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I. INTRODUCTION   

During the last 95- years a lot of fixed point theorems have 

been established and we find that Banach contraction 

principle is at the base of the most of these results established 

so far. The concept of metric spaces has been generalized in 

many directions. The notion of a b-metric space was 

introduced by Czerwik in  [11, 12] and during the last few 

years by many authors a lot of fixed point theorems have been 

proved in b-metric spaces. Recently, Samet et. al.[30] studied 

a new class of (, ) type contraction and- admissible 

mapping   

 The following definitions are required in sequel. 

 

2. PRELIMINARIES  

Definition 2.1 ([6]) Let X be a nonempty set. A mapping d : 

X  X   [0, ∞) is called b-metric if there exists a real number 

b  1 such that for every x, y, z  X, we have 

(i) d(x, y) = 0 if and only if x = y 

(ii) d(x, y) = d(y, x) 

(iii) d(x, z)  b[d(x, y) + d(y, z)] 

           In this case the pair (X, d) is called a b-metric space. 

There exists many examples in the literature (see[6-8])(BS) 

showing that every metric function is a b-metric function with 

b =1, while the converse is not true, i.e.  the class b- metric is 

effectively larger than that of ordinary metric spaces. 

Definition 2.2 [ 15] Let {𝒙𝒏} be a sequence in a b-metric 

space (X, d). 

(i)  {𝒙𝒏} is called b-convergent if and only if there 

is x  X such that d(𝒙𝒏, 𝒙)  0 as n  ∞. 

(ii)  {𝒙𝒏} is called b-Cauchy sequence if and only if 

d(𝒙𝒏, 𝒙𝒎)  0 as n, m  ∞. 

    A b-metric space is said to be complete if and only if each 

b-Cauchy sequence in this space is b-convergent. 

Recently, Samet et al.[30]  considered the following family 

of functions and presented the new notion of ( - )-

contractive and  - admissible mappings. 

Definition 2.3 ([31]) Let  denote the family of all  

 functions  : [0, ∞)  [0, ∞) which satisfy the following :  

(i) ∑  𝐧(𝐭)∞
𝐧=𝟏  < ∞ for each t > 0, where  𝐧 is the 

nth iterate of  ; 

(ii)   is non-decreasing. 

Definition 2.4 ([31]) Let (X, d) be a metric space and T : X  

 X  be a self-mapping. T is said to be an (, ) – contractive 

mapping if there exists two functions   : X  X   [0, ∞)  

and    such that 

                 (x, y)d(Tx, Ty)  (𝒅(𝒙, 𝒚)) for all x, y  X. 

Definition 2.5 ([31]) Let (X, d) be a metric space and T : X  

 X and  : X  X   [0, ∞). T is said to be -admissible if  

                         x, y  X,  (x, y)  1   (Tx, Ty)  1. 

Now we present an example of α-admissible mappings. 

Example2.6    Let X be the set of all non-negative real 

numbers. Let us define the mapping 

α : X × X → [X, ∞) by 

(x, y) = {
2𝑥−𝑦 ,    𝑖𝑓 𝑥 ≥ 𝑦
0,          𝑖𝑓 𝑥 < 𝑦

 

and define the mapping T : X → X by Tx =  2𝑥for all x ∈ 

X. Then T is α-admissible. 

  Let  denote all functions  : [X, ∞) → 

[X, ∞) which satisfy the following 

properties: 
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(i)   is non-decreasing; 

(ii) ∑  𝒏(𝒂)∞
𝒏=𝟏  < ∞ for each a > 0, where  𝒏 is the 

nth iterate of  ; 

(iii)  (a + b) =   (a) +  ( b) 

Lemma 2.7 [31]    If  : [X, ∞) → [X, ∞) is a non-decreasing 

function, then for each a > 0, 

                        lim
𝑛 →∞

 𝒏(𝒂)  implies  (a) < a . 

Definition 2.8 [26]   Let (X, d) be a metric space and T : X 

→ X be a given mapping. We say that T is ( , α)-

expansive mappings if there exist two functions  : [X, 

∞) → [X, ∞) and α : X × X → [X, ∞)  such  that       

       (𝑑(𝑇𝑥, 𝑇𝑦))  (x, y)d(x, y)  for all x, y  X. 

 In what follows, we present the main results of  Samet  et al. 

[11]. 

Theorem 2.9 [31]    Let (X, d) be a complete metric space 

and T : X → X be an α-ψ contractive mapping satisfying the 

following conditions: 

(i) T is α-admissible; 

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥  1; 

(iii) T is continuous. 

