisfy  

𝑢̂𝑠 ≤ 𝑢𝑠
(1) ≤ 𝑢𝑠

(1)
≤ 𝑢̃𝑠. 

Assume that  𝑢𝑠
(𝑚−1) ≤ 𝑢𝑠

(𝑚) ≤ 𝑢𝑠
(𝑚)

≤ 𝑢𝑠
(𝑚−1)

  for  𝑚 > 1. 

By Lemma 1, we have 

{
 
 

 
 −𝛷𝑖[𝑢

(𝑚)] + 𝛾𝑖𝑢𝑖
(𝑚) = 𝐹(𝑥, 𝑢𝑠

(𝑚−1)) ≤ 𝐹(𝑥, 𝑢𝑠
(𝑚))

−𝛷𝑖 [𝑢
(𝑚)
] + 𝛾𝑖𝑢𝑖

(𝑚)
= 𝐹 (𝑥, 𝑢𝑠

(𝑚−1)
) ≥ 𝐹 (𝑥, 𝑢𝑠

(𝑚)
)

𝑢𝑖
(𝑚) = 𝑢𝑖

(𝑚)
= 𝑔𝑖(𝑥) ,  1 ≤ 𝑖 ≤ 𝑁.

 

 

This implies that  𝑢𝑖
(𝑚)

,  𝑢𝑖
(𝑚)  are ordered upper and lower 

solutions of  (4.3)  when  (𝑚 − 1)  is replaced by  𝑚  and  

𝑢𝑠
(𝑚)

  is either  𝑢𝑠
(𝑚)

  or  𝑢𝑠
(𝑚)

  Again by Theorem 2, problem  

(4.3)  has a minimal solution  𝑢𝑖  and a maximal solution  𝑢𝑖. 

We choose  𝑢𝑖  (or  𝑢𝑖 ) as  𝑢𝑖
(𝑚+1)

  if  𝑢𝑠
(𝑚) = 𝑢𝑠

(𝑚)
  and  𝑢𝑖  

(or  𝑢𝑖 ) as  𝑢𝑖
(𝑚+1)

  if  𝑢𝑠
(𝑚) = 𝑢𝑠

(𝑚)
, which gives us  𝑢𝑖

(𝑚) ≤

𝑢𝑖
(𝑚+1) ≤ 𝑢𝑖

(𝑚+1)
≤ 𝑢𝑖

(𝑚)
. 

This choice ensures that  𝑢𝑠
(𝑚+1) ≡ (𝑢1, . . . , 𝑢𝑁

(𝑚+1))  and  

𝑢𝑠
(𝑚+1)

≡ (𝑢1
(𝑚+1)

, . . . , 𝑢𝑁
(𝑚+1)

)  are solutions of  (4.1)  and 

possess the monotone property  (4.2). 

 

V. PROOF OF THE MAIN RESULT 

We will dedicate this paragraph to the proof of the main 

result. 

 Proof of Theorem 1. In view of Lemma 3, the pointwise 

limits 

(5.1):   𝑙𝑖𝑚
𝑚→∞

𝑢𝑠
(𝑚) = 𝑢𝑠   ,    𝑙𝑖𝑚

𝑚→∞
𝑢𝑠
(𝑚)

= 𝑢𝑠 

exist and satisfy  𝑢̂𝑠 ≤ 𝑢𝑠 ≤ 𝑢𝑠 ≤ 𝑢̃𝑠. To prove that  𝑢𝑠  and  

𝑢𝑠  are respectively the minimal and maximal solutions of  

(1.1). We first consider the minimal sequence  {𝑢𝑠
(𝑚)} ≡

{𝑢1
(𝑚), . . . , 𝑢𝑁

(𝑚)}. Define for each  𝑚  and  1 ≤ 𝑖 ≤ 𝑁 :  

{
 

 
𝑤𝑖
(𝑚)(𝑥) = 𝐼𝑖(𝑢𝑖

(𝑚)) = ∫ 𝐷1(𝑠)𝑑𝑠
𝑢𝑖
(𝑚)

0

𝑄𝑖
(𝑚)(𝑥) = −𝛾𝑖(𝑥)𝑢𝑖

(𝑚) + 𝐹𝑖(𝑥, 𝑢
(𝑚−1)).