Then T has a fixed point, that is, there exists   x ∈ X 

such that Tx = x          

Theorem 2.10 [31]    Let (X, d) be a complete metric space 

and T : X → X be an α-ψ- contractive mapping satisfying 

the following conditions: 

(i) T is α-admissible; 

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥1; 

(iii) if {xn} is a sequence in X such that α(xn, xn+1) 

≥ 1 for all n and xn → x ∈ X as n ∞, then 

α(xn, x) ≥ 1 for all n. 

Then T has a fixed point. 

  Samet et al. [31]   added the following condition (H) to the 

hypotheses of Theorem 2.10 and Theorem 2.10 to assure the 

uniqueness of the fixed point: 

(H) For all x, y ∈ X, there exists z ∈ X such that α(x, 

z) ≥ 1 and α(y, z) ≥ 1. 

We introduce here a new notion of ( , α)-

expansive mappings as follows: 

Let K denote the set of all functions  : [0, +∞) → [0, +∞) 

which satisfy the properties: 

(i)  is non-decreasing ; 

(ii) ∑ 𝑏𝑖∞
𝑖,𝑗=1 𝑗(a) <  +∞ for each a > 0, where 𝑗  

is the jth
 iterate of  ; 

(iii)   (a + b) =  (a) +  (b) ,   a, b  [0, +∞)  

Lemma 2.11 [31] If  : [0, +∞) → [0, +∞) is a non-

decreasing function, then for each a > 0,  

                        limn→+∞ n(a) = 0 implies  (a) < a. 

Definition 2.12 [26] Let (X, d) be a metric space and T : 

X → X be a given mapping. We say that T is an (,α) - 

expansive mapping if there exist two functions  ∈ K and 

α : X × X → [0, +∞) such that 

(A)    (𝑑(𝑇𝑥, 𝑇𝑦))   ≥  𝛼(𝑥, 𝑦)𝑑(𝑥, 𝑦)        

for all x, y ∈ X. 

Remark 2.13  If T : X → X is an expansion mapping, then T 

is an ( , α)-expansive mapping, where α(x, y) = 1 for all x, y 

∈ X and  (a) = sa for all  a ≥ 0 and some s ∈ [0,1).   

Throughout this paper we shall making use of the 

standard notations and terminologies of nonlinear 

analysis. 

 

3. MAIN RESULTS 

Theorem 3.1 Let (X, d) be a complete b- metric space with 

constant b  1 and T : X → X be a bijective, ( , α) - expansive 

mapping satisfying the following conditions: 

(i)  𝑇−1  is  α-admissible; 

(ii) there exists x0 ∈ X such that  𝛼(𝑥0, 𝑇−1𝑥0) ≥ 1 ; 

(iii) T is continuous. 

           Then T has a fixed point, that is, there exists z ∈ X 

such that Tz = z. 

Proof :  Let us define the sequence {xn} in X by  𝑥𝑛= 

T𝑥𝑛+1, for all n ∈ N, 

                 where x0 ∈ X is such that 𝛼(𝑥0, 𝑇−1𝑥0) ≥ 1 . Now, if 𝑥𝑛= 

𝑥𝑛+1 for any n ∈ N, then from the definition {xn} it can be 

easily seen that xn  is a fixed point of T. Hence,  without loss 

of generality, we may assume  𝑥𝑛 /  𝑥𝑛+1  for each n ∈ N. 

It is given that 𝛼(𝑥0, 𝑥1) = 𝛼(𝑥0, 𝑇−1𝑥0). Recalling that 

𝑇−1  is α-admissible, therefore, we have 

               𝛼( 𝑇−1𝑥0,  𝑇−1𝑥1)  = 𝛼(𝑥0, 𝑥1)   

1 

Using mathematical induction, we obtain 

(3.1.1)     𝛼(𝑥𝑛 , 𝑥𝑛+1)   1  for all n ∈ N.  

 Using (3.1.1) and applying the inequality (A) with x = 𝑥𝑛 ,   

and y = 𝑥𝑛+1,   we obtain 

               𝑑(𝑥𝑛 , 𝑥𝑛+1)   𝛼(𝑥𝑛 , 𝑥𝑛+1)𝑑(𝑥𝑛 , 𝑥𝑛+1)  

(𝑑(𝑇𝑥, 𝑇𝑦)) = (𝑑(𝑥𝑛−1, 𝑥𝑛))    

Therefore, by repetition of the above inequality, we have 

that 

               𝑑(𝑥𝑛 , 𝑥𝑛+1)   𝑛(𝑑(𝑥0, 𝑥1)),  for all n ∈ N. 