 

 

It is obvious that for all  1 ≤ 𝑖 ≤ 𝑁 ,  𝐼𝑖
′(𝑢) = 𝐷𝑖(𝑢) , and the 

inverses of  𝐼𝑖(𝑢)  exist and are denoted by  𝑞𝑖(𝑤𝑖). Now we 

can write problem  (4.1)  in the following scalar form 

(5.2): {
−𝛻2𝑤𝑖

(𝑚) = 𝑄𝑖
(𝑚)(𝑥) in Ω

𝑤𝑖
(𝑚)(𝑥) = 𝑔𝑖

∗(𝑥) = 𝐼𝑖(𝑔𝑖) ≥ 0 on ∂Ω.
 

 

It is clear from  (5.1)  and  (2.4)  that  𝑤𝑖
(𝑚) → 𝑤𝑖 ≡ 𝐼𝑖(𝑢)  

and  𝑄𝑖
(𝑚) → 𝑓𝑖(𝑥, 𝑢𝑠)  as  𝑚 → ∞. By the argument in the 

proof for the scalar problem  (3.1),  𝑤𝑖  is the unique solution 

of the linear problem 

{
−𝛻2𝑤𝑖

(𝑚)(𝑥) = 𝑄𝑖
(𝑚)(𝑥)

𝑤𝑖
(𝑚)(𝑥) = 𝑔𝑖

∗(𝑥) , 1 ≤ 𝑖 ≤ 𝑁
 

 

This show that  𝑢𝑠 ≡ (𝑢1, . . . , 𝑢𝑁) ,  where  𝑢𝑖 = 𝑞𝑖(𝑤𝑖)  for  

1 ≤ 𝑖 ≤ 𝑁  is a solution of  (1.1)  and  𝑢𝑠 ∈ 𝑆
∗. 

Now, we show that  𝑢𝑠  is a solution of  (1.1)  in  𝑆∗, for this 

we consider the maximal sequence  {𝑢𝑠
(𝑚)
} ≡

{𝑢1
(𝑚)
, . . . , 𝑢𝑁

(𝑚)
}. Define for each  𝑚  and for  1 ≤ 𝑖 ≤ 𝑁  

{
 
 

 
 
𝑤𝑖
(𝑚)
(𝑥) = 𝐼𝑖 (𝑢𝑖

(𝑚)
) = ∫ 𝐷𝑖(𝑠)𝑑𝑠

𝑢𝑖
(𝑚)

0

𝑄𝑖
(𝑚)
(𝑥) = −𝛾𝑖(𝑥)𝑢𝑖

(𝑚)
+ 𝐹𝑖 (𝑥, 𝑢

(𝑚−1)
) .

 

 

Then, the quasilinear problem  (4.1)  may be written as the 

scalar linear problem 

{
−𝛻2𝑤𝑖

(𝑚)
= 𝑄𝑖

(𝑚)
(𝑥) in Ω

𝑤𝑖
(𝑚)
(𝑥) = 𝑔𝑖

∗(𝑥) on ∂Ω.
 

 

It is clear from  (5.1)  and  (2.4)  that  𝑤𝑖
(𝑚)

→ 𝑤𝑖 ≡ 𝐼𝑖(𝑢𝑖),  

𝑄𝑖
(𝑚)

→ 𝑓𝑖(𝑥, 𝑢𝑠), for  1 ≤ 𝑖 ≤ 𝑁   as  𝑚 → ∞. As in the 

proof of the scalar problem,  𝑤1  is the unique solution of 

problem  (5.2). This show that  𝑢𝑠 ≡ (𝑢1, . . . , 𝑢𝑁),  where  

𝑢𝑖 = 𝑞𝑖(𝑤𝑖)  is a solution of  (1.1)  and  𝑢𝑠 ∈ 𝑆
∗. 

To show that  𝑢𝑠  and  𝑢𝑠  are, respectively, minimal and 

maximal solutions of  (1.1)  in  𝑆∗. We observe that every 

solution  𝑢 = (𝑢1, . . . , 𝑢𝑁)  of  (1.1)  in  𝑆∗  satisfies for each  

1 ≤ 𝑖 ≤ 𝑁  

{
−𝛷𝑖[𝑢𝑖] + 𝛾𝑖𝑢𝑖 = 𝐹(𝑥, 𝑢𝑠) ≥ 𝐹(𝑥, 𝑢𝑠

(0)) in Ω

𝑢𝑖(𝑥) = 𝑔𝑖(𝑥) on ∂Ω.
 