For any n > m ≥ 0, we have 

 d(xm, xn)  ≤  bd(xm, xm+1) + b2d(xm+1, xm+2) + .  .  .   + bn-md(xn-

1, xn) 

    ≤  (bm + b2m+1 +  .  .  .   + bn-mn-1)d(x0, x1)  

From ∑ 𝑏𝑖∞
𝑖,𝑗=1 𝑗(a) <  +∞ for each a > 0, it follows that 

{xn} is a Cauchy sequence in the complete metric space 

(X, d). So, there exists z ∈ X such that 𝑥𝑛 → z as n → +∞. 

From the continuity of T , it follows that xn = Txn+1 → Tz as 

n → +∞. By the uniqueness of the limit, we get z = Tz, that 

is, z is a fixed point of T . This completes the proof. 

In what follows, we prove that Theorem 3.1 still holds for 

T not necessarily continuous, assuming the following 

condition: 

(B): If {𝑥𝑛} is a sequence in X such that 𝛼(𝑥𝑛 , 𝑥𝑛+1)  ≥ 1 

for all n and {𝑥𝑛}→ u ∈ X as n →+∞, then 

(3.1.2)     𝛼(𝑥0, 𝑇−1𝑥0) ≥ 1, for all n. 
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Theorem 3.2 If in Theorem 3.4 we replace the continuity of 

T by the condition (B), then the result          holds true. 

Proof:  Following the proof of Theorem 3.1, we know that 

{xn} is a sequence in X such that  

d(𝑥𝑛 , 𝑥𝑛+1)  ≥ 1 for all n and {𝑥𝑛}→ z ∈ X as n → +∞. Now, 

from the hypothesis (3.1.2), we have 

(3.2.1)     𝛼(𝑇−1𝑥𝑛 , 𝑇−1𝑧)  ≥ 1,  for all n ∈ N.  

From  (3.2.1), (3.1.2) and b-triangular inequality, we have 

               𝑑(𝑇−1𝑧, 𝑧)    𝑏(𝑑(𝑇−1𝑧, 𝑥𝑛+1) + 𝑑(𝑥𝑛+1, 𝑧)) 

                                   =b(𝑇−1𝑧, 𝑇−1𝑥𝑛)𝑑(𝑇−1𝑧, 𝑇−1𝑥𝑛)  

+ b𝑑(𝑥𝑛+1, 𝑧) 

                                     𝑏(𝑑(𝑥𝑛 , 𝑧) + b𝑑(𝑥𝑛+1, 𝑧)) 

Continuity of  at t = 0 implies that (T−1z, z) = 0 as n → 

+∞. That is, 𝑇−1z = z.  

Consider,  Tz = T(T−1z)= (TTT−1)z = z. This gives an end 

to the proof. Q 

We now present some examples in support of our 

results. 

Example 3.3 Let X = [0, +∞) endowed with standard 

metric d(x, y) = |x – y| for all x, y ∈ X. Define the mappings 

T : X → X and α : X × X → [0, +∞) by 

T(x) = {
2𝑥 −  

7

4
 ,   𝑥  1,

    
𝑥

4
,   𝑥  [0, 1)          

and     (x, y) = 

{
0 ,         𝑥, 𝑦 ∈ [0,1),

 
𝑥

4
 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          

 

Clearly, T is an (,α)-expansive mapping with (t) = t/4 

for all t ≥ 0.  

In fact, for all x, y ∈ X, we have   
1

4
d(Tx, Ty) ≥ α(x, y)d(x, 

y). 

Moreover, there exists x0 ∈ X such that α(𝑥0, 𝑇−1𝑥0) ≥ 1. In 

fact, for 𝑥0 = 1, we have (1, 𝑇−11) = 1. 

Obviously, T is continuous, and so it remains to show that 

𝑇−1 is α-admissible. For this, let x, y ∈ X such that α(x, y) 

≥ 1. This implies that x ≥ 1 and y ≥ 1, and by the definitions 

of 𝑇−1 and α, we have 

𝑇−1𝑥 = 
𝑥

2
 +  

7

8
   1,   𝑇−1𝑦 = 

𝑦

2
 +  

7

8
   1  and  𝛼(𝑇−1𝑥, 𝑇−1𝑦) 

= 1, 

Then 𝑇−1 is α-admissible. 

Now, all the hypotheses of Theorem 3.4 are satisfied. 

Consequently, T has a fixed point.  In this example, 0 and 
7

4
  

are two fixed points of T . 

Example 3.4   Let X = [0, ∞) endowed with the standard 

metric d(x, y) = |x – y| for all x, y ∈ X. Define the mappings 

T : X → X and α : X × X → [0, ∞) by 

T(x) = {
√𝑥,          𝑥  1,

  
𝑥

4
, 𝑥 [0, 1)          

    and    (x, y) = 

{
0 ,         𝑥, 𝑦 ∈ [0,1),

 
𝑥

4
 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          

 

Due to the discontinuity of  T at 1, Theorem 3.1  is not 

applicable in this case. Clearly, T is an ( , α)-expansive 

mapping with  (t)= t/4  for all t ≥ 0. In fact, for all x, y ∈ X, 

we have 
1

4
 d(Tx, Ty) ≥ α(x, y)d(x, y). 

Moreover, there exists x0 ∈ X such that α(x0, 𝑇−1x0)  ≥ 1. In 

fact, for x0 = 1, we have α(1, 𝑇−11)  = 1 

Now, let x, y ∈ X such that α(x, y) ≥ 1.  

This implies that x ≥ 1, y ≥ 1 and by the definition of 𝑇−1 and 

α, we have 

𝑇−1x  = 𝑥
1

4⁄   1,    𝑇−1y  = 𝑦
1

4⁄   1  and  

α(𝑇−1x, 𝑇−1y) = 1. Then 𝑇−1 is α-

admissible. 

Finally, let {xn} be a sequence in X such that  α(xn, xn+1) ≥  

1 for a n and {xn}→ x ∈ X as n → ∞. 

Since α(xn, xn+1) ≥  1 for all n, by the 

definition of α, we have 𝑥𝑛 ≥ 1 for all n and 

x ≥ 1. Then α(𝑇−1𝑥𝑛 ,  𝑇−1x)= 1. 

Therefore, all the required hypotheses of Theorem 3.2 are 

satisfied, and so T has a fixed point. Here, 0 and 1 are two 

fixed points of T . 

Remark 3.5 As in the previous example, the expansion 

mapping theorem is not applicable in this case either. To 

ensure the uniqueness of the fixed point in Theorem 3.1 

and 3.2 we consider the  condition: 

(C): For all 𝑧1, 𝑧2 ∈ X, there exists z ∈ X such that α(𝑧1, z) ≥ 

1 and α(𝑧2, z) ≥ 1. 

Theorem 3.6  Adding the condition (B) respectively  to the 

hypotheses of Theorem 3.1 and Theorem 3.2,  we get the 

uniqueness of the fixed point . 

Proof Theorem 3.1 and 3.2, the set of fixed points is non-

empty. We shall show that if 𝑧1 and 𝑧2 are two fixed points 

of T , that is, T(𝑧1)= 𝑧1 and T(𝑧2) = 𝑧2, then 𝑧1 = 𝑧2. 

From the condition (C), there exists z ∈ X such that 

(3.6.1) α(𝑧1, z) ≥ 1and α(𝑧2, z) ≥  1 

  

Recalling the α-admissible property of 𝑇−1, we obtain 

from (3.6.1) 

(3.6.2)   α(𝑧1,  𝑇−1z)   1   and    α(𝑧2,  𝑇−1z)  1,  for all n 

∈N 

Therefore, by repeatedly applying the α-admissible 

property of 𝑇−1, we get 

(3.6.3) α(𝑧1,  𝑇−𝑛z)   1  and    α(𝑧2,  𝑇−𝑛z)  1,  for all n ∈ 

N..

  

Using the inequalities (3.2.1) and (3.6.3), we obtain 

α(𝑧1,  𝑇−𝑛z)  α(𝑧1,  𝑇−𝑛z)d(𝑧1,  𝑇−𝑛z)  (𝑑(𝑧1,

𝑇−𝑛+1z)) 

On repeating the above inequality implies we obtain  

α(𝑧1,  𝑇−𝑛z)  𝑛(𝑑(𝑧1, z)), for all n ∈ N. 

Thus, we have T–nz  z as n  ∞.  

Using the similar steps as above, we obtain T–nz  𝑧2 as 

n  ∞.  

Now, the uniqueness of the limit of T–nz 
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gives us 𝑧1 = 𝑧2.  

This completes the proof.  
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