 

By  (4.1)  (with  𝑚 = 1  and  𝑢𝑖
(1) = 𝑢𝑖

(1)
  for  1 ≤ 𝑖 ≤ 𝑁 ) 

we have 

𝐹𝑖(𝑥, 𝑢𝑠
(0)) = −𝛷𝑖[𝑢𝑖

(1)] + 𝛾𝑖𝑢𝑖
(1), 

then 

−𝛷𝑖[𝑢𝑖] + 𝛾𝑖𝑢𝑖 ≥ −𝛷𝑖 [𝑢𝑖
(1)] + 𝛾𝑖𝑢𝑖

(1). 

 

By lemma 2 we have  for each  1 ≤ 𝑖 ≤ 𝑁 ,  𝑢𝑖 ≥ 𝑢𝑖
(1)

, i.e.,  

𝑢 ≥ 𝑢𝑠
(1)

 . This implies, by Lemma 1, that  𝐹𝑖(𝑥, 𝑢) ≥

𝐹𝑖(𝑥, 𝑢𝑠
(1)). It follows by induction 

𝐹𝑖(𝑥, 𝑢) ≥ 𝐹𝑖(𝑥, 𝑢𝑠
(1)) ≥ ⋯ ≥ 𝐹𝑖(𝑥, 𝑢𝑠

(𝑚)), 

then  

𝑢 ≥ 𝑢𝑠
(𝑚)

 , for every 𝑚 ≥ 1. 

 

By following the same steps, we observe that every solution  

𝑢 = (𝑢1, . . . , 𝑢𝑁)  of  (1.1)  in  𝑆∗  satisfies  
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{
−𝛷𝑖[𝑢𝑖] + 𝛾𝑖𝑢𝑖 = 𝐹𝑖(𝑥, 𝑢) ≤ 𝐹𝑖 (𝑥, 𝑢𝑠

(0)
) in Ω

𝑢𝑖(𝑥) = 𝑔𝑖(𝑥) ,  1 ≤ 𝑖 ≤ 𝑁 on ∂Ω.
 

 

By  (4.1)  (with  𝑚 = 1  and  𝑢𝑖
(1) = 𝑢𝑖

(1)
  for  1 ≤ 𝑖 ≤ 𝑁 ), 

we have 

𝐹𝑖 (𝑥, 𝑢𝑠
(0)
) = −𝛷𝑖 [𝑢𝑖

(1)
] + 𝛾𝑖𝑢𝑖

(1)
, 

then 

−𝛷𝑖[𝑢𝑖] + 𝛾𝑖𝑢𝑖 ≤ −𝛷𝑖 [𝑢𝑖
(1)
] + 𝛾𝑖𝑢𝑖

(1)
. 

 

By lemma 2, we obtain  𝑢𝑖 ≤ 𝑢𝑖
(1)
  for  1 ≤ 𝑖 ≤ 𝑁 , i.e.,  𝑢𝑠 ≤

𝑢𝑠
(1)

 . This gives us, by Lemma 1,  𝐹𝑖(𝑥, 𝑢) ≤ 𝐹𝑖 (𝑥, 𝑢𝑠
(1)
) . By 

an induction, we get 

𝐹𝑖(𝑥, 𝑢) ≤ 𝐹𝑖 (𝑥, 𝑢𝑠
(1)
) ≤ ⋯ ≤ 𝐹𝑖 (𝑥, 𝑢𝑠

(𝑚)
), 

which implies  𝑢𝑠 ≤ 𝑢𝑠
(𝑚)
.  

Letting  𝑚 → ∞  and using relation  (5.1)  lead to  𝑢𝑠 ≤ 𝑢 ≤

𝑢𝑠 , which proves the minimal and maximal property. Finally, 

if   𝑢𝑠 = 𝑢𝑠 (≡ 𝑢𝑠
∗)  then this maximal-minimal property 

ensures that  𝑢𝑠
∗  is the unique positive solution in  𝑆∗. 
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